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Abstract

For decades, the fruit fly, Drosophila melanogaster, has been among the premiere genetic model 

systems for probing fundamental neurobiology, including elucidation of mechanisms responsible 

for human neurologic disorders. Flies continue to offer virtually unparalleled versatility and speed 

for genetic manipulation, strong genomic conservation, and a nervous system that recapitulates a 

range of cellular and network properties relevant to human disease. I focus here on four critical 

challenges emerging from recent advances in our understanding of the genomic basis of human 

neurologic disorders where innovative experimental strategies are urgently needed: (1) pinpointing 

causal genes from associated genomic loci; (2) confirming the functional impact of allelic variants; 

(3) elucidating nervous system roles for novel or poorly studied genes; and (4) probing network 

interactions within implicated regulatory pathways. Drosophila genetic approaches are ideally 

suited to address each of these potential translational roadblocks, and will therefore contribute to 

mechanistic insights and potential breakthrough therapies for complex genetic disorders in the 

coming years. Strategic collaboration between neurologists, human geneticists, and the Drosophila 
research community holds great promise to accelerate progress in the post-genomic era.
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While experimentation in the fruit fly Drosophila melanogaster has contributed to many 

profound insights on heritability and neuroscience over the last hundred years (Bellen et al., 

2010), that flies could serve as useful genetic models for human disease is a rather new 

concept. Based on PubMed search criteria, a 1971 study in Acta Neuropathol was among the 

first to highlight the potential for direct “modeling” of human nervous system injury in flies, 

based on observations of age-related changes in the fly brain similar to established human 

neuropathologic findings (Herman et al., 1971). It is striking that from this earliest 

conception of Drosophila disease models, applications were specifically imagined in 

experimental neurology. Indeed, numerous subsequent reports heralded fly models for 

Huntington’s disease (Jackson et al., 1998), Spinocerebellar Ataxia (Fernandez-Funez et al., 

2000), Alzheimer’s disease (Finelli et al., 2004;Wittmann et al., 2001), and Parkinson’s 
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disease (Feany and Bender, 2000), among other applications (Shulman et al., 2003). This 

rapid progress was enabled by the relative ease of Drosophila transgenesis, the availability of 

versatile, targeted expression systems (Brand and Perrimon, 1993), and contemporaneous 

discoveries of human genes responsible for autosomal dominant, familial forms of 

neurodegeneration with toxic gain-of-function mechanisms. The resulting fly models have 

contributed enormously to our understanding of neurologic disorders and continue to spur 

mechanistic insights, as reviewed previously (Bellen et al., 2010; Jaiswal et al., 2012; 

Lessing and Bonini, 2009; Shulman et al., 2003) and discussed elsewhere in this special 

issue.

In recent years, however, powerful methods for gene manipulation have become available in 

mammalian models, including conditional knockout strategies, optogenetics, and genome-

editing technology. Further, advances in induced-pluripotent stem (iPS) cell methods now 

permit modeling of disease biology directly in human patient-derived neurons. Therefore, 

for many applications in experimental neurology, flies no longer offer all the unique 

advantages they once did. Importantly, there has also been a paradigm shift from a simple to 

amore complex genetic framework for understanding common neurologic conditions. In 

contrast to Mendelian diseases characterized by single-gene etiologies, complex genetic 

disorders are defined by substantial heterogeneity and polygenicity. Although the precise 

genomic architectures remain to be fully elucidated, we now appreciate that most common 

neurologic diseases (e.g., migraine, stroke, epilepsies, multiple sclerosis, and 

neurodegenerative conditions) are likely influenced by a combination of many common and 

rare genomic variants with a range of effect sizes. Based on the current rapid rate of 

progress, we are beginning to have a glimpse of the “post-genomic era,” when the majority 

of genes or genomic loci responsible for most neurologic conditions are known. While this 

is an exciting prospect, it also presents a number of unprecedented challenges (Chakravarti 

et al., 2013) and is creating an urgent need for new experimental models and approaches. 

Thus, in this altered landscape, what will be the future role of Drosophila in experimental 

neurology? The primary goal of this review is to address this question, and I will argue that 

Drosophila is ideally suited to tackle many of the key emerging obstacles. I organize my 

discussion around four major problems arising from current human genomic studies, 

drawing on recent examples to illustrate how flies can offer potential solutions. Overcoming 

each of these roadblocks will be essential for moving from genomic discoveries to clinical 

applications. At the conclusion, I propose how multi-disciplinary teams including many in 

the Drosophila research community will ensure sustained momentum for effective 

translational research in neurogenomics.

