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Published: 27 July 2016 High glucose-regulated protein 78 (GRP78) expression contributes to the acquisition of a wide range
of phenotypic cancer hallmarks, and the pleiotropic oncogenic functions of GRP78 may result from
its diverse subcellular distribution. Interestingly, GRP78 has been reported to be secreted from solid
tumour cells, participating in cell-cell communication in the tumour microenvironment. However,
the mechanism underlying this secretion remains elusive. Here, we report that GRP78 is secreted
from colon cancer cells via exosomes. Histone deacetylase (HDAC) inhibitors blocked GRP78 release
by inducing its aggregation in the ER. Mechanistically, HDAC inhibitor treatment suppressed HDAC6
activity and led to increased GRP78 acetylation; acetylated GRP78 then bound to VPS34, a class IlI
phosphoinositide-3 kinase, consequently preventing the sorting of GRP78 into multivesicular bodies
(MVBs). Of note, we found that mimicking GRP78 acetylation by substituting the lysine at residue 633,
one of the deacetylated sites of HDAC6, with a glutamine resulted in decreased GRP78 secretion and
impaired tumour cell growth in vitro. Our study thus reveals a hitherto-unknown mechanism of GRP78
secretion and may also provide implications for the therapeutic use of HDAC inhibitors.

Cells communicate and exchange signals through different secretory mechanisms, such as the default ER-Golgi
secretion route, plasma membrane-derived microparticles (MPs) and exosomes'~>. Among these, extracellular
vesicles, including MPs and exosomes, have attracted increasing attention as efficient vehicles for the transfer of
membrane and cytosolic proteins, lipids, and RNA between cells®. MPs, a heterogeneous population of vesicles of
sizes ranging from 100 nm to 1000 nm in diameter, bud directly from the plasma membrane and are characterized
by phosphatidylserine (PS) exposure at the outer membrane leaflet>*. Exosomes originate via inward budding of
endosomal membranes, resulting in the formation of multivesicular bodies (MVBs) that fuse with the plasma
membrane to release the exosomes into the extracellular space. Exosomes are of a homogenous size ranging from
40nm to 100 nm and a density of 1.13 g/ml, and in contrast to MPs, these vesicles have low PS exposure but are
rich in tetraspanin proteins, such as CD63*%. There is growing evidence that exosomes participate in recruitment
and reprogramming of constituents associated with the tumour microenvironment”'.
: Glucose-regulated protein 78 (GRP78) is commonly induced in poorly perfused solid tumours by microen-
© vironmental factors such as hypoxia, acidosis and glucose deficiency'? High levels of GRP78 contribute to the
acquisition of phenotypic cancer hallmarks, including apoptosis resistance, immune escape, metastasis and angi-
ogenesis'®. However, acetylation of GRP78 induced by HDAC inhibitors in the ER is associated with activation
of a lethal UPR in human breast cancer cells'. In addition to localizing in the ER, GRP78 is also present in the
plasma membrane, cytoplasm, mitochondria and nucleus of tumour cells'®. Specifically, GRP78 is secreted by
tumour cells and blocks the antiangiogenic activity of bortezomib'®. We recently demonstrated that secreted
GRP78 prompts tumour cell proliferation and mesenchymal stem cell differentiation in an autocrine/paracrine
manner'”!8, However, the mechanism underlying GRP78 secretion by cancer cells remains unclear.
Found in the ER, plasma membrane and cytoplasm in tumour cells, GRP78 can theoretically be released
through ER-Golgi, MP and exosome secretory routes. In the present study, we provide evidence that GRP78 is
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Figure 1. GRP78 is secreted from exosomes in colon cancer cells. (A) HT-29, SW480, DLD1 and Lovo
cells were cultured in serum-free medium for 24 h. Supernatants were collected, centrifuged to remove cells,
and subjected to SDS-PAGE followed by Western blotting with an anti-GRP78 antibody. (B) Immunoblots

of GFP and GRP78-GFP in the whole-cell lysates and culture supernatants of DLD1 cells stably expressing
GFP and GRP78-GFP. (C) Culture supernatants from DLD1 cells were subjected to differential centrifugation
for 10 min at 300 x g (P1), 10 min at 2,000 x g (P2), 30 min at 10,000 x g (P3) and 3h at 110,000 x g (P4). The
P1-P4 pellets were analysed by immunoblotting for GRP78. (D) The culture supernatants from GRP78-GFP-
expressing DLD1 cells were differentially centrifuged as described above, and the P2-P4 pellets were analysed
by immunoblotting for GFP. (E) CD63 was immunostained in DLD1 cells stably expressing GRP78-GFP. The
yellow dots correspond to foci where GRP78 (green) and CD63 (red) colocalized.

