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Abstract

 Purpose of review—Highlight recent discoveries about Notch activation and its oncogenic 

functions in lymphoid malignancies, and discuss the therapeutic potential of Notch inhibition.

 Recent findings—NOTCH mutations arise in a broad spectrum of lymphoid malignancies 

and are increasingly scrutinized as putative therapeutic targets. In T cell acute lymphoblastic 

leukemia (T-ALL), NOTCH1 mutations affect the extracellular negative regulatory region and lead 

to constitutive Notch activation, although mutated receptors remain sensitive to Notch ligands. 

Other NOTCH1 mutations in T-ALL and NOTCH1/2 mutations in multiple B cell malignancies 

truncate the C-terminal PEST domain, leading to decreased Notch degradation after ligand-

mediated activation. Thus, targeting Notch ligand-receptor interactions could provide therapeutic 

benefits. In addition, we discuss recent reports on clinical testing of Notch inhibitors in T-ALL that 

influenced contemporary thinking on the challenges of targeting Notch in cancer. We review 

advances in the laboratory to address these challenges in regards to drug targets, the Notch-driven 

metabolome, and the sophisticated protein-protein interactions at Notch-dependent super-

enhancers that underlie oncogenic Notch functions.

 Summary—Notch signaling is a recurrent oncogenic pathway in multiple T and B cell 

lymphoproliferative disorders. Understanding the complexity and consequences of Notch 

activation is critical to define optimal therapeutic strategies targeting the Notch pathway.
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 Introduction

Notch signaling is a highly conserved signaling pathway with multiple roles in development, 

tissue homeostasis and disease [1,2]. Notch can act as an oncogene or as a tumor suppressor 

in different cancers [3]. In lymphoproliferative disorders, data available to date identify 

Notch as a recurrent oncogene. In fact, human NOTCH was first recognized based on 

chromosomal translocations generating a constitutively active NOTCH1 allele in T cell acute 

lymphoblastic leukemia (T-ALL) [3]. These rare translocations were the tip of the iceberg, 

as frequent activating NOTCH1 mutations were subsequently discovered in T-ALL [4]. 

Recently, multiple reports described recurrent although less prevalent gain-of-function 

NOTCH1 and NOTCH2 mutations in B cell malignancies, including chronic lymphocytic 

leukemia (CLL), splenic marginal zone lymphoma (SMZL), mantle cell lymphoma (MCL), 

diffuse large B cell lymphoma (DLBCL) and rarely follicular lymphomas (FL) [5–22]. Non-

mutational mechanisms of Notch activation may also exist [23,24]. Thus, the overall number 

of patients with lymphoid malignancies driven by oncogenic Notch signals is high, in sharp 

contrast with the initial description of infrequent NOTCH1 translocations in a rare disease 

(T-ALL).

Here, we discuss recent insights into the pathogenesis of oncogenic Notch signaling in T and 

B cell lymphoproliferative disorders. First, we review the mechanisms of Notch activation 

by different classes of NOTCH1/2 mutations, highlighting how these mutations remain 

sensitive to microenvironmental inputs (Figure 1–2). Second, we survey recent efforts to 

unravel downstream mechanisms of Notch action in T-ALL and other lymphoid 

malignancies (Figure 3). These considerations identify challenges and opportunities to 

develop safe and effective strategies of therapeutic Notch inhibition, as well as important 

areas of future investigation.

 Notch signaling pathway

Biochemical aspects of Notch signaling have been reviewed [1]. Notch signaling is a cell-to-

cell communication pathway driven by Notch ligand-receptor interactions. Mammals 

express four Notch receptors (Notch1–4) and five ligands of the Jagged (Jagged1/2) and 

Delta-like families (Dll1/3/4). Notch receptors are expressed as heterodimers after “S1” 

cleavage during transit to the cell surface. Ligand-receptor interaction generates a physical 

force exposing a proximal region of the Notch extracellular domain for cleavage by a 

disintegrin and metalloprotease (ADAM10). ADAM10-mediated “S2” proteolysis is 

followed by “S3” cleavage within the transmembrane domain by γ-secretase, releasing 

intracellular Notch (ICN). ICN migrates into the nucleus where it interacts with the 

transcription factor RBPJ (also known as RBP-Jk or CSL) and a Mastermind-like family 

(MAML) transcriptional co-activator. The ICN-RBPJ-MAML complex activates target gene 

transcription in cooperation with other transcription factors and epigenetic regulators. ICN 

normally has a short half-life due to rapid proteasomal degradation regulated by the C-

terminal ICN PEST domain and other mechanisms.
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 Oncogenic Notch signaling in T-ALL