 1. From susceptibility locus to causal gene

Over the last decade, genome-wide association studies (GWAS) have identified thousands of 

genomic loci (http://www.genome.gov/gwastudies/) that contribute to common and complex 

human genetic traits (Welter et al., 2014), including many neurologic and neuropsychiatric 

disorders. This successful strategy has begun to reveal genetic determinants for many 

conditions that long were relatively resistant to genetic dissection, including ischemic stroke 

(Kilarski et al., 2014), migraine (Anttila et al., 2013), Alzheimer’s disease (Lambert et al., 

2013), Parkinson’s disease (Nalls et al., 2014), multiple sclerosis (International Multiple 
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Sclerosis Genetics Consortium IMSGC et al., 2013), and schizophrenia (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014), among others. While the 

odds ratios for many such loci are modest, they are estimated to have broad population 

impact on disease risk since most are defined by common sites of genomic variation [single 

nucleotide polymorphisms (SNPs) with minor allele frequencies of >1%]. Most signals 

discovered by GWAS do not unambiguously define the responsible causal genes but rather 

implicate a broad genomic region tagged by associated SNPs (Fig. 1). Such regions usually 

contain a number of candidate genes. Thus, experimental confirmation is critical to move 

beyond an “educated guess” to a validated target for further mechanistic investigation.

Based on several studies, flies provide an outstanding platform for functional validation of 

genes from GWAS, and this approach has already shown success for neurologic (Chapuis et 

al., 2013;Macleod et al., 2013; Shulman et al., 2011, 2014) as well as non-neurologic 

disorders (Hoed et al., 2013; van der Harst et al., 2012). Given the strong conservation 

between the human and Drosophila genomes (Fortini et al., 2000; Rubin et al., 2000), the 

majority of candidate genes at associated loci can usually be tested in flies. In fact, 

evolutionary conserved genes appear more likely to be implicated in disease (Hu et al., 

2011). Further, resources are immediately available to facilitate manipulation of virtually all 

such candidates (Matthews et al., 2005), including genome-wide RNA-interference (RNAi) 

transgenic stocks (Dietzl et al., 2007; Ni et al., 2011), classical mutant alleles including 

transposable element insertions from the gene disruption project (Bellen et al., 2011), and 

strains that facilitate gene overexpression in many cases (Bischof et al., 2013; Jenett et al., 

2012). Coupled with the many established transgenic neurologic disease models (Jaiswal et 

al., 2012; Shulman et al., 2003), the array of available Drosophila genetic reagents is a 

potent combination for medium- to high-throughput functional validation of gene candidates 

nominated by GWAS. The underlying hypothesis for this strategy is that many susceptibility 

alleles identified by GWAS modulate mechanisms of pathogenesis recapitulated in fly 

models. In our recent study (Shulman et al., 2014), we examined whether genetic 

manipulation of fly homologs of candidate genes at susceptibility loci from Alzheimer’s 

disease GWAS (Hollingworth et al., 2011; Lambert et al., 2013; Naj et al., 2011; Seshadri et 

al., 2010) interact with the neurotoxicity of human Tau protein, responsible for the 

characteristic neurofibrillary tangle pathology. RNAi-mediated knockdown of fly homologs 

of CD2AP, FERMT2, and CELF1 each enhanced retinal degeneration in transgenic models 

expressing human Tau, and in the case of FERMT2 and CELF1, overexpression reciprocally 

suppressed Tau toxicity. At the CELF1 locus, for example (Fig. 1), 8 out of 10 gene 

candidates within the implicated genomic region were conserved, and only manipulation of 

aret, the fly ortholog of CELF1, demonstrated modifier activity. Besides highlighting the 

most likely causal gene for GWAS signals, these results also provide important clues to 

potential mechanisms, suggesting that the implicated susceptibility loci may impact Tau-

mediated neurodegeneration. Using similar experimental strategies, two other candidate-

based studies recently provided support for functional validation of BIN1 in Alzheimer’s 

disease (Chapuis et al., 2013) and the RAB7L1 gene at the PARK16 locus in Parkinson’s 

disease (Macleod et al., 2013) (discussed further below).

