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Abstract. Magnetic resonance-guided high intensity focused ultrasound treatment of the liver is a promising
noninvasive technique for ablation of liver lesions. For the technique to be used in clinical practice, however,
the issue of liver motion needs to be addressed. A subject-specific four-dimensional liver motion model is pre-
sented that is created based on registration of dynamically acquired magnetic resonance data. This model can
be used for predicting the tumor motion trajectory for treatment planning and to indicate the tumor position for
treatment guidance. The performance of the model was evaluated on a dynamic scan series that was not used to
build the model. The method achieved an average Dice coefficient of 0.93 between the predicted and actual liver
profiles and an average vessel misalignment of 3.0 mm. The model performed robustly, with a small variation in
the results per subject. The results demonstrate the potential of the model to be used for MRI-guided treatment of
liver lesions. Furthermore, the model can possibly be applied in other image-guided therapies, for instance radio-
therapy of the liver. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.1.015002]
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1 Introduction
Magnetic resonance-guided high intensity focused ultrasound
(MR-HIFU) heating is a new noninvasive technique for ablative
tumor treatment and local drug delivery. It is currently routinely
used in the clinic for the ablation of uterine fibroids 1–5 and as a
palliative treatment for painful bone metastases.6–11 Furthermore,
MR-HIFU could potentially be applied to treat lesions in abdomi-
nal organs. Although such procedures are still in the developmen-
tal stage, clinical case studies have already been performed,12,13

indicating the need for reliable motion compensation.
During HIFU ablation, a focused ultrasound beam is used to

heat tumor tissue. The deposited energy causes temperature
elevation in the tissue and finally induces coagulative necrosis
and apoptosis of tumor cells. In MR-HIFU, the temperature is
monitored by MR temperature mapping, which is most com-
monly realized by fast multistack two-dimensional (2-D) MR
image acquisition. For application of MR-HIFU to liver tumor
ablation, one major obstacle is liver motion. The liver moves and
deforms considerably during breathing. Since targeted therapy
on moving organs requires knowledge of the tumor position for
multiple phases of the respiratory cycle, it would be beneficial to
have that information available before and during treatment.
Image-guided therapies often rely on real-time imaging to pro-
vide information about the tumor position.14–16 The beam geom-
etry can be updated during treatment according to the tumor
motion, or gated therapy can be performed. In the case of a con-
tinuous updating process, fast image registration can be per-
formed to track the tumor, possibly aided by fiducial markers
that are implanted near the tumor. A different approach is to
use a model that predicts the tumor position. This model can be
built offline prior to treatment and does not necessarily depend
on imaging during treatment. Also, treatment planning can be

improved by using such a model to assess the feasibility of
MR-HIFU treatment for a specific patient and to optimize the
beam geometry. During treatment, the model could be used
to either adjust the ultrasound beam according to the tumor posi-
tion or to modulate the power in case of gated therapy.

The liver moves during the respiratory cycle. From earlier
studies, it is known that the most significant component of liver
motion is translation in the feet-head (FH)-direction. This trans-
lation was shown to vary between human subjects from 10 to
30 mm during normal breathing.17 In addition, translation was
found to range from 1 to 12 mm in the anterior–posterior
(AP)-direction and from 1 to 3 mm in the left-right (LR)-direc-
tion.17–19 Furthermore, friction with surrounding organs can
cause an additional local deformation of up to 3 mm.20

Finally, there is a small continuous change of position of the
liver over time, called drift.20,21 This drift is mainly caused by
gravity and muscle relaxation. The drift predominantly occurs in
the superior direction when in a supine position,20,22 but a small
drift in other directions was also described in Ref. 23. The mean
magnitude of the drift was found to vary between 2.4 and
7.1 mm over time periods of more than an hour by Ref. 22.
However, the maximum displacement caused by the drift can
be larger than 15 mm.20,22

In the literature, several liver motion models have been
introduced which may be divided into subject-specific models
and population-based models. Approaches for population-
based models used statistical modeling 21 or biomechanical
modeling.24 Although these models show promising results, it
is difficult to adjust such a model to subject-specific deviations.
Samei et al. 25 combined free-breathing four-dimensional (4-D)
MRI acquisition with nonrigid registration to create an exemplar
model that could be adapted to an unseen subject. The robust-
ness of this exemplar model to outliers in the breathing pattern
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was demonstrated. However, such a model needs input from
many different subjects in order to capture all possible intersub-
ject variations in the motion pattern. A significant improvement
was shown by combining the exemplar model with a subject-
specific model based on principal component analysis. In
Preiswerk et al.,26 a population-based statistical model (as
described in their previous work21) was combined with informa-
tion from 2-D ultrasound sequences on which tracking of man-
ually placed landmarks was performed. It was shown that this
method could predict the motion of the right liver lobe accu-
rately. Given the large intersubject variability in liver
motion,17,27 building a subject-specific model offline prior to
treatment will ensure that the model is tuned to the character-
istics of that patient. Patients undergoing liver treatment may
show a nonaverage liver motion pattern, due to the presence
of tumors varying in location and size, cirrhosis, or a history
of liver surgery. Such deviations are not an issue for a
patient-specific model, since this is exclusively built on data
of that patient.