Oncogenic Notch activation in T-ALL was first reported to result from rare t(7:9) 

translocations driving expression of intracellular NOTCH under the control of TCRB 
regulatory sequences. Experimental models then demonstrated the transforming potential of 

ICN overexpression in hematopoietic progenitors. In 2004, the Aster and Look laboratories 

described recurrent NOTCH1 mutations in the majority of human T-ALL, indicating that 

NOTCH1 is the most frequent oncogene across all T-ALL subtypes [4]. Other large studies 

confirmed these findings [25–30]. FBXW7 mutations were subsequently discovered to result 

in decreased degradation of ICN and other oncogenic proteins in T-ALL [31,32]. Altogether, 

NOTCH1 and FBXW7 mutations were detected in up to 70–80% of patients. In the absence 

of RAS and PTEN mutations, they are associated with a favorable prognosis and could 

prove useful as a new molecular prognostication system [26].

NOTCH1 mutations cluster in two areas that dysregulate pathway activation through distinct 

mechanisms (Figure 1). A first class of missense mutations targets the extracellular negative 

regulatory region (NRR) containing the heterodimerization (HD) domain and capped by 

Lin12/Notch repeats (LNR). In the absence of ligand-receptor binding, the NRR buries the 

S2 cleavage site within a hydrophobic pocket that prevents ADAM10-mediated cleavage and 

receptor activation [33,34]. The majority of HD mutations affect the NRR hydrophobic core 

or the HD/LNR interface, leading to receptor destabilization and proteolytic activation even 

without ligand. Yet, mutated NOTCH receptors remain sensitive to ligand-mediated 

activation, suggesting that their net in vivo activity cumulates ligand-independent and 

ligand-dependent activation (Figure 2) [34]. The second class of NOTCH1 mutations 

truncates the C-terminal PEST domain via non-sense or frameshift events that introduce 

premature STOP codons (Figure 1–2). PEST truncations and FBXW7 mutations impair ICN 

proteasomal degradation, increasing its half-life in malignant cells. In some patients, PEST 

and HD mutations occur in cis, suggesting cooperativity [4].

 Oncogenic Notch signaling in CLL and other B cell lymphoproliferative disorders

Gain-of-function NOTCH1/2 mutations were first reported in case series of B cell 

lymphoproliferative disorders [9,14,19,20], and then in large cohorts [5–8,10–13,15–18,21] 

(Figure 1). In CLL, NOTCH1 mutations are found in ~10% of patients and are associated 

with advanced disease, including Richter’s transformation, and with the presence of trisomy 

12. Although case series reported an association with worse prognosis, this may not be 

independent of other prognostic factors. Besides NOTCH1/2 PEST domain truncations, 

recurrent non-coding mutations in the NOTCH1 3′UTR were recently reported in another 

~2% of CLL patients [22]. These mutations introduce of a new splice acceptor site in the 

3′UTR, triggering the excision of PEST-coding sequences from the mRNA and effectively 

truncating the PEST domain. In SMZL, NOTCH2 but not NOTCH1 mutations were reported 

in 20–25% of cases. In MCL, DLBCL and FL, NOTCH1/2 mutations have also been 

described, although more limited data are available about their prevalence and significance.

In contrast to T-ALL, gain-of-function NOTCH1 and NOTCH2 mutations in B cell 

lymphomas nearly exclusively target the PEST domain and not the NRR. Thus, Notch 

pathway activation in these disorders is predicted to rely on ligand-mediated activation more 
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stringently than in T-ALL (Figure 2). To date, the Notch ligands inducing Notch activation 

in B cell lymphomas remain unknown. Candidate cellular sources include other 

hematopoietic cells; endothelial cells, which are capable of inducing Notch signaling in B 

lymphoma cells [24]; and DLL1/4-expressing fibroblastic cells in secondary lymphoid 

organs [35]. Aster and colleagues developed an immunohistochemical assay to detect 

cleaved ICN1 and presented several examples of lymphoproliferative disorders in which 

active ICN1 was abundant in lymph nodes, but lost abruptly in areas where the tumor 

extended across the lymph node capsule [23]. These data suggest the presence of 

functionally important Notch ligands within the lymph node environment, a potential 

therapeutic target. Moreover, the fraction of lymphomas with detectable ICN1 was much 

higher than predicted from the prevalence of NOTCH1 mutations, and some lymphomas 

with no reported mutations (e.g. angioimmunoblastic T cell lymphomas) had abundant ICN1 

in a high fraction of tumors [23]. Thus, Notch signaling mediated by Notch ligand-receptor 

interactions may have pathogenic significance in a broad range of lymphomas.

