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SUMMARY

Lithium has been a mainstay for the treatment of bipolar disorder, yet the molecular mechanisms 

underlying its action remain enigmatic. Bisphosphate 3′-nucleotidase (BPNT-1) is a lithium-

sensitive phosphatase that catalyzes the breakdown of cytosolic 3′phosphoadenosine 5′-phosphate 

(PAP), a byproduct of sulfation reactions utilizing the universal sulfate group donor 

3′phosphoadenosine 5′-phosphosulfate (PAPS) (Figure 1A) [1–3]. Loss of BPNT-1 leads to the 

toxic accumulation of PAP in yeast and non-neuronal cell types in mice [4,5]. Intriguingly, 

BPNT-1 is expressed throughout the mammalian brain [4], and it has been hypothesized that 

inhibition of BPNT-1 could contribute to the effects of lithium on behavior [5]. Here, we show that 

loss of BPNT-1 in Caenorhabditis elegans results in the selective dysfunction two neurons, the 

bilaterally symmetric pair of ASJ chemosensory neurons. As a result, BPNT-1 mutants are 

defective in behaviors dependent on the ASJ neurons, such as dauer exit and pathogen avoidance. 

Acute treatment with lithium also causes dysfunction of the ASJ neurons, and we show that this 

effect is reversible, and mediated specifically through inhibition of BPNT-1. Finally, we show that 

the selective effect of lithium on the nervous system is due in part to the limited expression of the 

cytosolic sulfotransferase SSU-1 in the ASJ neuron pair. Our data suggest that lithium, through 

inhibition of BPNT-1 in the nervous system, can cause selective toxicity to specific neurons, 

resulting in corresponding effects on behavior of C. elegans.
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 RESULTS AND DISCUSSION

We have previously shown that the daf-7 gene, encoding a TGF-β ligand that regulates 

diverse behaviors in C. elegans [6,7], is transcriptionally activated in the ASJ chemosensory 

neuron pair upon exposure to the pathogenic bacteria Pseudomonas aeruginosa [8]. We 

conducted a forward genetic screen for animals defective in this transcriptional response, 

and identified one such mutant, qd257, which carries a D119N missense mutation in bpnt-1 
(Figures 1B–C). This aspartic acid residue is conserved from yeast to humans, and is 

required for the catalytic activity of the superfamily of lithium-sensitive phosphatases [9,10]. 

Confirming the identity of qd257 as an allele of bpnt-1, we used CRISPR/Cas9-mediated 

genome editing to generate a loss-of-function bpnt-1 allele, qd303, in which a deletion/

insertion leads to a frameshift at amino acid 20 followed by a premature stop codon. 

Animals carrying bpnt-1(qd303), or the W294X nonsense mutation bpnt-1(gk469190), also 

fail to express daf-7 in the ASJ neurons when exposed to P. aeruginosa (Figures 1B–C). 

Notably, the constitutive expression of daf-7 in the ASI neuron pair is unaffected by loss of 

bpnt-1 (Figure 1B). These data suggest that BPNT-1 is required for the expression of daf-7 
specifically in the ASJ neurons.

BPNT-1 is conserved in all eukaryotes, and belongs to a family of lithium-sensitive 

phosphatases that includes inositol monophosphatase and inositol polyphosphate-1-

phosphatase (Figure S1). Loss of BPNT-1 in mice leads to the toxic accumulation of PAP 

and death by liver failure at 45 days [4], and so we were surprised that bpnt-1 mutants were 

viable and appeared healthy. We used fluorescent in situ hybridization to analyze the bpnt-1 
expression pattern and observed broad mRNA expression throughout the animal (Figure S2), 

confirming previous high-throughput expression analysis [11]. bpnt-1 mRNA was almost 

entirely absent in the bpnt-1(qd303) mutant, demonstrating that the bpnt-1 expression 

pattern was specific (Figure S2). Transgenic expression of genomic bpnt-1 DNA, or bpnt-1 
cDNA under a promoter that drives expression exclusively in the ASJ neurons, each rescued 
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the daf-7 expression defect in the ASJ neurons (Figures 1B–C). Consistent with this 

observation and our previous results that established a role for daf-7 induction in promoting 

pathogen avoidance [8], bpnt-1 mutant animals are defective in the protective behavioral 

avoidance of P. aeruginosa (Figure 1D). We therefore conclude that despite its widespread 

expression, BPNT-1 is not essential in C. elegans, and is acting cell-autonomously to 

promote the function of the ASJ neurons.

