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Abstract

We consider the non-inferiority (or equivalence) test of the odds ratio (OR) in a crossover study 

with binary outcomes to evaluate the treatment effects of two drugs. To solve this problem, Lui 

and Chang (2011) proposed both an asymptotic method and a conditional method based on a 

random effects logit model. Kenward and Jones (1987) proposed a likelihood ratio test (LRTM) 

based on a log linear model. These existing methods are all subject to model misspecification. In 

this paper, we propose a likelihood ratio test (LRT) and a score test that are independent of model 

specification. Monte Carlo simulation studies show that, in scenarios considered in this paper, both 

the LRT and the score test have higher power than the asymptotic and conditional methods for the 

non-inferiority test; the LRT, score and asymptotic methods have similar power and they all have 

higher power than the conditional method for the equivalence test. When data can be well 

described by a log linear model, the LRTM has the highest power among all the five methods 

(LRTM, LRT, score, asymptotic and conditional) for both non-inferiority and equivalence tests. 

However, in scenarios for which a log linear model does not describe the data well, the LRTM has 

the lowest power for the non-inferiority test and has inflated type I error rates for the equivalence 

test. We provide an example from a clinical trial that illustrates our methods.
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 1. Introduction

The crossover study has a long history in clinical trials and has been widely used to compare 

the effects of a new treatment and an existing treatment particularly for relatively stable 

chronic diseases such as asthma and hypertension. Unlike a conventional parallel-group trial, 

in a crossover study, each patient serves as his/her own control. Thus, crossover studies 

avoid the need to control for confounding variables (e.g. age and sex) and increase the 
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efficiency of study. Crossover studies also require fewer subjects compared to the 

corresponding parallel group study; and thus reduce the costs of recruiting more subjects, 

especially when subjects are scarce or expensive to obtain. In the two-period crossover 

study, subjects are randomly selected to enter one of two sequences: 1). they receive 

treatment A followed by treatment B; 2). they receive treatment B followed by treatment A. 

There usually is a washout period between the two treatments to reduce the chance that the 

effect of the first treatment is carried over to the second treatment. The treatment effect of 

the drugs, period effect and carryover effect are of interest. In this paper, our primary focus 

is the testing problem for the treatment effect and we assume there is no carryover effect. We 

hypothesize that the efficacy of the new treatment is not worse (not inferior) or equivalent to 

the efficacy of the standard treatment and that the new treatment has other advantages (for 

example, less toxic, lower cost or easier to carry out, etc.).

The binary outcome crossover study is considered here. The complete data that would result 

from such a study can be summarized in a 2 by 4 table given in Table 1. The subjects who 

receive the treatment in the order AB will be denoted as group 1 and those in the order BA 
as group 2. In the table, the column name is defined as the responses of two treatments. Here 

“1” indicates positive response and “0” indicates negative response. For example, the pair 

(1,0) in group 1 indicates that the response is positive for treatment A and negative for 

treatment B. The entry , for example, is the number of patients in group 1 who had a 

(1,0) response. The other entries in the table are defined in a similar way and the sizes of the 

two groups are given by the marginal totals N1 and N2. Associated with each entry  is the 

corresponding probability  that the patient has that outcome.

The risk difference (RD) between the two treatments has been used to test the non-inferiority 

(or equivalence) of the new treatment versus the standard treatment in this setting [1, 2]. 

However, the non-inferiority (or equivalence) margin for the RD depends heavily on the 

response rate for the standard treatment, which makes it difficult to select a fixed constant 

non-inferiority (or equivalence) margin. To alleviate this concern, the odds ratio (OR) has 

been recommended by Lui and Chang [3] and Gart and Thomas [4] as an alternative 

measure for tests of non-inferiority (or equivalence) for binary outcomes.

In order to provide statistical inference for the crossover study, different models have been 

proposed. These include the random effects logit model (Ezzet and Whitehead [5]) and the 

log linear model (Kenward and Jones [6]). Interestingly, in both models, the treatment effect 

can be estimated by the OR from the 2 by 4 table (see Table 1) without model assumptions 

about the entry proportions. Lui and Chang [3] proposed both an asymptotic method and a 

conditional method to test non-inferiority (or equivalence) of the OR based on the random 

effects logit model in Ezzet and Whitehead [5]. Kenward and Jones [6] provided a likelihood 

ratio test (LRTM) to test the OR based on the log linear model, that is equivalent to the logit 

model [5] when the random effects are ignored. All these methods are subject to model 

misspecification. In this paper, we propose a likelihood ratio (LRT) and a score test to 

evaluate the non-inferiority (or equivalence) of the OR without these model assumptions. 