Subject- or patient-specific models have been investigated by
Rohlfing et al. 28 and Siebenthal et al.18 Both studies used regis-
tration of dynamic MRI data of a single patient to obtain a
patient-specific model. In Ref. 28, a prospectively gated three-
dimensional (3-D) MRI protocol was used, depicting the liver in
ten different stages in the breathing cycle. Although such a
3‐Dþ t scanning protocol provides accurate information on
liver motion, the duration of the data acquisition of ∼2 h is con-
siderable, whereas time is often limited in clinical practice. In
Ref. 18, multi2-D + tMRI acquisition was used, which yielded a
collection of unsorted 2-D images. A retrospective slice stacking
method was developed based on navigator frames that were
acquired in between the 2-D slices. On these frames, regions
of interest were selected manually to calculate the displace-
ments. The motion correction method proposed in Ref. 29
also used retrospective slice stacking based on image similar-
ities. In Ref. 30, a slice stacking method was proposed using
manifold learning. This technique was shown to outperform
methods based on one-dimensional (1-D) pencil beam naviga-
tors and image-based methods. In Ref. 31, the liver motion was
predicted by creating a look-up table of liver states during an
average motion cycle, based on optical-flow registration of 2-
D liver images. This method was developed for 2-D motion pre-
diction. In Ref. 32, a subject-specific statistical model was pro-
posed, based on free-form registration and principal component
analysis. In Ref. 33, nonrigid registration of six 3-D MRI vol-
umes was performed to obtain a liver motion model. The refer-
ence 3-D MRI volume was then registered to 2-D intraoperative
ultrasound images acquired during free breathing. For this regis-
tration, the model was used to constrain the alignment. More
recently, a method that used external information on the breath-
ing depth combined with ultrasound speckle information was
developed to predict the liver motion.34 For each ultrasound
frame, a motion vector was determined by the model. This
motion vector was assumed to be valid for the entire image
such that local deformations were ignored. Furthermore, in
Ref. 35, an extensive overview of respiratory motion models
in general is given, describing their use, the data acquisition,
the fitting methods, and issues that arise when using such
models.

In this paper, we describe a clear and fast method to obtain a
subject-specific 4-D liver motion model. In our approach, 2-D
dynamic data are used in a similar way to the abovementioned

methods to build a motion model of the entire liver. In contrast to
these methods, the data acquisition is performed at six locations
in the liver only and does not include navigator frames, which
reduces the amount of data and the total acquisition time con-
siderably. The building of the model is automatic; it does not
require any manually selected regions of interest or landmarks,
as in Ref. 18. The model includes nonrigid deformations to
accurately describe the motion of the entire liver.

2 Materials and Methods

2.1 Data Acquisition

MRI scans were obtained of 18 healthy volunteers, aged from 20
to 30 years. In accordance with local regulations in the hospital,
the volunteers were screened for contraindications and informed
about possible risks. All MRI scans were acquired on a clinical
1.5-T MR scanner (Achieva, Philips Healthcare Best, The
Netherlands). The volunteers were scanned in a prone position,
as would most likely be the position during MR-HIFU treatment
of the liver. For each volunteer, a transverse 3-D T1-weighted
spoiled gradient echo scan with spectral attenuated inversion
recovery (SPAIR) fat suppression was acquired during a breath-
hold at inspiration, with the following scan parameter settings:
TE∕TR ¼ 1.8∕3.9 ms, flip angle 30 deg, acquired voxel size
2 × 2 × 4 mm3, slice gap −2 mm (overcontiguous slices),
acquisition matrix 256 × 256 × 100, half-scan in-plane factor
0.7 and through-plane factor 0.85, and acquisition time 22.5 s.
In addition, a series of 200 dynamically acquired multislice
scans with six slices was recorded. This was a dynamic multi-
slice sagittal spoiled gradient echo scan with SPAIR fat suppres-
sion, with the following parameter settings: TE∕TR ¼ 1.8∕
3.9 ms, flip angle 30 deg, acquired in-plane voxel size
2 × 2 mm2, slice thickness 8 mm, temporal resolution 1800 ms,
acquisition matrix 256 × 256, six slices, 200 dynamics, and total
acquisition time 369 s. The six slices were placed at equidistant
locations in the liver, with a 15-mm gap in between them. The
dynamics were acquired interleaved over these six locations dur-
ing free breathing, at an interval of 1.8 s. The volunteers did not
receive breathing instructions, other than to breathe normally. In
total, 1200 dynamics were acquired, resulting in 200 dynamics
at each location. Finally, an additional sagittal single 2-D
dynamic sequence was acquired, which was identical to the
scan acquired with the dynamic protocol mentioned above with
the same orientation. This series consisted of 150 dynamics and
was acquired at a different location in the liver, for validation of
the model, as will be explained in Sec. 2.3. For one volunteer,
this evaluation sequence was performed in both the sagittal and
the coronal direction.