We determined that the gross morphology of the ASJ neurons was still intact in the bpnt-1 
mutant background through labeling with a lipophilic dye. However, we also observed a 

reduction in the cytoplasmic volume of the ASJ neurons (Figure 1E). This led us to ask if the 

expression of other genes in the ASJ neurons and additional ASJ-dependent behaviors might 

be affected in the bpnt-1 mutant. Indeed, expression of the insulin-like peptide daf-28 [12], 

the G protein alpha subunit gpa-9 [13], and the thioredoxin trx-1 [14] were all decreased in 

the bpnt-1 mutant (Figures 2A–C). Expression of gpa-9 in tail neurons and expression of 

daf-28 in the ASI neurons was unaffected by loss of bpnt-1 (data not shown), further 

suggestive of ASJ-specific effects of the loss of BPNT-1 function. In addition, exit from the 

dauer reproductive diapause state, a behavior which requires the ASJ neurons [15,16], was 

severely impaired in animals lacking BPNT-1 (Figure 1F). The dauer exit defect was 

partially rescued by expressing bpnt-1 from an ASJ-specific promoter, demonstrating that 

BPNT-1 activity in the ASJ neurons is required for the dauer exit behavior (Figure 1G). 

From these observations we conclude that ASJ transcription and ASJ-dependent behaviors 

are defective in BPNT-1 mutants.

Given that BPNT-1 enzymatic activity is potently inhibited by lithium in vitro [1–3], we 

asked whether the effects of lithium on C. elegans would mimic the loss of BPNT-1. Indeed, 

acute exposure to 15 mM LiCl significantly decreased the expression of all ASJ-specific 

genes, including daf-28, gpa-9, and trx-1 (Figures 2A–C). Similar to the effects of loss of 

BPNT-1, expression of these genes in other neurons was not affected by lithium treatment 

(data not shown). The inhibitory effects of lithium treatment were reversible – following 24 

hours recovery, daf-28::gfp expression in the ASJ neurons had increased to levels slightly 

above untreated animals (Figure 2D). Acute lithium exposure also reduced the cytoplasmic 

volume of the ASJ neurons (Figure 2E). Additionally, dauer exit behavior was inhibited by 

lithium treatment to levels similar to bpnt-1 mutant animals (Figure 2F). These results 

indicate that the ASJ neurons are selectively and reversibly inhibited by lithium.

Lithium can inhibit the activity of phosphatases other than BPNT-1, such as inositol 

phosphatases, and we wondered if the effects of lithium were mediated by inhibition of 

BPNT-1. A mutation in the BPNT-1 yeast homolog MET22/HAL2 (V70A) has been 

characterized that does not affect its catalytic activity but confers 10-fold resistance to 

inhibition by lithium [10]. This hydrophobic residue is conserved not only in all BPNT-1 

homologs, but in the homologous inositol phosphatases as well. In fact, introduction of the 

corresponding mutation into human inositol monophosphatase (I68A) or a bacterial inositol 

monophosphatase (L81A) renders these proteins lithium insensitive [10,17], suggesting that 

the homologous change would be effective on the much more closely related C. elegans 
BPNT-1. Introduction of this BPNT-1 variant (I75A in C. elegans) into the bpnt-1(qd303) 
mutant fully rescued the ASJ expression defect of daf-28 and in addition rendered the ASJ 
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neuron resistant to the transcriptional and morphological effects of lithium treatment 