secreted from colon cancer cells via exosomes. HDAC inhibitors impair this process by inducing GRP78 aggre-
gation in the ER, and further mechanistic study shows that HDAC inhibitors increase GRP78 K633 acetyla-
tion by blocking HDAC6 activity. Acetylated GRP78 dissociates from HDAC6 and binds to the VPS34 complex.
Importantly, the K633Q mutation, which mimics K633 acetylation, leads to decreased GRP78 secretion and
retards tumour cell growth in vitro and in vivo. Because HDAC6 is comparatively highly expressed in colon can-
cer cells, we propose that high HDAC6 expression in tumours gives rise to a lowly acetylated but highly secreted
form of GRP78.

Results

GRP78 is secreted via membrane vesicles from colon cancer cells. We previously demonstrated
that GRP78 is secreted from colon cancer cells'”. Here, we further demonstrate that among HT-29, SW480, DLD1
and Lovo colon cancer cell lines, DLD1 cells secrete a comparatively higher level of GRP78 (Fig. 1A). Notably,
DLD1 cells expressing GFP-tagged GRP78 released the GRP78-GFP fusion protein extracellularly, whereas those
cells expressing GFP did not release the GFP protein (Fig. 1B). To further confirm the secretory form of GRP78,
culture supernatants from parental cells and cells expressing GRP78-GFP were fractionated by differential
centrifugation, with P1, P2, P3 and P4 corresponding to floating cells, dead cells, cell debris and exosomes,
respectively”. As shown in Fig. 1C,D, GRP78 and GRP78-GFP were present in all isolated fractions, including the
exosome fraction. Interestingly, prominent colocalization between GRP78 and CD63, an intracellular exosome
marker, was observed in the cytoplasm of DLDI1 cells (Fig. 1E and Fig. S1). These observations indicate that
GRP78 is selectively secreted via membrane vesicles.

GRP78 secretion via membrane vesicles is reduced by HDAC inhibitors. We found that the mem-
brane translocation of GRP78 was blocked by the HDAC inhibitor sodium butyrate?. To investigate whether
pan-HDAC inhibitors can interfere with GRP78 secretion, parental and GRP78-GFP stably expressing DLD1
cells were treated with sodium butyrate (SB) or vorinostat (SAHA). Both treatments resulted in an increase in
GRP78 and GRP78-GFP in the P2 and P3 fractions (Fig. 2A-C). Consistently, the global expression of GRP78
after SB and SAHA treatments was also markedly elevated at both the mRNA and protein levels (Fig. 2D,E).
Strikingly, both inhibitors caused a dramatic reduction in GRP78 and GRP78-GFP in the P4 fraction (i.e., the
exosome fraction, as evidenced by the presence of its characteristic protein CD63) (Fig. 2A-C). Furthermore, the
frequently occurring colocalization of GRP78-GFP and CD63 within GRP78-GFP-expressing cells disappeared
after SB or SAHA treatment (Fig. 2F). These results demonstrate that HDAC inhibitors inhibit the release of
GRP78 via exosomes.
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Figure 2. GRP78 secretion via exosomes is reduced by HDAC inhibitors. (A,B) Culture supernatants from
DLD1 cells after sodium butyrate (SB) or SAHA treatment were subjected to differential centrifugation as
described in Fig. 1. The P2-P4 pellets were analysed by immunoblotting for GRP78 and CD63. (C) Western blot
detection of GFP in P2-P4 pellets obtained from the supernatants of DLD1 cells stably expressing GRP78-GFP
with or without SAHA treatment. (D) Western blot detection of GRP78 and (3-actin in whole-cell lysates of
DLDI cells after SAHA treatment for the indicated time intervals. (E) Relative mRNA levels of GRP78 in DLD1
cells at the indicated time points following SB or SAHA treatment. (F) DLD1 cells stably expressing GRP78-
GFP were treated with SB or SAHA and immunostained with an anti-CD63 antibody. Superimposed confocal
images demonstrate the colocalization of GRP78 and CD63.

