Figure 1. THz Faraday and Kerr rotation of QAH state on magnetic TI film.
(a) Schematics of the TI film with magnetic modulation doping and of the band structure of surface states under the presence of time-reversal-symmetry breaking magnetization. (b) Temperature dependence of the longitudinal (σxx) and Hall (σxy) conductances at B=0.1 T. (c) Magnetic field dependence of σxy at various temperatures. (d) Schematics of the THz magneto-optics for the magnetic TI film on an InP substrate. Crossed-Nicol geometry was employed for the detection of the magneto-optical rotation of light polarization. Faraday and Kerr rotations are measured by the first THz pulse (i) and the second THz pulse (ii), respectively. (e) Time evolutions of THz pulses through the magnetic TI film at 0 T after the poling of magnetic moment. (See Methods for detail.) Ex and Ey are transmitted light polarized parallel and perpendicular to the incident light, respectively. The first pulse (i) represents the directly transmitted light through the TI film and substrate, while the THz pulse once reflected at back surface of substrate appears as the second pulse (ii) with a time delay. Ey component of the second pulse includes the Kerr rotation θK at back-surface of TI film as well as the Faraday rotation θF.