(Figures 2E and 2G). Animals expressing BPNT-1(I75A) were also resistant to the effects of 

lithium treatment on dauer exit, strongly suggestive that the effects of lithium on C. elegans 
dauer exit behavior are due to the inhibition of BPNT-1 (Figure 2F). Additionally, mutations 

in lithium-sensitive inositol monophosphatase TTX-7 or Golgi-resident PAP phosphatase 

GPAP-1 did not mimic the addition of lithium (Figure S3A). These data suggest that the 

inhibitory effects of lithium on the ASJ neurons are mediated through inhibition of the 

lithium-sensitive phosphatase BPNT-1.

To identify the molecular mechanism by which loss of BPNT-1 leads to dysfunction of the 

ASJ neuron, we undertook cross-species rescue experiments with homologs of restricted 

substrate specificity. In addition to catalyzing the breakdown of PAP into 5′-AMP, BPNT-1 

has been shown to have in vitro inositol polyphosphate-1-phosphatase (IPP) activity [2,3]. 

Intriguingly, although IPP was present in the common ancestor of all animals, as evidenced 

by its presence in cnidarians and sponges, IPP was lost in the nematode lineage (Figure S1). 

We therefore sought to determine if BPNT-1 might be functioning as an IPP in C. elegans 
neurons. Expression of bpnt-1 cDNA from C. elegans or D. melanogaster driven by the 

endogenous C. elegans bpnt-1 promoter rescued the daf-7 expression defect in the ASJ 

neurons (Figures 3A–B). However introduction of D. melanogaster or H. sapiens IPP cDNA 

was unable to rescue the daf-7 expression defect in bpnt-1 mutants, suggesting that the ASJ 

defect of bpnt-1 mutant animals is not due a loss of IPP activity (Figures 3A–B). Instead, 

introduction of the S. cerevisiae BPNT-1 homolog MET22/HAL2, which has been shown to 

have PAP phosphatase activity but weak IPP activity [1,2], fully rescued the bpnt-1(qd303) 
daf-7 expression phenotype (Figures 3A–B). These data support our hypothesis that loss of 

BPNT-1 causes ASJ neuronal dysfunction through the accumulation of PAP.

How could loss of BPNT-1, which is widely expressed in C. elegans, selectively increase 

PAP levels and inhibit the two ASJ neurons? PAP is generated in the cytosol as a byproduct 

of sulfation reactions in which cytosolic sulfotransferases transfer a sulfate group from PAPS 

onto endogenous and xenobiotic targets such as hormones and catecholamines [18]. This is 

in contrast to Golgi-derived PAP which is generated by sulfotransferases that act on proteins 

and carbohydrates and is degraded by a Golgi-resident PAP 3′-phosphatase that is 

homologous to BPNT-1 [19]. Surprisingly, C. elegans has only one cytosolic sulfotransferase 

in its genome, SSU-1, and SSU-1 is exclusively expressed in the ASJ neurons [20,21]. We 

therefore asked if loss of SSU-1 could suppress the ASJ defect in BPNT-1 mutants. Indeed, 

loss of SSU-1 could partially suppress the daf-28 and daf-7 expression defects of BPNT-1 

mutants, even though ssu-1 mutants themselves were slightly defective in these assays 

(Figures 3C and S3B). Loss of SSU-1 could also partially suppress the reduction of 

cytoplasmic volume of the ASJ cell body we observe in BPNT-1 mutant animals (Figure 

3D). These data suggest that the specific expression of the cytosolic sulfotransferase SSU-1 

in the ASJ neuron pair may contribute to the selective neuronal dysfunction caused by loss 

of BPNT-1.

The incomplete suppression of bpnt-1 phenotypes by mutation in ssu-1 could be due to 

residual cytosolic PAP produced by additional unidentified cytosolic sulfotransferases. 