2.2 Methods

The aim was to obtain a model of one average motion cycle of
the entire liver. This average motion cycle should consist of a
number of deformations that could be applied to a 3-D liver vol-
ume obtained from other data to show the entire liver in a spe-
cific state.

Dynamic 2-D data were available at six equidistant locations
in the liver (see Figs. 1 and 2). They were acquired over a total
time interval of 369 s. In this short time interval, the drift in liver
motion was considered negligible. Since the dynamic data at
these six locations were not acquired at the same point in
time, they needed to be reordered, such that dynamics from
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different locations belonging to the same state of the liver could
be grouped together. It was assumed that the translation of the
liver in FH-direction, both magnitude and direction, indicated
the state of the liver at a particular time point. The translation
value and the motion direction were used to cluster the data,
such that each cluster corresponded to a specific state of the
liver during an average respiratory cycle. For each cluster, a
3-D deformation field was calculated by registration of the
dynamic data. The FH-translation value and direction of an
unseen slice could then be used to look up the corresponding
state in the model, such that the liver deformation could be pre-
dicted. This model is an extension of our previous work,36

including more volunteers and introducing improvements in
the method. One of the most significant changes was the inclu-
sion of gradient magnitude images in the registration process,
which considerably increased robustness. Also, registrations
were now actually performed in 2-D, in contrast to our previous
work, where the registration process was implemented in 3-D
while blocking motion in the LR-direction. This yielded a

significant speed-up in building the model, from 30 to 2.5 h.
Furthermore, the grouping process was simplified, which
resulted in a reduction of the computation time and less variation
in the number of clusters that were obtained for each subject.
Finally, the evaluation of the vessel center alignment was per-
formed by automatic calculation of the center of mass of each
vessel crosscut, instead of selecting the center positions
manually.

Our method consisted of three main stages (see Fig. 3).

1. Registration: Registration was performed of the 3-D
liver volume to each dynamic at each location. This
resulted in 200 deformation fields at each of the six
locations.

2. Grouping: The deformation fields were grouped
based on the translation of a dynamic in FH-direction.
Each group then contained deformation fields from all
six locations, belonging to the same state of the liver.

3. Interpolation: These deformation fields were aver-
aged for every location and interpolated in 3-D, to
yield a 3-D deformation field for every cluster. The
liver was then deformed according to these 3-D defor-
mation fields, to obtain a look-up table of the liver for
all possible states.

Each stage is explained in more detail later.

2.2.1 Stage 1: registration

The 3-D breathhold image of the liver was registered to the
dynamics at each location. For this process, liver masks were
created manually on every first dynamic slice. These masks
served as a sampling region during registration, so that the focus
was on the liver and possible distortions from the surrounding
moving organs and ribs were avoided. The masks were,

Fig. 1 Series of 200 dynamics were acquired at six equidistant loca-
tions in the liver, indicated by the red lines.

Fig. 2 Examples of dynamic slices at the six locations in the liver.
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therefore, not accurate liver segmentations, but rather regions of
interest that also included the outer contours of the liver.

In addition, gradient magnitude images were calculated of the
2-D dynamics by convolution with the derivative of a Gaussian
kernel with σ ¼ 1 voxel. These gradient magnitude images
were included in parts of the registration process, to force align-
ment of the inner structures as well as the liver boundary.

The registration process consisted of two phases. First, the
liver volume was registered to the first dynamic at each of
the six locations. Then, each first dynamic was registered to
the other 199 dynamics at that location.

For all registrations, the publicly available elastix toolkit was
used.37 A multiresolution strategy was adopted. The multireso-
lution pyramid was constructed by downsampling with a factor
of 2, starting from the original image. Simultaneously, the image
was smoothed by convolution with a Gaussian kernel, with
σ increasing with a factor of 2 at each step, starting from σ ¼
0.5 voxel for the original image. Multiresolution registration
was then performed from coarse to fine. In each resolution
step, optimization ran for a maximum of 1000 iterations.
Mutual information was used as the metric for registration of
the intensity images, implemented as in Ref. 38. The histograms
that were built to calculate the mutual information contained
32 × 32 bins. For registration of the corresponding gradient
magnitude images, normalized cross correlation was used.
When both images were registered simultaneously, these metrics
were combined into a single cost function by adding their nor-
malized values. For all registrations, a random coordinate sam-
pler was used, with the number of samples defined for each
resolution separately, using more samples for higher resolutions.