Despite the successes, there are some notable limitations to the generalizability of the 

described strategy. Only about 60–70% of candidate human disease genes are conserved, 
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based on cross-species comparisons (Fortini et al., 2000;Hu et al., 2011). At some genomic 

loci implicated in GWAS, there are no obvious gene candidates to test at all. In other cases, 

there can potentially be a very large number of candidates, especially if one accounts for the 

possibility of regulatory variants with long-range impact on gene expression. In addition, the 

described strategy relies on available fly disease models that can be deployed for modifier 

screening. Many but certainly not all neurologic disorders have useful transgenic models, 

and even where such models are available, they only permit probing the potential impact of 

candidate susceptibility genes on selected aspects of disease biology. Nevertheless, fly 

genetics shows great promise for accelerating the fine mapping of many susceptibility loci 

from GWAS, pinpointing likely causal genes and linking them to disease-relevant 

mechanisms.

 2. Confirming the functional impact of genetic variants

Next-generation sequencing technology has revolutionized the discovery of genes 

responsible for familial neurologic disorders with Mendelian inheritance (Bamshad et al., 

2011) and is beginning to successfully define less common and rare variants that contribute 

to many neurologic diseases with complex genetic inheritance (Pittman and Hardy, 2013). In 

contrast to GWAS-defined susceptibility loci, sequencing-based approaches are capable of 

more precisely defining the most likely causal genes and variants when performed in 

sufficiently large family pedigrees or population samples (Goldstein et al., 2013; MacArthur 

et al., 2014). The discovery pipeline for sequencing studies incorporates analytic filters to 

distinguish variants with anticipated deleterious consequences from those that are benign. 

While some variants are obviously damaging (nonsense mutations, splicing mutations, or 

insertions/deletions that cause frameshifts), others cause non-synonymous amino acid 

changes of uncertain functional significance. Numerous bioinformatic algorithms (Goldstein 

et al., 2013; Liu et al., 2013) facilitate prediction of functional consequences for such 

variants. However, direct experimentation is critical for confirming the pathogenicity of 

identified mutations, understanding how such changes disrupt gene functions, and defining 

the broader role of the encoded protein in the nervous system context. For conserved genes, 

flies remain an outstanding animal model to explore the functions of genetic variants.

One recent study that illustrates the power of this approach began with an unusual, three-

generation family pedigree with an autosomal dominant disorder consisting of variable limb 

weakness and electrophysiologic evidence of presynaptic neuromuscular junction failure 

(Herrmann et al., 2014). Whole-exome sequencing of three individuals followed by stringent 

analytic filters and segregation analysis in additional family members narrowed an initially 

unwieldy variant list to a missense mutation in the synaptotagmin II gene (SYT2), encoding 

a key mediator of synaptic vesicle exocytosis. The candidate variant fell within a conserved 

calcium-binding domain and was predicted to be deleterious to protein function using 

bioinformatics. To confirm this finding and reveal the potential mechanisms, the 

corresponding mutation was introduced in the single Drosophila synaptotagmin gene, 

DSyt1, and expression of the mutant transgene was directed throughout the nervous system. 

Interestingly, whereas mutant DSyt1 was unable to rescue DSyt1−/− null animals, consistent 

with reduced function, expression of the mutant protein in a wild-type genetic background 

also disrupted synaptic transmission. Overall, these data suggest a dominant-negative 
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mechanism for this human disorder and demonstrate how flies can be leveraged to rapidly 

dissect the functional consequences of missense variants in conserved genes. Indeed, 

understanding the mechanism of disease-associated mutations is often of critical importance 

to progress from a disease gene to potential therapies. For example, potential loss-of-

function changes that reduce risk of disease (i.e., protective variants) may identify excellent 

candidates for potential drug targets.

With whole-exome sequencing becoming an increasingly available tool, both in the research 

(Bamshad et al., 2011) and clinical (Yaping Yang et al., 2013) settings, we can expect 

exponential growth in the pace of variant discovery underlying diverse neurologic disorders. 

In fact, large National Institutes of Health (NIH)-funded efforts are now under way with the 

goal of “solving” as many Mendelian disorders as possible (Bamshad et al., 2012). 