Our method is model free, and thus is more robust to model misspecification and provides 

extra efficiency for tests of the OR.
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We introduce these non-inferiority and equivalence tests for the OR in Section 1. In Section 

2, we provide the statistical framework and introduce the methods used in Lui and Chang [3] 

and Kenward and Jones [6]. Then we introduce our proposed LRT and score test methods in 

Section 3. We compare the type I error rates and power for all of these methods using Monte 

Carlo simulation in Section 4 and provide the sample size calculation in Section 5. An 

example is given in Section 6. Finally, we discuss the results and provide some 

recommendations in Section 7.

 2. Statistics Framework and Model Based Methods [3, 6]

For the first row (AB) of Table 1, the four random cell counts  with sum 

N1 are assumed to have a multinomial distribution with probabilities 

. Similarly, the second row (BA) cell counts 

 with sum N2 are assumed to have multinomial distribution 

. Let  be the OR of a positive 

response rate of B over A. Please notice that, in Lui and Chang’s [3], they defined the OR as 

the square root of the OR defined here. In this paper, we consider the following non-

inferiority test (1) [3]

(1)

and equivalence test (2) [3]:

(2)

where 0 < ϕl < 1 and we set ϕl = 0.5 [3]. We also set ϕu = 1/ϕl in this paper.

To test (1) and (2), Lui and Chang [3] used a random effects logit model; Kenward and Jones 

[6] used a log linear model. When the random effect terms are ignored in Lui and Chang’s 

logit model [3], the logit model is equivalent to Kenward’s log linear model [6]. For 

convenience in this paper, we only consider the log linear model [6].

In the section below on simulation, we describe some scenarios for which the log linear 

model does not adequately describe the data. In such scenarios, methods based on the log 

linear model lose power for tests of the OR due to loss of efficiency for the non-inferiority 

test and have high type I error inflation for the equivalence test. In Section 3, we provide a 

likelihood ratio test (LRT) and a score test which do not depend on any model assumptions.

 3. Test Statistics

 3.1. Likelihood Ratio Test (LRT) Statistic

We first consider the LRT statistic for non-inferiority test (1).
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Suppose we have a 2 × 2 binary outcome sample ; i, j = 0, 1; k = 1, 2 with 

, k = 1, 2 as in Table 1. Assume ; i, j = 0, 1; k = 1, 2 

with natural constraints ; k = 1, 2.

Let , 

the likelihood function is given as:

where , k = 1, 2 are two constraints for parameters, and . 

When we take the logarithm on both sides, we have

With the following reparameterization

(3)

and

we have
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This is a function of six independent parameters  where ϕ is 

parameter of interest.

Let 

and . And A = −a + b + c; B = a * m2 − 2cm2; . Then the 

restricted maximum likelihood estimate (RMLE) of  under ϕ = ϕl is the smaller root of 

the quadratic equation . The RMLE’s of the other parameters are 

given by 

. The unrestricted maximum likelihood estimates (MLE’s) are ; i, j = 0, 1; k = 1, 

2.

Consider the following form of LRT statistic:

that can be calculated by using the above estimates of RMLE’s and unrestricted MLE’s.

If ϕ < ϕl, then LRT → 0; if ϕ = ϕl, “the asymptotic distribution of LRT is that of a chance 

variable which is zero half the time and which behaves like χ2 with one degree of freedom 

the other half of the time” [7]. Denote δ(0) as the distribution of the random variable with 

probability mass 1 at point zero. Then the random variable with distribution  is 

non-negative. To be conservative,  will be used to calculate p-values for the LRT.

In order to do equivalence test (2), we conduct two non-inferiority tests Ha0 : ϕ ≤ ϕl versus 

Ha1 : ϕ > ϕl and Hb0 : ϕ ≥ 1/ϕl versus Hb1 : ϕ < 1/ϕl by using two one-sided tests procedure 

[8].

 3.2. Score Test Statistic

Non-inferiority score test is considered first. In order to deduce this score test, we need to 

obtain the information matrix first (see detailed calculation in Appendix). The information 

matrix  can be partitioned as

(4)

Li et al. Page 5

Stat Med. Author manuscript; available in PMC 2017 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the elements  is a scalar, 

 is a 5 × 1 matrix, 

 is a 5×5 symmetric matrix.

Let β̂T be the RMLE under the null hypothesis. Then the general score test for testing H0 can 

be computed as

where the score vector is given by:

From equation (4), the inverse of the Fisher information matrix for ϕ is given by:

Under the null hypothesis, the asymptotic distribution of the score statistic is chi-squared 

with one degree of freedom.

As in LRT, we also use two one sided tests procedure [8] to conduct the equivalence score 

test (2).