Alternatively, Golgi-derived PAP may be enter the cytosol via PAPS/PAP antiporters in the 
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Golgi membrane [22,23]. Golgi-derived PAP is normally degraded by a Golgi-resident PAP 

3′-phosphatase homologous to BPNT-1 (GPAP-1 in C. elegans), and like bpnt-1 we find that 

animals carrying a loss-of-function mutation in gpap-1 are viable and appear healthy. 

However we constructed a balanced strain carrying mutations in both bpnt-1 and gpap-1 and 

found the double mutants to be inviable, displaying early larval lethality. This observation 

suggests that BPNT-1 and GPAP-1 act redundantly throughout the organism to degrade 

Golgi-produced PAP, which may explain the broad expression pattern of bpnt-1. However in 

the ASJ neuron pair, where there exists a unique source of cytosolic PAP due to expression 

of ssu-1, and perhaps an increased source of Golgi-derived PAP due to the secretory nature 

of the ASJ neurons, BPNT-1 is required for cellular function.

Inositol monophosphatase and inositol polyphosphate-1-phosphatase belong to a family of 

evolutionarily conserved phosphatases that are inhibited by lithium at therapeutic 

concentrations [24,25], which has led to the “inositol depletion” hypothesis for explaining 

lithium’s effects on the mammalian brain [26]. BPNT-1 has also been proposed to be a 

potential therapeutic target of lithium [5]. Here we provide evidence that inhibition of 

BPNT-1 can cause cell-selective dysfunction resulting in neuron-specific effects on behavior 

in C. elegans. The ASJ neurons of C. elegans are acutely sensitive to both the loss of 

BPNT-1 and the addition of lithium, perhaps due to their expression of the cytosolic 

sulfotransferase SSU-1 that generates cytosolic PAP (Figure 4). Accumulation of PAP can 

interfere with numerous cellular processes including sulfotransferase activity, RNA 

processing, nucleotide phosphorylation, and PARP activity [23,27–30]. Our data suggest that 

the differential expression of cytosolic sulfotransferases may result in neuron-selective 

effects of lithium through inhibition of BPNT-1 and buildup of cytosolic PAP. Intriguingly, 

cytosolic sulfotransferases are expressed selectively in the mammalian brain, particularly in 

neurons that synthesize catecholamine neurotransmitters [31,32], and we hypothesize that 

these populations of neurons may display enhanced susceptibility to inhibition of BPNT-1. 

We anticipate that our data in C. elegans on the neuron-selective effects of lithium, which 

acts through inhibition of the evolutionarily conserved phosphatase BPNT-1, may have 

implications for understanding the remarkable, and yet mechanistically poorly understood, 

effects of lithium therapy and toxicity in humans.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Lithium-sensitive BPNT-1 is selectively required for neuron function in 

C. elegans

• Lithium treatment affects gene expression and behavior through 

inhibition of BPNT-1

• Cytosolic sulfotransferase SSU-1 renders neurons sensitive to loss of 

BPNT-1
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eTOC Blurb

The molecular mechanisms underlying the action of lithium on the nervous system 

remainenigmatic. Meisel and Kim show that loss of the lithium-sensitive phosphatase 

BPNT-1, orinhibition of BPNT-1 by lithium, can cause selective toxicity to specific 

neurons, resulting incorresponding effects on behavior in the simple animal 

Caenorhabditis elegans.
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Figure 1. Bisphosphate 3′-nucleotidase (BPNT-1) is required for the function of the ASJ neurons
(A) BPNT-1 catalyzes the breakdown of cytosolic 3′phosphoadenosine 5′-phosphate (PAP), 

a byproduct of sulfation reactions utilizing the universal sulfur donor 3′phosphoadenosine 