Drosophila is a powerful platform for accelerating the functional follow-up of promising 

variants emerging from such studies. As mentioned, genome-wide RNAi transgenic stocks 

(Dietzl et al., 2007; Ni et al., 2011) and large, publicly available collections of mapped 

transposon insertion alleles (Bellen et al., 2011) enable rapid genetic analysis of nearly all 

Drosophila genes. Other resources and technologies, including bacterial artificial 

chromosome libraries covering the fly genome (Venken et al., 2009) and the more recently 

developed CRISPR/Cas9 system (Bassett et al., 2013; Gratz et al., 2013; Kondo and Ueda, 

2013; Yu et al., 2013), offer limitless flexibility for genomic manipulation in flies (Venken et 

al., 2011). One generalizable strategy for functional validation of a novel variant linked to 

human disease begins with characterization of the loss-of-function phenotype for the 

conserved gene homolog in flies. Importantly, any robust phenotype (e.g., lethality) can 

potentially serve as a substrate for variant functional analysis. Next, rescue experiments can 

be implemented comparing the activities of the wild-type gene or versions harboring 

disease-implicated variants. Such experiments can also be conducted using human cDNAs to 

demonstrate cross-species functional substitution. Where sufficient sequence conservation 

allows, corresponding mutations can additionally be engineered into the context of a fly 

cDNAor genomic rescue construct (or endogenous genomic locus using CRISPR). This 

cross-species strategy permits efficient characterization of variants of unknown significance, 

delineating those that alter protein function consistent with damaging, loss-of-function 

alleles versus other potential mechanisms (e.g., gain-of-function and/or dominant-negative). 

Such studies would also be a prelude to more detailed functional investigation in the relevant 

nervous system context.

 3. Linking conserved genes to disease-relevant biology

Unbiased human genomic studies, whether GWAS or sequencing, often lead to candidate 

genes with little or no prior functional studies to support mechanistic hypotheses of disease 

pathogenesis. In the case of evolutionarily conserved genes, Drosophila remains a premiere 

system for efficient investigation of the consequences of gene loss-of function. In some 

cases, phenotypic consequences can reveal remarkable and unexpected parallels with the 

human disease. One illustrative example comes from a study of the Drosophila dBTBD9 
gene (Freeman et al., 2012), homologous to a candidate gene from human GWAS in Restless 

Legs Syndrome(RLS) (Stefánsson et al., 2007). RLS is a common neurologic condition 

characterized by bothersome nighttime, sensory symptoms of the lower extremities that 
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disrupt sleep, often forcing affected individuals out of bed to pace about for relief. Besides 

the strong association of an intronic BTBD9 SNP with RLS in humans, little was previously 

known to connect this gene to informative, disease biology. Based on public databases, 

BTBD9 showed fairly widespread tissue expression in mammals and sequence analysis 

revealed only a conserved, BTB protein interaction domain. To learn more, Freeman et al. 

(2012) generated a null allele of dBTBD9 in Drosophila through imprecise excision of an 

available transposon insertion stock, and characterized the resulting loss-of-function 

phenotype. Remarkably, dBTBD9−/− flies exhibited disrupted and fragmented sleep and a 

hyperlocomotor phenotype that resembles restlessness. In further studies, the authors found 

that loss-of-dBTBD9 function is associated with reduced brain dopamine levels and altered 

iron homeostasis, both of which have been implicated in the pathophysiology of human RLS 

(e.g., iron supplementation and dopamine agonists are both employed as effective therapies).

The BTBD9 story exemplifies the potential power of “reverse genetic analyses” in flies—the 

targeted characterization of loss-of-function phenotypes for genes initially implicated by 

other studies (i.e., in humans). The diversity of available reagents and methods for targeted 

gene knockdown makes this an attractive strategy for probing functions of genes implicated 

in disease. In at least some cases, such manipulations unexpectedly lead to phenotypes that 

recapitulate key features of disease, as in RLS. Moreover, the reduced genetic redundancy 

within Drosophila, that is the number of gene paralogs that can potentially functionally 

substitute for one another, often accelerates investigation of gene functions in this system. 

Therefore, a single genetic knockdown can frequently provide answers where more time-

consuming double- or triple-knockdown would be required in vertebrate models. Finally, a 

variety of experimental strategies are available to facilitate tissue-specific and/or conditional 

knockdown. Indeed, many genes with adult nervous system functions are expected to have 

earlier, developmental roles or to mediate similar essential functions in non-neuronal tissues. 