Limited information is available so far about crosstalk of active Notch signaling and other 

oncogenic pathways in B cell lymphomas. In CLL, NOTCH1 mutations might be associated 

with the expression of specific B cell receptor (BCR) subsets [17]. Preclinical data in normal 

B cells indicate that Notch and BCR signaling can cooperate [36]. Thus, Notch might 

cooperate with BCR signaling or other microenvironmental inputs in B cell lymphomas. 

Future studies could identify promising combinations of Notch inhibitors with agents that 

target downstream BCR signals, such as ibrutinib or idelalisib.

In contrast to its oncogenic role in T-ALL and B cell lymphoproliferative disorders involving 

mature B cell subsets, Notch signaling was reported to inhibit the growth of precursor B-

ALL, where Notch pathway genes tend to be epigenetically silenced [37]. Notch can also act 

as a growth suppressor in other hematopoietic lineages, such as the myeloid lineage [38–40]. 

Whether these context-specific suppressive effects happen in other hematological 

malignancies remains to be determined, but they highlight the versatile effects of Notch 

signaling in different cancer types [3].

 Downstream mediators of the Notch signaling pathway

To date, transcriptional targets of Notch signaling have been studied in T-ALL but not 

systematically in other lymphoproliferative disorders. Active Notch binds thousands of 

genomic loci, only a fraction of which appears dynamically regulated [41,42]. In T-ALL, 

several direct NOTCH1 target genes have been shown to induce and/or maintain disease, 

such as MYC, HES1, TRIB2, IL7R, HES1, CCND3, and IGF1R (reviewed in [43]). Many 

of these genes enhance PI3K/AKT/mTOR signaling. Notch-regulated long non-coding 

RNAs such as LUNAR1 have recently been implicated [44,45]. Understanding the most 

critical target genes for oncogenesis has gained widespread attention given the “on-target” 

toxicities and drug resistance seen in early clinical trials of pan-NOTCH inhibitors (γ-

secretase inhibitors or GSIs). The hope is to inhibit important Notch target genes that will 

eliminate malignant cells, but spare normal tissues from the toxicities of pan-Notch 

inhibition. For example, Hes1 inactivation in mouse T-ALL models induces tumor 

regression [46,47]. Schnell et al. identified perhexiline as a drug that phenocopies gene 
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expression changes induced by Hes1 inactivation [47]. Perhexiline had antileukemic effects 

on human T-ALL samples and in a mouse model of Notch-induced T-ALL. Perhexiline, 

which inhibits mitochondrial carnitine palmitoyltransferase-1, is being used in some 

countries for cardiac indications. It is encouraging that this drug appears effective and better 

tolerated than GSIs.

 Transcriptional regulation of oncogenic Notch target genes

Notch regulates different target genes in distinct cell types through complex interactions 

with multiple regulators (reviewed in [48] and [49]), predicting the existence of lineage-

specific response elements. Two groups identified a T-lineage specific Notch-dependent 

MYC enhancer (NDME) ~1.4 Mb downstream of MYC [50,51]. MYC is an important 

NOTCH target as it controls leukemia-initiating cell activity [52,53], leukemia initiation and 

maintenance [52,54,55], and can replace Notch1 signals [56] (Chiang M, Pear W, 

unpublished). Genetic deletion of the NDME in mice [50] or CRISPR/Cas9-mediated 

excision of the NDME in human T-ALL [57] blocks MYC transcription and leukemia 

growth. However, in practice, targeting Notch response elements like NDME without pan-

Notch inhibition is challenging. One option is to inhibit epigenetic modifiers at Notch 

response elements, such as BRD4 [51–54]. An alternative strategy is to inhibit protein-

protein interactions that build the superenhancer complex at oncogenic Notch target genes. 