5′-phosphosulfate (PAPS). (B) daf-7 expression pattern in animals exposed to P. aeruginosa 
for 16 h. Empty triangles indicate the ASJ neurons (posterior) when visible. The ASI neuron 

pair (anterior) is unaffected by loss of BPNT-1. All genotypes contain ksIs2[daf-7p::gfp]. 
(C) Maximum fluorescence of daf-7p::gfp in the ASJ neurons after 16 h exposure to P. 
aeruginosa. All genotypes contain ksIs2[daf-7p::gfp]. (D) Lawn occupancy of animals on P. 
aeruginosa after 20 h. All genotypes contain npr-1(215F). (E) Fluorescence microscopy of 
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the ASJ cell body (dashed line) visualized with a red-fluorescent lipophilic dye (left). Area 

of the ASJ cell body divided into nuclear and cytoplasmic compartments (right). (F–G) 
Fraction of animals that have exited the dauer developmental diapause state. All genotypes 

contain daf-2(e1368). For all panels: *** P < 0.001, * P < 0.05 as determined by one-way 

ANOVA followed by Dunnett’s Multiple Comparison Test. n.s. = not significant. Error bars 

indicate standard deviation. See also Figures S1 and S2.
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Figure 2. Lithium induces dysfunction of the ASJ neurons through inhibition of BPNT-1
(A, D, G) Maximum fluorescence of daf-28::gfp in the ASJ neurons. All genotypes contain 

mgIs40[daf-28p::nls-GFP]. (B) Maximum fluorescence of gpa-9::gfp in the ASJ neurons. 

All genotypes contain pkIs586[gpa-9p::GFP]. (C) Maximum fluorescence of trx-1::mCherry 
in the ASJ neurons. All genotypes contain qdEx133[trx-1p::mCherry]. (E) Fluorescence 

microscopy of the ASJ cell body (dashed line) visualized with a red-fluorescent lipophilic 

dye (left). Area of the ASJ cell body (right). All genotypes contain mgIs40[daf-28p::nls-
GFP]. (F) Fraction of animals that have exited the dauer developmental diapause state. All 

genotypes contain daf-2(e1368). Dashed lines indicate addition of 15 mM LiCl. For all 

panels: Open circles indicate addition of 15 mM LiCl. *** P < 0.001, ** P < 0.01, * P < 
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0.05 as determined by one-way ANOVA followed by Dunnett’s Multiple Comparison Test. 

n.s. = not significant. Error bars indicate standard deviation. See also Figure S3.
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Figure 3. Loss of BPNT-1 inhibits the ASJ neurons through accumulation of cytosolic PAP
(A) daf-7 expression pattern in animals exposed to P. aeruginosa for 16 h. Empty triangles 

indicate the ASJ neurons (posterior) when visible. All genotypes contain ksIs2[daf-7p::gfp]. 
(B) Maximum fluorescence of daf-7p::gfp in the ASJ neurons after 16 h exposure to P. 
aeruginosa. All genotypes contain ksIs2[daf-7p::gfp]. (C) Maximum fluorescence of 

daf-28::gfp in the ASJ neurons. All genotypes contain mgIs40[daf-28p::nls-GFP]. (D) 
Fluorescence microscopy of the ASJ cell body (dashed line) visualized with a red-

fluorescent lipophilic dye (left). Area of the ASJ cell body (right). All genotypes contain 

mgIs40[daf-28p::nls-GFP]. For all panels: *** P < 0.001, ** P < 0.01, * P < 0.05 as 

determined by one-way ANOVA followed by Dunnett’s Multiple Comparison Test. n.s. = 

not significant. Error bars indicate standard deviation. See also Figure S3.
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Figure 4. Lithium selectively inhibits the ASJ neurons of C. elegans through inhibition of 
BPNT-1
We hypothesize that inhibition of the cytosolic PAP phosphatase BPNT-1 by lithium or 

genetic mutation leads to a buildup of toxic PAP, due to ASJ-specific expression of the 

cytosolic sulfotransferase SSU-1. PAP, in turn, causes alterations in cell morphology, 

transcription, and behavioral outputs of the ASJ neurons. BPNT-1 can also degrade PAP 

transported into the cytosol from the Golgi, which may explain the synthetic lethality 

between BPNT-1 and the Golgi-resident PAP phosphatase GPAP-1.
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