HDAC inhibitors induce intracellular aggregation of GRP78 in the ER. Interestingly, intracellular
aggregation of GRP78 was readily observed after SB or SAHA treatment (Fig. 2F). We also found that SAHA
treatment activated an autophagy response in DLD1 cells, as characterized by an increase in the LC3-II/I ratio
and a decrease in p62 protein (Fig. 3A). Next, 3-methyl adenine (3-MA) and chloroquine (CQ), which impair
Vps34/PIK3C3 activity and lysosomal degradation, respectively, were used to inhibit SAHA-induced autophagy.
Notably, SAHA-induced GRP78 aggregation was almost completely abolished by 3-MA but not by CQ (Fig. 3B),
suggesting that the GRP78 aggregation induced is likely to be related to cell autophagy. We then investigated
the association of GRP78 aggregation with p62-positive protein aggregates, LC3-positive autophagosomes and
LAMP1-positive lysosomes. As shown in Fig. 3C-E, no precise colocalization of GRP78 with p62, LC3 or LAMP1
was observed in DLD1 cells, regardless of SAHA treatment.

Exosomes are released from an intracellular compartment, multivesicular bodies (MVBs), or late endosomes?!.
Given that MVBs may be derived from the ER or early endosomes (containing internalized membrane proteins)?
and that GRP78 is present in both the cell membrane and ER'?, we hypothesize that the HDAC inhibitor-mediated
decrease in GRP78 secretion via exosomes may be caused by its aggregation in the early endosome or ER.
Although no colocalization signal between GRP78 and the early endosome marker EEA1 was observed before or
after SAHA treatment (Fig. 4A), we did observe an apparent localization of GRP78 aggregates in the ER (Fig. 4B).
Inspection under a DeltaVision microscope also demonstrated no positional changes during the aggregation pro-
cess of GRP78 (Fig. 4C). To further corroborate the accumulation of GRP78 in the ER under SAHA treatment for
24h, ER fractions were isolated from GRP78-GFP expressing cells with or without SAHA treatment; GRP78-GFP
levels were induced by approximately 5-fold in the whole-cell lysate and approximately 27-fold in the ER fraction
(Fig. 4D). These results indicate that HDAC inhibitor-induced GRP78 aggregation occurs in situ in the ER.

GRP78 secretion is regulated by HDAC6. Considering that HDAC inhibitors can trigger GRP78 acetyl-
ation and that HDACS is involved in this modification!*?*, we speculated that the decrease in GRP78 secre-
tion may be associated with HDAC6-mediated acetylation. Compared with normal colon FHC cells, HDACé6,
but not HDACI, was highly expressed in all of the colon cancer cells examined (HCT-116, DLD1, SW480,
HT-29 and SW620) (Fig. 5A). In addition, HDAC6 was also upregulated in the azoxymethane (AOM)+ DSS
inflammation-driven colon tumourigenesis model (Fig. 5B). Inhibition of HDACS6 by its selective inhibitor
tubastatin A resulted in GRP78 aggregation and the disappearance of GRP78-CD63 colocalization, reproducing
the effects of SB and SAHA (Fig. 5C). Consistently, the colocalization signal between GRP78 and HDACS6 disap-
peared after tubastatin A treatment (Fig. 5D). Importantly, we demonstrated that HDAC6 depletion by shRNAs
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Figure 3. HDAC inhibitors induce GRP78 intracellular aggregation. (A) DLD1 cells stably expressing
GRP78-GFP were treated with SAHA in the presence of 3-MA or CQ. The nucleus was stained with DAPL.

(B) Western blot detection of LC-31/1I, p62 and 3-actin in whole-cell lysates of DLD1 cells treated with SAHA
for the indicated time intervals. (C-E) DLD1 cells stably expressing GRP78-GFP were treated with or without
SAHA and immunostained with anti-p62, -LC-3 and -LAMP1 antibodies, respectively. The nucleus was stained
with DAPI. The corresponding images were superimposed to determine the degrees of colocalization.

significantly suppressed GRP78 secretion (Fig. 5E). These results indicate that high HDAC6 expression at least
partially accounts for a high level of secretion of GRP78 by cancer cells.