We analyzed publically available ChIP-Seq datasets in human T-ALL [41,58,59] and found 

several transcription factor peaks close to the NMDE’s RBPJ peak, such as ETS1, RUNX1, 

HEB, E2A, GABPA, and TAL1 (Chiang, unpublished). HEB and RUNX1 might interact 

with ICN1 [60]. We recently showed that the PIAS-like coactivator Zmiz1 binds ICN1/RBPJ 

through a tetratricopeptide repeat (TPR) domain, which enhances NDME functions perhaps 

by connecting ICN1 to other transcription factors [61,62] (Figure 3). Zmiz1 inactivation 

induced regression of Notch-dependent mouse T-ALL without toxicities associated with 

pan-Notch inhibition [61]. Thus, an intriguing possibility is that targeting ICN1 interactions 

with adjacent transcription factors could strip Notch of its oncogenic functions.

While some protein-protein interactions in chromatin strengthen Notch signals, others 

weaken them. Cyclin C/CDK inhibits ICN1 activity by phosphorylating ICN1, resulting in 

ubiquitination and proteosomal degradation via FBXW7 [63]. In ChIP-Seq studies, IKZF1 

bound close to ~60% of ICN1/RBPJ sites (including the NDME), suppressing Notch target 

gene expression [64]. Interestingly, IKZF1 is known to displace ICN1/RBPJ from DNA by 

competing for shared motifs [65], but more frequently IKZF1 binds next to RBPJ, which 

may interfere with ICN1 function through protein-protein interactions [64]. The low 

frequency of inactivating IKZF1 mutations (<5%) in human T-ALL argues against Ikaros 

having broad functional significance [66]. However, a recent report shows that ICN1 

represses IKZF1 expression in human T-ALL and that restoring Ikaros levels induces tumor 

regression [67]. In human B-ALL, Casein Kinase II (CK2) deactivates IKZF1 [68]. Thus, it 

is intriguing to consider whether CK2 inhibitors might restore IKZF1 function in T-ALL.
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 Therapeutic targeting of the NOTCH signaling pathway

Several strategies to block NOTCH signals are predicted to be effective in most NOTCH-

dependent cancers, such as NRR-specific antibodies that block NOTCH cleavage, ADAM 

protease inhibitors, γ-secretase inhibitors (GSI), and MAML-like peptides that disrupt the 

NOTCH transcriptional complex (reviewed in [43,69]). In contrast, antibodies that block 

specific NOTCH ligand/receptor interactions are predicted to be more effective in cancers 

driven by Notch ligands, such as CLL, than cancers that are less ligand-dependent, such as 

T-ALL. The anti-NOTCH1 antibody OMP-52M51 is currently being tested in CLL and 

other lymphoid malignancies (NCT01703572). Targeting Notch ligands in CLL and other B 

cell lymphoproliferative disorders is another attractive approach, although the nature and 

source of individual Notch ligands in these diseases remain unknown.

As NOTCH was implicated in a growing list of cancers over the past decade, there was 

increasing excitement that NOTCH inhibitors would be effective anti-cancer treatments. 

However, initial enthusiasm was tempered by clinical reports of on-target toxicities from 

pan-NOTCH inhibition and low response rates. More than a dozen clinical trials tested 

earlier generation GSIs (MK-0752 and R04929097) in patients with mostly solid cancers 

(reviewed in [69]). Responses were seen in <5% of patients. These initial studies were 

hampered by dose-limiting GI toxicity, which was attributed to on-target effects of pan-

Notch inhibition on the intestinal epithelium. The first clinical trial testing MK-0752 in 

relapsed/refractory T-ALL was halted due to excessive diarrhea [70], although 1/7 patient 

had a partial response. Intermittent dosing is more tolerable, but cannot achieve continuous 

Notch suppression [71]. In a phase I trial with a newer generation GSI, PF-03084014, 1/8 

relapsed/refractory T-ALL patient achieved a complete remission [72]. In a preliminary 

report of a phase I trial (NCT01363817), 25 relapsed/refractory pediatric T-ALL patients 

were injected weekly with the GSI BMS-906024 with/without dexamethasone at the 

physician’s discretion [73]. The response rate was encouraging at 32%, perhaps reflecting 

synergy between GSI and steroids [74]. One patient with ETP-ALL achieved complete 

remission, received a bone marrow transplant, and has been relapse-free for >19 months 

[75].

In contrast to other GSIs, PF-03084014 and BMS-906024 were associated with only mild 

diarrhea [73,76]. Interestingly, NOTCH1 mutation status did not predict response. Thus, it is 

possible that T-ALLs with wildtype NOTCH1 receptors benefit from anti-NOTCH therapy. 

This might suggest a role for ligands in triggering oncogenic Notch signals. However, 

preclinical studies using patient-derived xenografts lack consensus [77–79]. There has been 

debate about the reasons for the low response rate of T-ALL to GSI so far. This low response 

rate might reflect technical inability to fully suppress Notch signals because of on-target 

toxicities. On the other hand, the low response rate might reflect resistance of relapsed/

refractory disease.