In such cases, fly experimental approaches enable the genetic analysis of nervous system 

phenotypes, including within the adult, aging animal, which is the most relevant context for 

many adult-onset, progressive neurologic disorders. Available strategies include classical 

approaches such as the generation of genetic mosaic tissues, consisting of labeled 

homozygous mutant cell clones—including in the brain (Lee and Luo, 2001)—in an 

otherwise heterozygous animal. Besides RNAi transgenic lines, newer strategies targeting 

GFP-tagged transcripts (Neumüller et al., 2012; Pastor-Pareja and Xu, 2011) or proteins 

(Caussinus et al., 2011) allow precise spatial and temporal control as well as reversible 

knockdown. Importantly, the Drosophila gene disruption project (Jaiswal et al., in press) will 

generate GFP-tagged stocks for thousands of genes in the coming years, including 

prioritization of human disease gene homologs.

Despite the ease and potential power of reverse genetic approaches, Drosophila has 

historically excelled at “forward genetic” investigations (St Johnston, 2002; Venken and 

Bellen, 2014)—the identification of genes based on unbiased screening for selected mutant 

phenotypes. Indeed, genetic screens in flies have generated innumerable insights with 

relevance to diverse neurologic disorders (Bellen et al., 2010; Lessing and Bonini, 2009). In 

the post-genomic era, there is great potential for forward genetics to even more directly 

inform the discovery and functional elucidation of genes responsible for human disease. For 

example, based on the results of a large-scale, chemical mutagenesis screen, Yamamoto et 
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al. (2014) recently reported on 165 essential genes with secondary requirements for neuronal 

development, function, and/or maintenance, many of which had never before been 

examined. Importantly, these genes were highly enriched for evolutionarily conserved loci, a 

third of which were previously linked to human disease in the Online Mendelian Inheritance 

in Man database (http://omim.org/). In order to determine if the screen may have also 

identified novel disease genes, the investigators teamed with the Baylor-Hopkins Centers for 

Mendelian Genomics, a large-scale effort to use next-generation sequencing technology to 

identify unsolved Mendelian genetic disorders (Bamshad et al., 2012). In an innovative 

cross-species analysis, the nervous system functional annotation of genes from the 

Drosophila screen were integrated with data from whole-exome sequencing in nearly 2,000 

human subjects. Remarkably, the results of this joint analysis helped define likely causal 

genes/variants in several families (Yamamoto et al., 2014). For example, three cases of bull’s 

eye maculopathy, a late-onset, progressive retinal disorder, were associated with dominant 

mutations in the human CRX gene, based in part on the complementary discovery that 

mutations in the fly CRX homolog, ocelliless, led to age-dependent disruptions in the 

electroretinogram. In another compelling case, loss-of-function of a previously 

uncharacterized fly gene, l(1)G0222 (dANKLE2), disrupted development of thoracic 

sensory bristles, and mutations in the human homolog, ANKLE2, were associated with a 

recessively-inherited microcephaly syndrome. Subsequent detailed phenotypic 

characterization further demonstrated that loss-of-dANKLE2 function leads to diminished 

neuroblast numbers and concomitantly decreased larval brain size. In prior related work 

(Bayat et al., 2012; Neely et al., 2010), Drosophila forward genetic screening identified 

mutant phenotypes (straightjacket and Aats-met) prompting follow-up human genetic 

studies that highlighted conserved roles of the homologous loci (MARS2 and CACNA2D3) 

in neuronal maintenance and nociception, respectively.

These studies highlight the urgent need for comprehensive and systematic functional 

annotation of evolutionary conserved genes for possible roles in the nervous system, perhaps 

using a combination of reverse and forward genetic strategies in Drosophila. With such a 

valuable community resource, any gene implicated from a human genomic study could be 

instantly cross-referenced in a convenient online database, such as FlyBase (St Pierre et al., 

2014). Such functional annotation might provide critical clues to support fine mapping of an 

associated locus from GWAS (From Susceptibility Locus to Causal Gene section) or to 

enhance confidence in a gene with potential loss-of-function variants from a family or 

population-based sequencing study (Confirming the Functional Impact of Genetic Variants 

section). But what phenotypes should such large-scale screening efforts focus on? One 

potential strategy is to generate flies with nervous system phenotypes that mimic human 

neurologic disorders. While reflexively satisfying, this approach is based on a potentially 

misguided assumption that most genes, including those highly conserved throughout 

evolution, will necessarily generate similar phenotypes when disrupted in flies as in humans. 