 4. Monte Carlo Simulation

We conducted a simulation study to examine the type I error rates and power of the proposed 

LRT and score test, the existing asymptotic method [3], conditional method [3] and LRTM 

[6] under the following three different scenarios. In Scenario 1), data comes from log linear 

model [6] with the basic probability of success set to be 0.2 and the period effect set to be 

0.5; in Scenario 2), we set ; in 

Scenario 3), . We evaluated the 

fit of the log linear model [6] in scenarios 2 and 3 by deviance goodness of fit tests. In the 

scenarios considered, the log linear model did not adequately describe the data.

We take Scenario 1 (non-inferiority test) as an example to illustrate our simulation 

procedure. For a given sample size (N1, N2) and a true odds ratio, we generated 10,000 

repeated samples from the log linear model with basic probability of success 0.2 and period 

effect 0.5. We calculated the theoretical p-values for LRT and score test using the asymptotic 
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distribution under the null derived in Section 3. We used  as the asymptotic null 

distribution for the LRT and used  as the asymptotic null distribution for the score test. 

Then, by computing the proportion of times for which the null hypothesis was rejected (p ≤ 

0.05), we obtained the estimated type I error rate when the true ϕ ≤ ϕl and power when true 

ϕ > ϕl for all the five methods. Then, similar procedures were used for data generated from 

Scenarios 2 and 3. Finally, we summarized the type I error rates and power for all methods 

based on scenario 1 in Figure 1 and those based on Scenarios 2 and 3 in Figure 2. Similar 

procedures were conducted in the equivalence test. The simulation results for equivalence 

test based on Scenario 1 are shown in Figure 3 and those based on Scenarios 2 and 3 are 

shown in Figure 4. This simulation study was conducted using R software.

Figures 1 and 2 show that, for the non-inferiority test, all methods can maintain the nominal 

type I error in these three scenarios. We note from Figures 1 and 2 that, our LRT and score 

test methods achieve greater power than the asymptotic method of Lui and Chang [3] (not to 

be confused with the asymptotic distribution of the LRT and score test). The larger the 

sample size, the closer the power of the asymptotic method is to the power of our methods. 

We also note that our LRT and score test methods and the Lui and Chang’s asymptotic 

method always have greater power than the conditional method. It is well known that the 

conditional test method is conservative and hence loses power. The LRT, score and 

asymptotic test methods are generally more efficient than the conditional test method. The 

most interesting observation is the behavior of the LRTM. When the data can be described 

by a log linear model, the LRTM method based on the model has greater power than all other 

methods (See Fig 1 for Scenario 1). However, when the data cannot be described by the log 

linear model, the LRTM method based on the log linear model loses power. In particular, the 

power is even lower than the asymptotic and conditional methods as shown in Figure 2 for 

Scenarios 2 and 3.

We did simulations to investigate the relationship between goodness of fit of the log linear 

model and power loss of the LRTM compared to the LRT (defined as (power of LRT-power 

of LRTM)/power of LRTM) when a log linear model does not describe data well. In Scenario 

2, for a given true odds ratio, we simulated 10,000 repeated samples, fit a log linear model to 

each sample to obtain the deviance of the model fitting, and calculated the mean of these 

deviances to estimate the average goodness of fit for the log linear model. For the same true 

odds ratio, we also calculated the powers of LRTM and LRT to obtain the power loss. We did 

calculations on 50 true odds ratios with N1 = N2 = 50. By doing linear regression for the 

power losses on the corresponding deviances, we found that, there is a significant increase of 

power loss with the increase of deviance. That is to say, the worse the fit of the log linear 

model, the more power loss of the LRTM compared to our proposed LRT for the non-

inferiority test. Since our score test has similar power as the LRT, we also expect that, the 

worse the fit of the log linear model, the more power loss of the LRTM compared to the 

score test.

Figures 3 and 4 show the simulation results for equivalence test. The LRT, score and 

asymptotic methods have similar power in all scenarios considered and they all outperform 

the conditional test. In Scenario 1 when the data can be described by a log linear model, as 
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in the non-inferiority test, LRTM has the greatest power (See Figure 3). However, in 

Scenarios 2 and 3 for which the data cannot be described by a log linear model, the LRTM 

has high type I error rate inflation (see Figures 3 and 4). Furthermore, LRT, score, 

asymptotic and conditional methods all obtain the highest power at true ϕ = 1 as expected, 

while LRTM does not. From this inconsistent behavior of the LRTM, we can see that it 

cannot be used in scenarios for which a log linear model does not describe data well.

 5. Sample Size Calculation

Sample sizes required for 80% power in Scenario 2 with 

 are shown in Table 2 for non-

inferiority test and Table 3 for equivalence test.

As expected, for the non-inferiority test, the required sample size decreases as ϕ increases. 

Obviously, the sample sizes required by LRTM are larger than the sample sizes required by 

other methods because in this scenario, the log linear model does not fit the simulated data. 