Registration phase 1: volume to first dynamic. During
registration of the volume to the first dynamic at each location,
motion in the lateral direction was not accounted for. The 3-D
registration problem (3-D volume to 2-D slice) could, therefore,
be converted to a 2-D registration, since the lateral location of
the slice in the 3-D volume was already known. A 2-D interpo-
lated slice was taken from the 3-D volume at each of the six
locations where dynamics were acquired, using the scanner
coordinates to determine the location (see Fig. 4). These six sli-
ces were then registered to the first dynamic of each correspond-
ing dynamic sequence.

First, rigid registration of the volume slice to the first
dynamic was performed, followed by deformable registration
using a B-spline transformation model to capture local deforma-
tions. In both the rigid and the deformable registration steps, the

liver masks defined the region of interest, meaning that all sam-
ples were drawn in this region.

The rigid registration step was performed only on the inten-
sity images, using mutual information as a metric. Gradient
magnitude images were not included in this step, since the
edge images of the interpolated slice and the dynamic differed
considerably outside the liver, owing to differences in contrast
between the 2-D and 3-D scan sequences. These differences in
the edge images would disturb the registration process. Rigid
registration was performed at four resolutions, using a random
coordinate sampler drawing 750, 1500, 3000, and 6000 samples
from the lowest to the highest resolution.

During deformable registration, the gradient magnitude
images were included to improve alignment of the inner struc-
tures of the liver. It was assumed that the rigid registration step
had aligned the livers sufficiently, so that possible distorting
edges outside the liver were not located in the region of interest
anymore. Because the intensity images were registered simulta-
neously with the gradient magnitude images, a combined cost
function of mutual information and cross correlation was used,
as described in Sec. 2.2.1. Two resolutions were used, with 1024
and 2048 samples. The grid spacing of the B-spline control point
grid was 80 by 80 mm2 in the lower resolution and 40 by
40 mm2 in the final resolution.

values 

fields

Grouping Interp

Full 
deform-

for each 
liver state

Sparse 
deform-

fields
for each 

liver state

2-D dynamics

Interpolated slice from 3-D volume

Fig. 3 Pipeline of the model building process.

Fig. 4 Example of a 2-D interpolated slice taken from the 3-D breath-
hold image.
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Finally, at each of the six locations in the liver, a deformation
field was obtained describing the transformation from the vol-
ume to the first dynamic of that location. This deformation field
did not have a physical meaning, but was merely a mapping to
the domain of the dynamic sequences.

Registration phase 2: first dynamic to other dynamics.
In this phase, for each of the six dynamic series, the first
dynamic was registered to the other 199 dynamics. As these
dynamics were all acquired at the same lateral location in the
liver and lateral motion was neglected, this registration was per-
formed in 2-D.

Again, rigid registration was followed by deformable registra-
tion for each dynamic, using the masks on the first dynamics as a
region of interest. Because this time all images were obtained
from the same scan sequence, no disturbing edges were expected
in the gradient magnitude images. Therefore, a combined cost
function was used to perform simultaneous registration of the
intensity image and the gradient magnitude image in both steps.

The rigid registration step was again performed in four
resolutions, using 750, 1500, 2250, and 3000 samples in each
resolution. The deformable registration step used a B-spline
transformation model in two resolutions, with 1024 and 2048
samples. Again, the control point grid spacing was 80 by
80 mm2 in the lower resolution and 40 by 40 mm2 in the final
resolution.

This registration phase yielded a deformation field for every
dynamic, describing the transformation of the first dynamic to
this particular dynamic. This resulted in 6 × 200 ¼ 1200 defor-
mation fields.

Combination of the deformation fields. Finally, the defor-
mation fields obtained in phase 1 were concatenated with each
of the deformation fields from phase 2, to yield a single 2-D
deformation field for every dynamic at every location. Each
of these 1200 deformation fields described the transformation
for the corresponding 2-D volume slice to a specific dynamic.

2.2.2 Stage 2: grouping

The liver motion model should contain a sufficient number of
states to represent the motion of the liver with the breathing
cycle. For this purpose, the deformation fields were divided into

groups representing a particular stage of the liver motion cycle.
The spread of the groups over the motion range was such that
each state of the liver was represented by at least one dynamic at
every location. Each group should contain deformation fields
from all six locations in order to form a 3-D liver motion
field for a particular state. The inspiration states were separated
from the expiration states.