With this problem in mind, Marcotte and colleagues proposed the powerful concept of 

“phenologs,” or homologous phenotypes (McGary et al., 2010; Woods et al., 2013). Using 

bioinformatic approaches incorporating available model organism data, these investigators 

mapped human disease-associated orthologous gene sets with less obvious, homologous 

phenotypes in other species. For example, a statistically significant overlap was discovered 
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between genes causing breast and ovarian cancer in humans and the high incidence of male 

progeny in the nematode, Caenorhabditis elegans, among many other similar and striking 

comparisons. While this study did not consider Drosophila, an extension of this successful 

approach has the potential to redefine the nature of fly disease models in the future. Rather 

than emphasizing the particular clinical and pathologic manifestations characteristic of 

human disease, this provocative work teaches us to embrace the species-specific 

consequences emerging from dysfunction in conserved molecular modules. Besides 

providing a potential path to new “disease models,” the phenolog conceptual framework 

provides an attractive approach to implicate new disease genes. Specifically, once the 

phenolog for a given human disease is defined, one can mount screens for mutants causing 

similar phenotypes, thereby identifying additional genes that may participate in common 

functional pathways.

 4. From genes to pathways and networks

Many complex genetic disorders are believed to be polygenic, potentially arising from gene–

gene (and gene–environment) interactions among a large number of susceptibility loci. This 

model contrasts with the single-gene etiologies underlying many simple Mendelian 

disorders. Grouping genes into functional pathways and networks, and probing the logic of 

their interactions, is therefore a major goal for understanding the pathophysiology of many 

common neurologic diseases with complex genetic architectures (Chakravarti et al., 2013). 

A major advantage of Drosophila is the capability to efficiently map epistatic, additive, 

synergistic, or antagonistic interactions by examining the phenotypic consequences of 

multiple gene manipulations in combination. Such pairwise genetic interaction experiments 

facilitate the reconstruction of linear models for serial gene action. In one notable example 

relevant to autosomal recessive juvenile-onset parkinsonism, studies of fly genes 

homologous to human PARK2/parkin and PARK6/pink1 demonstrated that the encoded 

proteins function in a sequential regulatory pathway impinging on mitochondrial dynamics 

(Clark et al., 2006; Deng et al., 2008; Greene et al., 2003; Park et al., 2006; Poole et al., 

2008; Yufeng Yang et al., 2008). In more recent work also related to Parkinson’s disease, 

MacLeod et al. (2013) used flies to validate interactions between LRRK2 and the PARK16 
locus, initially suggested from analyses of large-scale human genomic and transcriptomic 

data sets. In Drosophila, the expression of the Parkinson’s disease-associated LRRK2G2019S 

mutant protein led to reduced survival and loss of dopaminergic neurons, and both 

phenotypes were suppressed by co-expression of a constitutively active form of RAB7L1 

protein, encoded by a candidate gene at the PARK16 locus identified in GWAS (Nalls et al., 

2014). Loss-of-function mutations in lightoid, the fly homologue of RAB7L1, also caused 

reduced dopaminergic neuron counts. Interestingly, additional experiments further suggested 

that the LRRK2-RAB7L1 pathway impinges on another Parkinson’s disease gene product, 

VPS35 (Vilariño-Güell et al., 2011; Zimprich et al., 2011), which regulates the sorting of 

lysosomal substrates. In flies, MacLeod et al. found that knockdown or overexpression of 

the VPS35 homolog reciprocally enhanced or suppressed mutant LRRK2-induced 

dopaminergic neuron toxicity, respectively. These elegant experiments integrate human 

genomic data and studies in Drosophila to interlink susceptibility genes from GWAS 
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(PARK16/RAB7L1) and sequencing studies (LRRK2, VPS35) into a unified functional 

pathway.

Despite the power of relatively simple pathway models for informing hypothesis-based 

investigation, such a conceptual framework may be ill-equipped to fully explain the 

pathophysiologic mechanisms underlying most complex genetic diseases, where widespread 

gene and allelic heterogeneity, incomplete penetrance, and polygenicity predominate 

(Chakravarti et al., 2013). The potential challenge is illustrated by a recent study focused on 