GRP78 aggregation is associated with VPS34.  Given that HDAC inhibitor-triggered GRP78 aggre-
gation can be abrogated by 3-MA, an inhibitor of VPS34/Class III PI3K, and that GRP78 can interact with
Class I PI3K, the catalytic subunit of which exhibits considerable homology with VPS344?%, we hypothesized
that HDAC inhibitor-induced GRP78 aggregation may be associated with VPS34. Indeed, we observed an
evident colocalization of GRP78 with VPS34, which became much stronger after SAHA treatment (Fig. 6A),
and VPS34-knockdown cells released a greater amount of GRP78 into the medium in the presence of SAHA
(Fig. 6B). We next compared the changes in the GRP78-VPS34 interection with and without SAHA treat-
ment by a Co-IP assay. As shown in Fig. 6C, the GRP78-VPS34 interaction was enhanced upon SAHA stimu-
lation, whereas the GRP78-HDACS6 interaction was appreciably compromised. Increased interaction between
GRP78 and VPS34 after SAHA stimulation was also observed in 293T cells transfected with GRP78-GFP- and
Flag-VPS34-expressing plasmids (Fig. 6D). Notably, inactivation of HDAC6 via transfection of its catalytically
inactive mutant also significantly augmented the GRP78-VPS34 interaction (Fig. 6E). Together, these results indi-
cate that HDAC inhibitor treatment results in increased interaction between GRP78 and VPS34 and that HDAC6
is involved in regulating this interaction.

GRP78 acetylation affects its secretion and tumour growth.  The results presented above suggest that
GRP78 secretion by colon cancer cells is likely associated with its acetylation status. Consistent with this hypoth-
esis, GRP78-GFP acetylation was significantly elevated in response to SAHA treatment (Fig. 7A). To determine
the functional domains of GRP78 required for its secretion, supernatants from cells stably expressing wild-type
GRP78 or deletion mutants were collected and subjected to differential centrifugation and Western blot analysis.
Neither of the GRP78 mutants, which lack a C-terminus (~150 amino acids), were released extracellularly via
exosomes (Fig. 7B), suggesting that this amino acid sequence likely plays an important role in GRP78 secretion.
It has been reported that GRP78 can be acetylated at K118, K122, K123, K125, K138, K152, K154, K353,
K353, K376, K585 and K633!4%. Because the K585 and K633 sites are located within the C-terminal region,
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Figure 4. HDAC inhibitors induce GRP78 aggregation in the ER. (A) DLD1 cells stably expressing
GRP78-GFP were treated with SAHA and immunostained with an anti-EEA1 antibody. The nucleus was
stained with DAPI. The corresponding images were superimposed to determine the degrees of colocalization.
(B) DLD1 cells stably expressing GRP78-GFP were treated with SAHA or sodium butyrate. The ER was
labelled with ER-Tracker Red dye, and colocalization analysis was performed using confocal microscopy.

(C) Immunofluorescence photomicrographs of GRP78-GFP-expressing DLD1 cells treated with SAHA at
different time points (120, 240, 360, 10805). (D) ER fractions were isolated from GRP78-GFP-expressing cells
with or without SAHA treatment for 24 h. After cell lysis, ER and cytoplasmic fractions were subjected to
Western blot analysis to probe for GRP78-GFP.

these sites were mutated to glutamine (Q) to mimic the acetylated form of lysine and named K585Q and K633Q,
respectively. Interaction of the K633Q mutant with Flag-VPS34 became more intense than that of the wild type
(WT, Fig. 7C). In contrast to the K585Q mutant, we observed an obvious aggregation of the K633Q mutant in
transfected 293T cells, mimicking the effects of SAHA stimulation (Fig. 7D). Importantly, the K633Q mutation
also resulted in decreased GRP78 secretion (Fig. 7E). We next asked whether GRP78 K633 acetylation affects
tumour cell growth. To address this question, DLD1 cells were stably infected with lentivirus expressing wild-type
GRP78 and the K633Q mutant. As shown in Fig. 7F, an MTT assay revealed significant growth impairment for
the K633Q mutant-expressing cells. We then injected cells into immunocompromised (nu/nu) mice and assessed
tumour formation. Tumours derived from the K633Q mutant-expressing cells were smaller compared with those
expressing the wild-type GRP78, though no statistically significant difference was found between these two
groups (Fig. 7G,H).