For each dynamic, the FH translation value was taken from
the rigid registration step in the second registration phase
(Sec. 2.2.1). To perform separate grouping of the inspiration and
expiration states, first all FH-values from every location were
normalized between −1 and þ1, rejecting outliers of more
than two standard deviations from the average, to correct for
differences in the range of translation for each location in the
liver. Next, these data points were all plotted over time and
smoothed by local regression using weighted linear least squares
and a second degree polynomial model. Figure 5 shows the
smoothed data. The gradient at each of these data points was
used to label the points as inspiration or expiration.

For both sets (inspiration and expiration), the same grouping
procedure was used. Groups were formed based on rounding the
abovementioned normalized values to 0.1 mm. Dynamics that
had the same FH-value after normalization and rounding
were grouped together. If a group did not contain at least one
dynamic from every location, that particular cluster was merged
with the closest neighboring group. This typically occurred for
extreme states that were not reached at all locations during scan-
ning. Consequently, the number of liver motion cycle stages
obtained in the model could differ per subject. The grouping
process resulted in 15 to 20 groups with one or more deforma-
tion fields at all six locations in the liver. This was sufficient for a
typical motion range of maximally 30 mm, as this would result
in a maximum difference of 2 mm per group.

2.2.3 Stage 3: interpolation

For each group, deformation fields from the same location were
averaged, such that each group contained six average deforma-
tion fields, corresponding to the six slices in the liver. Then a
3-D deformation field was calculated over the entire liver
for each cluster. This field was obtained by cubic spline inter-
polation between the six averaged deformation fields in each
cluster. This resulted in a 3-D deformation field for each cluster,

Fig. 5 A typical subset of smoothed data points representing the normalized FH-translation values of
the dynamics from all locations over time. The values were normalized between −1 and þ1, with mean
value 0.
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describing the liver deformation in a specific stage of the
motion cycle.

2.3 Evaluation

To evaluate the performance of the model, the data acquired
using the 2-D single dynamic sequence of 150 images was
used, which was not included in the model construction. This
resembled the practical situation of obtaining fast 2-D images
during therapy at the location of the tumor. An assessment
was made of the accuracy of predicting the deformation of
this unseen dataset, which corresponds to the prediction error
during actual HIFU treatment. When synchronization with
the breathing signal is needed, a navigator echo can be acquired
at the diaphragm. In this way, a navigator signal can be obtained
which is represented by a 1-D image, from which the motion in a
specific direction can be calculated using the contrast between
the diaphragm and the lung. Most scanners contain software that
can automatically detect this translation, usually by edge detec-
tion. In our approach, such a navigator signal was simulated for
each dynamic by taking the middle column of the sagittal slices,
which always clearly depicted the diaphragm.

The first navigator was manually placed on the diaphragm, as
would be done in practice prior to acquisition. Then each of the
149 subsequent navigator signals was registered to the first one,
minimizing the sum of squared differences (SSD) between the
two signals. A maximum shift of five voxels between two neigh-
boring signals was allowed, in order to guarantee correct regis-
tration of the diaphragm edge. In Fig. 6, the 1-D navigator
signals and the diaphragm positions obtained by registration
are shown.

The resulting values were again normalized to match the
translation values on which clustering was performed. By com-
paring each value with its neighbors and calculating the gra-
dient, it was determined automatically whether the dynamic
was taken during inspiration or expiration. For each dynamic,
the normalized FH-value together with the inspiration/expira-
tion label was used to find the closest cluster in the model.
The 3-D deformation field belonging to this particular cluster
was used to deform the liver volume. A 2-D interpolated
slice was taken from this volume at the position of the evaluation
series, using the scanner coordinates to determine the exact

location. This slice, showing the liver deformation predicted
by the model, was then compared with the actual evalu-
ation slice.

The performance of the model was evaluated by calculating
the Dice coefficient of the predicted and actual liver masks, the
median of the surface distance of these masks, and by measuring
the distance between the predicted and actual center positions of
the largest vessels. The Dice coefficient indicates the prediction
accuracy for the entire liver, whereas the surface distance is a
more informative measure of the accuracy of the predicted
liver shape. The vessel misalignment indicates the error in pre-
dicting the position of the inner structures of the liver. The latter
is especially valuable, since the purpose of the model is predic-
tion of the tumor position. It is expected that misalignment of the
vessels is similar to misalignment of a tumor. Because the size of
the entire dataset was large, with 150 evaluation dynamics per
volunteer, evaluation was only performed on randomly chosen
subsets of 30 dynamics per subject. For these dynamics, a
manual liver segmentation was created by the first author, to
automatically calculate the Dice score. These masks were
also used for calculating the surface distance in combination
with a Euclidean distance transform. In addition, the distance
between the vessel centers was calculated on the same subset
of 30 slices. First, a threshold was put on the slices manually
to roughly segment the blood vessel profiles. Then landmark
annotations were placed on vessels that were visible in both sli-
ces, with a maximum of five vessels, as demonstrated in Fig. 7.
The centers of mass of these vessel profiles were calculated
automatically and the Euclidean distance between them was
determined. Because the dynamics on which evaluation was per-
formed were chosen randomly for each subject, it was assumed
that these results were representative for the entire dataset. For
the last volunteer, evaluation was performed on both the coronal
and the sagittal sequence.