Hereditary Spastic Paraplegias (HSPs), a heterogeneous group of disorders characterized in 

part by corticospinal tract dysfunction and progressive lower limb weakness. Although 

mutations in greater than 20 distinct genes have been implicated to cause HSP, the majority 

of cases remain unexplained. Novarino et al. (2014) performed whole-exome sequencing on 

more than 90 individuals from 60 families with autosomal recessive HSP, identifying 

candidate mutations in 15 new genes. For confirmation, many of the genes were replicated in 

an independent HSP cohort, and functional validation of several other loci was pursued 

using zebrafish models. The investigators then developed a protein interaction network based 

on all previously established and newly identified HSP genes (Fig. 2). This “interactome” 

model identifies several highly conserved subnetworks in HSP pathogenesis, including 

proteins involved in endoplasmic reticulum biology, endosomal/membrane trafficking, and 

purine metabolism. Similar large-scale sequencing projects are now in progress for many 

other neurologic disorders, including Alzheimer’s disease, Parkinson’s disease, and 

epilepsies, among others. Due to the large number of new candidate genes likely to arise 

from these studies, there is a pressing need for new experimental strategies to test the 

predictions emerging from the resulting disease networks. Even more intricate models are on 

the horizon, as systems biology approaches (Civelek and Lusis, 2014) are applied toward 

integration of large-scale genomic data sets with complementary transcriptomic, proteomic, 

metabolomic, and epigenomic surveys conducted in neurologic patients. Unlike genomic 

variation, changes in other “-omic” data (e.g., the transcriptome) can be either a proximate 

cause of disease or a more distal, secondary effect (e.g., a biomarker). Fly models may be 

useful for pinpointing network features representing primary causes and decoding whether 

observed changes are pathogenic or rather compensatory, and potentially protective.

Currently prevailing approaches in flies and most other experimental systems predominantly 

investigate the consequences of isolated gene manipulations, ignoring the likelihood that 

majority of genetic variants probably act in combinations. In budding yeast, for example, a 

systematic study of more than 5 million pairwise interactions among ~1,700 genes identified 

~170,000 interactions affecting cellular fitness (Costanzo et al., 2010). This study highlights 

the pervasive role that genetic interactions play in the heritability and expressivity of 

complex phenotypes. While many of the Drosophila experimental methodologies introduced 

earlier may be adaptable for probing gene–gene interactions, further innovations will also be 

needed to enable similar genome-wide combinatorial analyses that are currently feasible 

only in yeast or cell-based models. Even experimental strategies for pairwise testing of gene 

interactions within implicated functional pathways constitute an oversimplification. The 

phenotypic consequences of many genetic variants are probably influenced by higher-order 

interactions within large-scale disease regulatory networks comprising the “genetic 

background.” One innovative approach that may lead to advances in functional dissection of 
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large-scale gene and protein interaction networks comes from studies of the “Drosophila 
Genetic Reference Panel” (DGRP) (Huang et al., 2012; Mackay et al., 2012). This 

remarkable resource includes 205 distinct inbred Drosophila strains that have been 

comprehensively sequenced to generate a reference map of naturally occurring genomic 

variation. There is already evidence to support a shared genomic architecture between flies 

and humans for selected phenotypes; for example, an analysis of fly sleep using the DGRP 

identified gene candidates homologous to loci implicated in human sleep disorders 

(Harbison et al., 2013). In the future, it is possible that similar population genetic 

experimental approaches might elucidate large-scale genomic regulatory networks with 

pleiotropic effects on nervous system traits and potentially conserved roles from flies to 

humans.

 5. Conclusions

In sum, there is tremendous potential for Drosophila experimentation to confront challenges 

in the post-genomic era. However, no single experimental model species is likely to provide 

the complete solution. Indeed, there are some dimensions to neurologic disease, where 

cross-species genomic and biologic conservation is more limited. For example, besides 

autoimmune disorders, such as multiple sclerosis, there is now increasing evidence that 

immune and inflammatory mechanisms play important roles in primary neurodegenerative 

conditions, including Alzheimer’s and Parkinson’s disease. Because Drosophila lack 

adaptive immunity, modeling T- or B-cell related processes is not possible. However, flies do 

possess an innate immune system with rich conservation of many immune-related signaling 

systems, including the Toll-NFkB pathway that was originally elucidated in flies (Lemaitre, 