Discussion
There is emerging evidence that tumour and tumour stromal cells release exosomes that participate in local and
systemic cell communication in an autocrine/paracrine manner. Exosomes have a topology similar to cells and
contain a wide range of biologically active materials, including cytokines, growth factors, extracellular matrix
molecules, mRNAs and microRNAs?!. Exosomes containing RNA molecules may act as a vehicle for the hori-
zontal transfer of genetic information between cells’. HSP70 and HSP90q, both of which are classical cytosolic
chaperones, have been reported to be secreted in the form of exosomes?*?. In this study, we demonstrate that the
ER chaperone GRP78 can also be released into the extracellular space via exosomes. Given that GRP78 exhibits
diverse cellular distribution in cancer cells, there may be at least three routes by which GRP78 enters MVBs,
including ER, plasma membrane and cytoplasmic routes. As our data do not show an obvious localization of
GRP78 in the early endosome, we can exclude the plasma membrane-endosome-exosome pathway. Nonetheless,
the specific sorting route of GRP78 into exosomes remains unclear, and further investigation is warranted.
Protein acetylation controlled by the balance between the activities of histone acetyltransferases (HATSs)
and histone deacetylases (HDACs) plays a key role in transcriptional regulation in the nucleus. In this study,
an increased endogenous GRP78 gene expression was induced following treatment with the HDAC inhibitor
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Figure 5. HDACE6 is implicated in regulating exosome-dependent GRP78 secretion. (A) Relative mRNA
levels of HDAC1 and HDAC6 in normal colon FHC cells and colon cancer cells (HCT-116, DLD1, SW480,
HT-29 and SW620). (B) Western blot analysis of HDAC6 in normal mouse intestine tissue or intestinal tumour
tissue from an AOM/DSS-induced colon tumourigenesis model. (C) DLD1 cells stably expressing GRP78-GFP
were treated with tubastatin A and immunostained with an anti-CD63 antibody. The superimposed confocal
images show the colocalization of GRP78 and CD63. (D) DLD1 cells stably expressing GFP and GRP78-GFP
were treated with tubastatin A and immunostained with an anti-HDAC6 antibody to analyse the relative
intracellular location alterations of GRP78 and HDACS. (F) HDAC6 expression in DLD1 cells was knocked
down by shRNAs. Culture supernatants were collected and subjected to Western blot analysis to assess GRP78
secretion. Western blot analysis of HDAC6 expression was performed to confirm the knockdown efficiency of
the ShRNAs.

SAHA. This is most likely due to the activation of GRP78 promoter by SAHA, as evidenced by Kia A et al. in
a viral vector?. Recently, non-nuclear protein acetylation and its role in cellular regulation, especially in cell
metabolism and autophagy, have attracted great attention?-*>. HDACS, a cytoplasmic class Il HDAC, functions
in many cellular events by deacetylating non-histone proteins, including HSP90 and GRP78'**%. Upon HDAC6
inhibition by panobinostat, GRP78 is acetylated at 11 lysine residues, resulting in its dissociation from PERK and
activation of a lethal unfolded protein response (UPR) in breast cancer cells'*. Interestingly, we demonstrate that
HDACE is highly expressed in colon cancer cells. Inhibition of HDAC6 activity by two pan-HDAC inhibitors and
an HDACS selective inhibitor provokes GRP78 aggregation in the ER and its sorting into MVBs, culminating
in a decrease in GRP78 secretion via exosomes. We further identify that blocking GRP78 release by inhibiting
HDACS is largely attributable to acetylation of GRP78 at K633. Thus, there are at least two reasons accounting
for the retard of tumour growth induced by GRP78 acetytion: activation of a lethal UPR and blockage of GRP78
secretion.