3 Results
The results of the comparison of the predicted and actual liver
profiles are given in Table 1. The Dice scores ranged from 0.86
to 0.96, with a mean of 0.93. For all volunteers, a standard
deviation of 0.02 or less was obtained in the Dice coefficient,
indicating that results varied minimally over the different

Fig. 6 An example of the navigator signals in a typical dataset. The 1-D navigator signals are the 150
columns in this image. The periodic motion of the liver is clear from this image. The arrow points to the
position of the diaphragm. This position was obtained by registering each subsequent column to the first
one, and the results are indicated in white. It can be appreciated that the boundary of the liver is detected
correctly. The bright structure in the middle of the liver is a blood vessel.
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dynamics. The average median surface displacement of the liver
masks was calculated over the 30 evaluation dynamics for each
subject. This measure varied between 1.1 and 4.5 mm, with a
mean value of 2.0 mm over all subjects.

In Table 2, the results for vessel misalignment are presented.
An average vessel misalignment of 3.0 mm was obtained. The
number of vessels on which distance measurements were per-
formed varied per slice, because some slices depicted more ves-
sels than others. Often, on the predicted slice, which was a
deformed version from the 3-D volume, more vessels were vis-
ible than on the dynamic slices. The number of visible vessels
also varied between slices. Consequently, evaluation was per-
formed on one vessel in 2% of the slices, on two vessels in
8% of the slices, three vessels (33%), four vessels (26%) or
five vessels (31%).

In Fig. 8, a dynamic slice is shown with the predicted slice
for this dynamic overlaid in red.

An additional evaluation was performed for volunteer 18 in
the coronal direction. The results are presented in Table 3.

4 Discussion
We developed a subject-specific liver motion model based on
registration of dynamic MR data. The model was based on
1200 deformation fields, obtained from 200 dynamics at six
locations in the liver, which were typically acquired in 369 s.
The dynamic MR acquisition protocol was derived from a stan-
dard clinical liver imaging sequence. Therefore, the temporal
resolution of 300 ms could not be decreased without compro-
mising the image resolution and consequently the registration
accuracy. Similarly, a relationship exists between the slice thick-
ness and the gap between the dynamic slice locations. A larger
slice thickness allows a larger coverage of the liver, while a
smaller slice thickness yields a more accurate local deformation
field. In addition, the total imaging time should be kept as low as
possible. To acquire dynamic images equidistantly over the
entire liver while limiting the total acquisition time, dynamics
were acquired at six locations with a slice thickness of
8 mm. As a consequence of the interleaved scan protocol, a min-
imal gap of 15 mm was necessary to avoid signal saturation in
neighboring slices. For practical use of this model, it would be
feasible to investigate the possibilities for optimizing the data

Fig. 7 Landmark annotation of vessel profiles that are visible on both (a) the actual slice and (b) the
predicted slice.

Table 1 Dice coefficient and median surface displacement in mm of
predicted versus actual liver profiles.

Volunteer
Dice coefficient (mean�

standard deviation)

Median surface
displacement (mm)

(mean� standard deviation)

1 0.95� 0.01 1.3� 0.5

2 0.93� 0.02 1.9� 0.5

3 0.94� 0.01 2.2� 0.7

4 0.94� 0.01 1.9� 0.8

5 0.93� 0.01 1.8� 0.4

6 0.93� 0.02 2.0� 0.7

7 0.94� 0.02 2.0� 0.8

8 0.89� 0.01 2.0� 0.7

9 0.92� 0.02 2.1� 1.1

10 0.95� 0.01 1.4� 0.4

11 0.96� 0.01 1.1� 0.3

12 0.96� 0.01 1.2� 0.3

13 0.86� 0.02 4.5� 1.5

14 0.90� 0.02 2.4� 0.4

15 0.96� 0.01 1.1� 0.3

16 0.92� 0.01 2.0� 0.5

17 0.89� 0.01 2.7� 0.6

18 0.93� 0.02 2.2� 0.7

average 0.93� 0.03 2.0� 0.8
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acquisition. A more sophisticated sequence design could allow
fast image acquisition, thereby increasing the temporal resolu-
tion and reducing the total scan time.

Data were obtained of healthy volunteers. We expect that the
model will perform similarly on patient data as it did on data of
healthy volunteers, since the model captures subject-specific
liver deformations, without making prior assumptions about
global liver motion.