2004). Moreover, recent studies of fly brain glial subpopulations have defined a type of 

ensheathing glia that can mediate phagocytic responses to neuronal injury similar to 

mammalian microglia (Doherty et al., 2009). Another potential limitation of fly models 

relate to diseases or selected disease manifestations that arise from brain network properties 

that are found only in higher vertebrates. For example, many of the defining features of 

movement disorders, including basal ganglionic (tremor, dyskinesia) or cerebellar (ataxia) 

dysfunction, relate to emergent properties of neural circuits that are simply not present in 

flies. In fact, many neurologic and neuropsychiatric disorders remain “functional disorders,” 

in which the neuroanatomic and pathologic substrates remain poorly defined. Examples 

include dystonia, essential tremor, autism spectrum disorders, major depression, and 

schizophrenia. As discussed earlier however, many of the implicated genes and functional 

pathways underlying such conditions may in fact be evolutionary conserved; therefore 

mapping the corresponding homologous loss-of-function phenotypes in flies may be a 

successful strategy for probing relevant mechanisms [see earlier discussion of “phenologs” 

(McGary et al., 2010; Woods et al., 2013)].

Given the scope of the challenges outlined above, a successful functional genomics strategy 

with broad applicability to diverse neurologic disorders will likely require contributions 

from numerous complementary experimental models. For first-pass screening of large lists 

of candidate genes/variants, truly high-throughput approaches, including in silico, in vitro, 

or cell-based genetic systems (e.g., yeast, iPS cells, etc.), are attractive. Importantly, while 

human iPS cell strategies show remarkable promise for disease modeling, many critical 
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aspects of neurologic disorders, including properties of neural networks, interactions 

between neurons and glia, systemic influences on nervous system function (e.g., from the 

endocrine or cardiovascular system), as well as the essential role of aging, may be difficult if 

not impossible to recapitulate in cell-based systems. Thus, Drosophila along with the 

nematode, C. elegans, and zebrafish offer an intermediate platform, bridging in vitro and ex 
vivo systems to more time-intensive mammalian genetic models, such as mouse, rat, or 

primates. Ultimately, the confirmation and functional elucidation of genes and genomic 

variants responsible for neurologic disease, including dissection of the gene–gene interaction 

networks, will require unprecedented cooperation among investigators with varied skills, 

including neurologists, computational/systems biologists, and both human and model 

organism geneticists, among others. Many of the cross-disciplinary studies discussed above 

point to examples for how such collaborations can be leveraged effectively. In recent years, 

large human genomics consortia have formed to successfully pursue gene discovery in 

neurology, and it stands to reason that such organizations might naturally evolve next to 

grapple with the urgently needed functional investigations. Funders, including the NIH, will 

likely also serve an important organizing and enabling role. Compared with the deep 

investment in technology and resources for gene discovery, the field still needs to be 

effectively mobilized for the essential subsequent translational research. Reason for hope 

comes from the Undiagnosed Disease Network (http://commonfund.nih.gov/Diseases/), 

which began as an NIH intramural initiative to help patients with unknown diseases, and was 

recently expanded to include partnerships among several academic medical centers. This 

effort draws together diverse clinical and genomics expertise, given the expectation that 

many rare/undiagnosed conditions will have genetic underpinnings. Importantly, a model 

organism screening component for functional follow-up studies was also recently 

announced, including a pivotal role for flies. Similar national and worldwide efforts, 

including deep engagement of the Drosophila research community, will likely be needed to 

sustain the current momentum in our progress toward understanding the mechanisms 

responsible for neurologic disorders in the post-genomic era.
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Fig. 1. 
Multiple gene candidates implicated at an Alzheimer’s disease susceptibility locus. Regional 

association plot is shown from the GWAS discovery phase, with −log(P-value) for each SNP 

plotted on the left (Lambert et al., 2013). Following joining with replication phase data (not 

shown), the rs10838725 SNP exhibited genome-wide significant evidence of association 

with disease susceptibility; however, numerous genes fall under the association peak, based 

on regional linkage-disequilibrium (measured in r2). Independently, functional screening in 

Drosophila highlighted CELF1 as a potential causal gene for this locus (Shulman et al., 

2014). Figure adapted by permission from Macmillan Publishers Ltd: Lambert et al. Nature 
Genetics 45(12):1452–1458 (2013), copyright 2013.
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Fig. 2. 
A hereditary spastic paraplegia (HSP) protein interaction network. In combination with 

proteins previously known to harbor mutations in HSP (blue), newly discovered gene 

candidates from whole-exome sequencing (red) populate a complex network of protein 

interactions with evidence of significant connectivity. From Novarino et al. Science 346 

(6170): 506–511. Reprinted with permission from AAAS.
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