How does acetylation affect the sorting of GRP78 into exosomes? Strikingly, we observed that GRP78 acetyl-
ation leads to a decrease in its affinity toward HDAC6 but an increase in interaction with VPS34, a class III
phosphatidylinositol-3 kinase that can form distinct complexes involved in vesicular transport or autophagy>-.
Yang et al. reported that autophagy-inducing stresses (including HDAC inhibitor treatment) increase intracellular
levels of acetylated HSP70, which binds to the Vps34-Beclin-1 complex to promote autophagic vesicle formation®’;
interestingly, GRP78 was also detected in the panobinostat-induced Vps34 complex by mass spectrometry
assays™’. Thus, the most likely scenario appears to be that the C-terminus of GRP78 serves as a common platform
for interacting with both HDAC6 and VPS34. Upon HDACS inhibition, GRP78 is acetylated and recruited to the
VPS34 complex, which facilitates VPS34-mediated autophagy. By extension, this autophagy response may also be
responsible for chemotherapeutic resistance to HDAC inhibitors.

Cancer progression depends on the interaction between tumour cells and the tumour microenvironment,
which includes extracellular matrix components, various stromal cells and specific growth conditions charac-
terized by hypoxia, glucose deficiency and lactic acidosis®®. The exosome is identified as an efficacious signal
mediator between tumour cells and tumour stromal cells, and recent work indicates that the release and function
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Figure 6. The aggregation of GRP78 is associated with VPS34. (A) DLD1 cells stably expressing GRP78-
GFP were treated with or without SAHA and immunostained with an anti-VPS34 antibody. The images were
superimposed to determine the degree of colocalization. (B) VPS34 expression in DLD1 cells was knocked
down by shRNAs. Culture supernatants were collected and subjected to Western blot analysis of GRP78
secretion. (C) DLDI cells treated or untreated with SAHA were immunoprecipitated with an anti-GRP78
antibody followed by immunoblotting with anti-HDAC6 and anti-VPS34 antibodies. (D) 293T cells were
transfected with Flag-tagged VPS34 and GRP78-GFP plasmids. After transfection for 24 h, cells were treated
with SAHA for another 12 h. Lysates from SAHA-treated and untreated cells were immunoprecipitated with an
anti-Flag antibody followed by immunoblotting with anti-GFP and anti-Flag antibodies. (E) 293T cells were
co-transfected with GRP78-GFP and Flag-tagged wild-type or catalytically inactive HDAC6. Cell lysates were
immunoprecipitated with an anti-GFP antibody followed by immunoblotting with anti-VPS34 and anti-Flag
antibodies.

of exosomes are intertwined with the conditions of the extracellular environment, such as hypoxia and an acidic
pH'"**. GRP78 is a centrally located sensor of stress and is usually highly induced by glucose deprivation, hypoxia
and acidosis. Thus, it is reasonable to propose that on the one hand, GRP78 is frequently highly expressed due to
the persistent microenvironmental stress present in solid tumours; a high level of HDACE is responsible for the
comparatively low acetylated status of GRP78, preventing GRP78 aggregation and allowing it to be sorted into
exosomes. On the other hand, the acidic pH of the microenvironment accelerates the release of exosomes con-
taining GRP78, which potently promotes tumour progression in an autocrine/paracrine manner. Taken together,
this work provides insight into how GRP78 acetylation affects its secretion via exosomes in colon cancer, and the
findings have therapeutic implications for the use of HDAC inhibitors in cancer therapy.

Methods

Materials. RPMI-1640 and DMEM medium and foetal bovine serum (FBS) were obtained from GIBCO
(Grand Island, NY). Trizol, PrimeScript RT Master Mix and SYBR green PCR master mix were purchased
from Takara (Shiga, Japan). Antibodies against LC-3I/11, p62, VPS34, and HDAC6 were purchased from Cell
Signaling Technology (Danvers, USA), antibodies against GFP, GRP78 and acetyl-lysine were from Abcam
(Cambridge, UK), and anitbodies against 3-tubulin, 3-actin and GAPDH were from Abmart (Shanghai, China).
The anti-CD63 antibody was purchased from Santa Cruz Biotechnology (Santa Cruz, USA), and the anti-FITC-,
-TRITC-, -Cy5- and -HRP-conjugated secondary antibodies as well as ER-Tracker and Lyso-Tracker were
obtained from Invitrogen (Carlsbad, USA). Sodium butyrate, vorinostat (SAHA), tubastatin A and 3-methylad-
enine were obtained from Cayman Chemical (MI, USA). Anti-FLAG M2 mAb and anti-FLAG M2 agarose were
obtained from Sigma (St. Louis, USA).
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Figure 7. GRP78 acetylation affects its secretion and tumour growth. (A) Culture supernatants from