The volunteers were instructed to breathe normally. They did
not obtain further instructions on their breathing, such as deep or
shallow breaths or variations in the frequency. The purpose was
to build a motion model in which natural variations are captured.
Extreme situations were, therefore, not included. On the other
hand, it is possible that an occasional deep breath occurred dur-
ing dynamic imaging. To deal with such situations, outliers were
excluded from the model by not taking into account positions
that were outside two standard deviations of the average
position.

Next to breathing, several other unpredictable factors influ-
ence liver motion, such as bowel movements, stomach filling,
and additional motion of surrounding organs. The extent of
these influences varies for different locations in the liver. To
eliminate errors introduced by these factors, motion fields are
averaged by the clustering process for similar phases in the

breathing cycle. Possibly, motion of the rib cage affects the
liver motion fields close to the ribs. In practice, tumors located
at these sites would not be eligible for HIFU treatment due to
safety issues with near field heating at the ribs. In addition, the
rib cage motion should be synchronized with the liver motion, as
they are both caused by breathing. Therefore, these motion
fields should be reproducible and captured by the model.

When the liver moves during breathing, it slides along other
organs and the rib cage. Without introducing specific constraints
in the registration method, sliding motion is not captured during
registration. This work did not specifically address this problem,
because our interest was mainly in internal deformation of the
liver, since these are the most probable target locations to be
treated with HIFU. However, to minimize errors introduced
by sliding motion, we used a mask of the liver during registra-
tion, such that information of voxels in neighboring organs did
not influence the liver deformation field.

The output of the model was a look-up table representing 15
to 20 different possible liver states. The grouping of the defor-
mation fields was an iterative process and the number of
obtained clusters varied depending on the spread of the FH-val-
ues in the data. Grouping the data eliminated variations due to
registration errors, thereby increasing the robustness of the
model. Although temporal accuracy was limited by this
approach, the number of states in the model was still sufficient
for accurate performance.

The average Dice coefficient obtained on all volunteers was
0.93. In addition, the standard deviation of the Dice score was
low, which suggests that the performance of the model is robust.

Table 2 Vessel misalignment between predicted and actual slices.

Volunteer
Vessel misalignment (mm)
(mean� standard deviation)

1 2.8� 0.5

2 2.2� 0.3

3 3.3� 1.7

4 2.8� 1.5

5 3.7� 1.2

6 2.5� 1.5

7 3.1� 1.7

8 2.5� 1.0

9 3.0� 1.0

10 2.0� 0.7

11 2.1� 0.7

12 2.3� 1.0

13 4.4� 1.6

14 3.6� 1.0

15 4.0� 1.1

16 4.0� 1.5

17 3.3� 0.9

18 2.5� 0.7

Average 3.0� 0.7

Fig. 8 Still image from a movie showing the predicted slice (in red)
overlaid on the original dynamic. It can be seen that the shape
and the vessel positions are accurately matched. (Video 1, MPEG,
438 kB) [URL: http://dx.doi.org/10.1117/1.JMI.3.1.015002.1].
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This was also confirmed by the median surface displacement,
which had an average value of 2.0 mm over all subjects.

The average vessel misalignment over all volunteers was
3.0 mm. This is quite satisfactory, given that the size of a typical
focal area in a clinical MR-HIFU system is 3 × 3 × 7 mm3.
Moreover, in practice, an additional margin around the tumor
target area is taken, both for safety reasons and to avoid
tumor spread. However, the standard deviation of vessel mis-
alignment was high. Results varied considerably between slices
from the same volunteer. One reason for this was that the num-
ber of vessels that were visible, and on which evaluation could
thus be performed, varied over the slices. Secondly, this variabil-
ity could originate from errors introduced during evaluation.
Although an attempt was made during acquisition to place
the evaluation slice at a location free of vessel bifurcations
and sudden changes in directions, variations in shape of the
cross sections of the visible vessels could still be present because
of out-of-plane motion or signal differences. In these cases, the
calculated center of mass of the thresholded vessel profile could
deviate from the actual vessel center.

These errors might be reduced by using a different approach
in a practical situation. In this work, the model was built on the
entire liver. In practice, it would probably suffice to model only
the portion of the liver surrounding the tumor. The slice thick-
ness could be reduced and the slices could be placed closely
around the ablation area. This could possibly yield an increase
in accuracy.

The additional evaluation in the coronal direction for volun-
teer 18 showed that the average error in the coronal series was
3.0 mm, compared with an average error of 2.5 mm in the sag-
ittal series. Since motion in the LR-direction was not included in
the model, it should be expected that a small error in this direc-
tion would occur. The errors in FH- and AP-direction were
2.0 mm and 1.1 mm, respectively. The average error in the
LR-direction was 1.7 mm. This indicates that the prediction
error in all three directions was comparable, even though the
motion in LR-direction was not compensated for. At least for
this volunteer, neglecting the motion in LR-direction was con-
sidered reasonable.