The sample sizes obtained for the LRT, score and asymptotic method are necessarily smaller 

than conditional method which is conservative. Furthermore, the sample sizes obtained for 

LRT and score methods are comparable. For the equivalence test, the required sample size is 

highest when true ϕ = 1 for all methods except the LRTM. The LRT, score and asymptotic 

methods require similar sample size for all situations. The conditional method still requires 

greater sample size than the LRT, score and asymptotic methods. The LRTM method also 

behaves poorly as it does in the Monte Carlo simulation study.

 6. Clinical Trial Example

Consider the example conducted by 3M-Riker in Lui and Chang’s [3]. This crossover study 

was designed to compare two inhalation devices (A and B) delivering salbutamol [5]. The 

randomized 139 patients in Group 1 used device A followed by device B and the 140 

patients in Group 2 used the devices in reverse order. Patients were asked to evaluate the 

features of each device and to respond either “Yes” or “No” to each device. The summary of 

patients’ responses was listed in Table 4. A “1” represents a “Yes” response and a “0” 

represents a “No” response. We are interested in testing the non-inferiority (or equivalence) 

of device A versus device B with respect to the patient preference rate (instead of device B 

versus A) [3].

Suppose we choose a clinically acceptable non-inferior margin 0.8 for the OR. When we 

conducted a non-inferiority test for the OR on this study, we obtained the p-values 1.67 × 

10−6, 1.96 × 10−6, 4.39 × 10−6, 3.68 × 10−6, 1.09 × 10−5 for the LRT, score, asymptotic, 

conditional and LRTM respectively. All these small p-values show strong evidence that the 

patients’ preference rate for device A is non-inferior to that of device B. When fitting a log 

linear model on this data, we obtained deviance  (p < 0.001). Thus, a log linear 

model does not describe the data well and for this reason the LRTM has a greater p-value 

than LRT and score methods.

Li et al. Page 8

Stat Med. Author manuscript; available in PMC 2017 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For the equivalence test, all the LRT, score, asymptotic, conditional methods do not reject 

the null hypothesis that the patients’ preference rates for devices A and B are different. Due 

to the high type I error inflation rates for the LRTM when a log linear model does not fit the 

data, it is not appropriate to apply LRTM in this study.

 7. Discussion

In this paper, we proposed a likelihood ratio test and a score test to solve the non-inferiority 

(or equivalence) testing problem for the odds ratio in a crossover study. Both methods are 

independent of model assumptions. We compared our tests with Lui and Chang’s asymptotic 

method and conditional method [3] that are based on random effects model. For the non-

inferiority test, our proposed LRT and score tests achieve higher power than asymptotic [3] 

and they have closer and more comparable power as the sample size gets larger. For the 

equivalence test, the LRT and score and asymptotic methods have similar power. This occurs 

because the asymptotic method is actually a Wald test. Engle [9] showed that, the larger the 

sample size, the closer the power of all three tests because they are asymptotically 

equivalent. We also compared the LRT and score tests to Kenward’s LRTM method which is 

based on a log linear model assumption [6]. The LRTM achieves higher power than the LRT 
and score test when the log linear model holds; but behaves poorly when the log linear 

model does not hold. From the Neyman-Pearson Lemma, LRTM is the most powerful test 

when the log linear model holds, but the LRTM loses good behavior when this model 

assumption does not hold due to the loss of precision in the estimation of parameters.

We focused on treatment effects for a crossover study in our paper. If we use the 

 which results from switching  and  in (3), we can extend our LRT and 

score methods to the non-inferiority (or equivalence) test to incorporate period effects.

The LRT and score test methods in this paper can only be used for crossover study with two 

periods. It will be an interesting topic to do further research on expanding them to crossover 

study with more than two periods.
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 Appendix

 Information Matrix for the Score Test

Denote

Li et al. Page 9

Stat Med. Author manuscript; available in PMC 2017 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and

Then the elements of the information matrix  are
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Figure 1. 
Type I error rates and power of OR test at the 5% nominal significance level for all methods 

for the non-inferiority test (Scenario I: data simulated from log linear model [6] with the 

basic probability of success set to be 0.2 and the period effect set to be 0.5).
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Figure 2. 
Type I error rates and power of OR test at the 5% nominal significance level for all methods 

for the non-inferiority test(Scenario II (top): 

; Scenario III (bottom): 
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Figure 3. 
Type I error rates and power of OR test at the 5% nominal significance level for all methods 

for the equivalence test (Scenario I: data simulated from log linear model [6] with the basic 

probability of success set to be 0.2 and the period effect set to be 0.5).
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Figure 4. 
Type I error rates and power of OR test at the 5% nominal significance level for all methods 

for the equivalence test (Scenario II (top): 

; Scenario III (bottom): 
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