DLDI1 cells stably expressing wild-type GRP78 or deletion mutants were collected and subjected to differential
centrifugation, as described in Fig. 1. The P2-P4 pellets were analysed by immunoblotting for GFP. (B) Cell lysates
from GRP78-GFP-expressing cells treated with or without SAHA were immunoprecipitated with an anti-GFP
antibody, and an immunoblot was performed with an anti-acetyl-lysine antibody. (C) Wild-type GRP78, the
K585Q mutant or the K633Q mutant was co-transfected with the VPS34-Flag plasmid into 293T cells, and lysates
were immunoprecipitated with an anti-Flag antibody followed by immunoblotting with an anti-GFP antibody.
Ten percent of the total cell lysate used in immunoprecipitation was used as the input. (D) The K585Q and K633Q
mutants were transfected into 293T cells, and the distribution of green fluorescence was observed by fluorescence
microscopy. (E) Culture supernatants from DLD1 cells expressing wild-type GRP78 and the K633Q mutant were
collected and subjected to an analysis of GRP78 secretion by Western blotting. (F) An MTT assay was used to
assess the growth of cells expressing wild-type GRP78 and the K633Q mutant. (G,H) Equal numbers of wild-

type GRP78- and K633Q mutant-expressing cells were injected into immunocompromised mice. The dissected
tumours, in pairs, and the bar graph representing the tumour weight are shown. (I) A schematic representation of
the proposed model. In tumour cells highly expressing HDAC6, GRP78 is deacetylated and enters an exosome-
dependent secretory pathway; in cells expressing low amounts of HDAC6 or upon inhibition by HDAC inhibitors,
GRP78 cannot be deacetylated by HDAC6. Acetylated GRP78 is thus recruited to the VPS34 complex, preventing
GRP78 sorting into the exosomes.

Cell culture, HDAC inhibitor treatment and cell number determination. Human colon carcinoma
celllines HT-29, HCT-116, SW480, SW620 and DLD1 were cultured in RPMI-1640 medium containing 10% FBS
at 37°C and in 5% CO, in a humidified incubator. Sodium butyrate (2 mM), SAHA (5pM), tubastatin A (5pM),
3-methyl adenine (3-MA, 10 mM) and chloroquine (25 .M) were applied to cell cultures when necessary. Cell
viability was assessed by the MTT assay, as described elsewhere®.

Cell culture supernatant, exosome and ER isolation. For cell culture supernatants collection, cells
were cultured in DMEM and incubated for 24 h. The medium was collected and centrifuged at 2,000 x g for
10 min. The supernatants were concentrated with a 10kDa ultrafiltration membranes (Millipore, MA). For
exosome isolation, cells were cultured in serum-free DMEM medium for 24 h. The culture supernatants were
subjected to differential centrifugation for 10 min at 300 x g (P1), 10 min at 2,000 x g (P2), 30 min at 10,000 x g
(P3) and 3h at 110,000 x g (P4, exosome pellets)'®, and different pellets were washed in PBS and lysed with in
Western and IP buffer (Beyotime, China) containing a protease inhibitor cocktail (Thermo scientific). The pro-
tein concentration was measured with the BCA Protein Assay Reagent (Beyotime, China). Samples with equal
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protein loading (30 ~ 50 ug) were subjected to Western blot analysis. For ER isolation, an ER isolation kit (Sigma)
was used according to the manufacturer’s instructions. Briefly, after SAHA treatment for 24 h, 5 x 108 cells were
harvested, resuspended in hypotonic buffer at a volume three times that of the packed pellet, and mechanically
disrupted using a Dounce homogenizer. Cell extracts were then subjected to a discontinuous iodixanol gradient
by centrifugation at 100,000 x g for 16 h. ER Fractions were collected, solubilized in Western and IP buffer and
and analysed by Western blotting.