The main goal of this work was to explore the possibility of
building an accurate liver motion model. The results show a suf-
ficiently accurate prediction of both the rigid displacement and
the deformation of the liver at the evaluation sequence. The
model was evaluated for 18 volunteers for a single slice location
in the liver. This location was not included in the construction of
the model. To avoid undesired heating of surrounding organs,
clinical HIFU treatment is preferably performed on tumors
located sufficiently far from organ boundaries. To reflect this,
the sagittal evaluation sequence was recorded at a location
roughly in the middle of the liver. The image-based navigator
used for evaluation could in practice be replaced by an external
signal, such as a respiratory belt or a navigator signal.

The deformation fields that were used to build the model
only contained motion in the FH-direction and AP-direction;
we assumed motion in the LR-direction to be negligible.
Including the LR-direction in the model would require addi-
tional data for building the model. Such a full 3-D solution
seems infeasible for use during treatment, in view of the addi-
tional time it would cost to build the model. Furthermore, intro-
ducing additional degrees of freedom in the registration problem
could lead to deterioration in the robustness of the model.

The computational cost of the model was, for a large part,
caused by the extensive number of registrations. Computations
were performed on a duo-quad core Xeon system. It is important
to note that some parts of the code in elastix were not imple-
mented in a multithreaded fashion, so that not all cores were
used at all times. The registration of the volume to the first
dynamic took approximately 50 s. The registration of the first
dynamic to each of the other dynamics took 45 s. This resulted
in a total registration time per volunteer of 6 × 50 sþ 199 ×
45 s ¼ 9255 s, which is ∼2.5 h. The averaging and clustering
of the deformation fields took around 2 min. The interpolation
of the deformation fields in 3-D took ∼15 min ∕volunteer.
These offline calculations could probably be accelerated
by implementation on graphics processing units. Once the
model had been built, its use as a look-up table was very
fast, taking only 10 ms∕dynamic. This makes use of the
model in real-time applications attractive.

The main benefit of the proposed model lies in the fact that it
does not require complex MR acquisition techniques or addi-
tional hardware. It was shown that even when no external
breathing signal was recorded, the model could still be applied
to accurately predict spatial motion. This liver motion model
can, therefore, be used for treatment planning to indicate the
pattern of tumor motion during regular breathing. Treatment
strategies and parameters can be adjusted based on this predicted
pattern.

In theory, the model could also be used during treatment to
predict the tumor position in real-time. However, several addi-
tional practical issues should be addressed to that end. First of
all, real-time tracking of the displacement of the liver should be
available, either by acquiring a navigator signal or by using
external sensors to capture the breathing cycle, such as a respi-
ratory belt or possibly an ultrasound image. Second, for use dur-
ing treatment, it is necessary to predict the translation ahead of
time, so that the expected deformation can be searched for in the
look-up table based on this translation, before the liver actually
reaches this point and the HIFU beam geometry can be updated
accordingly. Next, to match the calculated deformations to the
liver volume during treatment, an initial registration would be
necessary to obtain a correspondence with the volume that
was used to build the model. Furthermore, the drift in the
liver motion, as mentioned in Sec. 1, cannot be ignored during
lengthy treatment procedures, which may take over an hour.

Table 3 Comparison of the vessel misalignment in the sagittal and coronal series.

Direction Dice
Median surface displacement

(mm) (mean� standard deviation)

Vessel misalignment (mm) (mean� standard deviation)

FH AP LR Euclidean

Sagittal 0.93� 0.02 2.2� 0.7 2.0� 0.8 1.1� 0.4 N/A 2.5� 0.7

Coronal 0.83� 0.02 5.8� 0.7 2.1� 1.4 N/A 1.7� 0.8 3.0� 1.3
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Finally, an important issue with the use of the model during
treatment would be sudden changes in the breathing pattern,
in case of which a recalibration of the model might be required.

5 Conclusion
A 4-D liver motion model based on registration of dynamic MRI
data was presented. The model proved successful in predicting
the liver deformation during regular breathing. With an average
Dice coefficient of 0.93, the profile of the liver was accurately
predicted. The average error in the prediction of the blood vessel
center positions was 3.0 mm. It is expected that tumor misalign-
ment will be similar to vessel misalignment, therefore, this fig-
ure indicates the expected error of the predicted tumor position
during HIFU treatment. For a HIFU focal area size of a fewmm3

and the use of a significant additional safety margin, this result
appears promising. The model thus seems valuable for use in the
planning of HIFU treatment of liver lesions, to indicate the
expected motion pattern of the target. The model also has poten-
tial for treatment guidance, since it may predict the motion of the
liver in real time, provided that the breathing pattern of the
patient is regular. The setup of the model makes detection of
patient motion or deviations in breathing possible, which con-
tributes to the safety of the treatment.
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