Truncated and site mutant construction. DNA fragments encoding different truncated GRP78
mutants were amplified from the plasmid PLVX-GRP78-AcGFP, which was previously constructed in our lab*'.
Primers (T500: 5'-CCGCTCGAGATGAAGCTCTCCCTGGTGGCCGC-3/, 5'-CGCGGATCCCGCAACTC
ATCTTTGGTGACTTCAATCTGTGG-3'; T280: CCGCTCGAGATGAAGCTCTCCCTGGTGGCCGC,
CGCGGATCCCGCAACTCATCTTTTTTCCTGACATCTTTGCC) introducing Xhol and BamHI restriction
sites were used to obtain the target fragments, which were then cloned into pLVX-AcGFP1-N1 (Clontech).
Successful cloning was confirmed by sequencing. The PLVX-GRP78-AcGFP-K585Q and -K633Q mutants were
constructed using Easy Mutagenesis System from Transgen Biotech (Beijing, China).

Cell transfection and lentivirus infection. For transient transfection, plasmids were introduced into
293T cells using the transfection reagent TurboFect (Thermo Scientific). For lentivirus infection, the overex-
pression/shRNA plasmids PsPax2 and pMD2.G were co-transfected into 293T cells using the calcium phosphate
method at 15: 12.5: 3.75 g (for a 10-cm dish). The virus-containing medium was collected at 48 h after transfection
and was then concentrated using 100-kDa ultrafiltration membranes (Millipore). Cells were infected with the
viruses in the presence of polybrene (8 ug/ml) for 48 h and then subjected to selection with 5pug/ml puromycin
for 72hours.

RNA extraction and real-time PCR analysis. Total RNA extraction, reverse transcription, and real-time
PCR were performed as previously described?. The primers used in this study were as follows: GRP78: 5-CTGTGCA
GCAGGACATCAAGTTC-3; 5-TGTTTGCCCACCTCCAATATCA-3'. HDAC6: 5'-GGATGTGCACCACGGT
CAAG-3; 5-GAAACCTGTGGTGGACCAGTTAGAG-3'. HDAC1: 5-AGTATTCGATGGCCTGTTTGA
GTTC-3’; 5-CAGTTCCAGGATGGCCAAGA-3'. GAPDH: 5'-GCACCGTCAAGGCTGAGAAC-3'; 5-TGGTG
AAGACGCCAGTGGA-3'.

Immunofluorescence. Cells were seeded onto 6-well glass slides. After treatment, the cells were fixed in
4% paraformaldehyde in PBS for 30 min and permeabilized with 0.3% Triton X-100 in PBS for 10 min. Next, the
slides were blocked in 2% goat serum for 1 h and incubated with primary antibodies at 4°C overnight. The slides
were then washed and incubated with the corresponding secondary antibodies. After three PBS washes, the slides
were mounted in gelvatol for confocal immunofluorescence analysis.

Co-immunoprecipitation and Western blot assays. Cells were lysed in Western and IP buffer
(Beyotime, China) containing a protease inhibitor cocktail (Thermo scientific). 500 ug protein of whole-cell
lysates (WCLs) with a final volume of 1 ml were pre-cleared by incubation with 1.0 ug control IgG corresponding
to the host species of the primary antibody together with 20l of Protein A/G PLUS- Agarose (Santa Cruz) at 4°C
for 2 h followed by centrifugation at 4 °C for 5min at 2,500 rpm. The supernatant was subjected to immunopre-
cipitation by the addition of 2 pg of immunoprecipitation antibodies and incubated overnight at 4 °C followed by
incubation with Protein A/G PLUS-Agarose for 2h. After washing with cell lysis buffer four times, the beads were
boiled in 2 x SDS loading buffer, and the supernatants were resolved by SDS-PAGE and subjected to Western blot
analysis, as previously described?®.

Xenograft tumour assay. All of the mouse experiments were approved by the Institutional Animal Care
and Use Committee of Shanxi University (Taiyuan, China). All of the experimental procedures were performed
in accordance with the protocols and ethical regulations approved by the Institutional Animal Care and Use
Committee of Shanxi University (Taiyuan, China). Four-week-old female nude mice were used for this study.
Equal amounts (5 x 10°) of DLD1 cells expressing the K585Q or K633Q mutant were resuspended in 200 pl of
PBS buffer and injected into the subcutis of immunocompromised (nu/nu) mice. Four weeks after injection, the
mice were euthanized, and the tumours were excised and weighed.

Statistical analysis. Data are expressed as the mean + SEM. Differences among groups were tested by a
one-way analysis of variance (ANOVA), and comparisons between two groups were evaluated using Student’s
t-test. A value of p < 0.05 was considered statistically significant.
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