 Resistance to anti-NOTCH agents

Prior therapy may directly result in resistance to NOTCH inhibitors seen in the relapsed/

refractory setting. For example, PI3K/MAPK inhibitors can select for resistant, Notch-
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independent tumors [80]. However, resistance may occur de novo as well, given short, 

transient responses to upfront intermittent GSI in T-ALL models [81,82]. Several resistance 

mechanisms are possible (reviewed in [43]). These mechanisms are frequently driven by 

oncogenic pathways that crosstalk with Notch signals, such as PI3K/mTOR (promoted by 

PTEN loss [83,84]) and MYC (promoted by FBWX7 loss [31,32], BRD4 [51,54] and 

ZMIZ1 [61,85]). A recent comprehensive investigation in Notch-induced mouse T-ALL 

revealed that GSI downregulated glycolysis and glutaminolysis, likely due to broad 

transcriptional effects on anabolic and catabolic genes [84]. Pten inactivation reversed these 

changes and promoted GSI resistance in vivo. However, effects were incomplete [84,86], 

suggesting that multiple pathways operate to promote GSI resistance. Thus, one may need to 

look beyond GSIs and single sensitizing agents (e.g. PI3K/mTOR [80] or BET inhibitors 

[54]) and towards combining GSIs with multiple sensitizing agents or other drugs like 

phenothiazines, which can simultaneously inhibit multiple downstream pathways [87].

 Conclusions

Notch pathway activation is emerging as a potential therapeutic target in an expanding range 

of T and B cell lymphoproliferative disorders. Mutational and non-mutational mechanisms 

of Notch activation have been described, including mechanisms that rely on ligand-mediated 

activation. To guide the development of safe and effective therapeutic strategies targeting the 

Notch pathway, future research should identify Notch ligands and receptors that drive the 

growth of lymphoid malignancies, evaluate the transcriptional effects of Notch signaling and 

explore Notch’s crosstalk with other pathways in individual tumor types.
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Key bulleted points

- The Notch pathway has oncogenic effects in multiple T cell and B cell 

lymphoproliferative disorders.

- In T cell acute lymphoblastic leukemia, a first class of mutated Notch1 

receptors targeting the extracellular heterodimerization domain increase 

Notch signaling intensity through constitutive ligand-independent 

activation, although the mutated receptors also remain sensitive to ligand-

mediated activation.

- In T cell acute lymphoblastic leukemia and multiple B cell malignancies, a 

second class of mutated Notch1/2 receptors increase the half-life of cleaved 

intracellular Notch only upon ligand-mediated pathway activation.

- At key oncogenic targets such as MYC, intracellular Notch nucleates a 

transcriptional activation complex at superenhancer sites in cooperation 

with other transcription factors and with the PIAS1-like coactivator Zmiz1.

- Understanding the mechanisms of enhanced Notch activity and the 

downstream consequences of Notch signaling identifies therapeutic 

challenges and opportunities in T and B cell lymphoproliferative disorders.
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Figure 1. Structure of Notch1/2 receptors depicting domain organization and key mutation sites 
observed in lymphoid malignancies
A. Wild-type Notch1/2 receptors depicting extracellular Notch (ECN) and intracellular 

Notch (ICN) domains. EGF11/12 repeats (red) are important for ligand binding. Sites of 

proteolytic cleavage are indicated as S1 (furin-like protease), S2 (ADAM10 metalloprotease) 

and S3 (γ-secretase complex). EGF, epidermal growth factor like domain; LNR, Lin12/

Notch repeats; HD, heterodimerization domain; N, N-terminal portion of HD; C, C-terminal 

portion of HD; NRR, negative regulatory region; RAM, RBPJ-associated molecule domain; 

NLS, nuclear localization signal; ANK, ankyrin repeats; TAD, transactivation domain; 

PEST, proline (P), glutamic acid (E), serine (S) and threonine (T)-rich sequence.

B. Mutated Notch1 and Notch2 receptors with corresponding disease associations. Lightly 

colored areas over HD and PEST domains represent key mutation sites. PEST mutations 

typically truncate the PEST domain. The most frequent disease associations of individual 

mutations are shown as follows: T-ALL, T cell acute lymphoblastic leukemia; CLL, chronic 

lymphocytic leukemia; MCL, mantle cell lymphoma; FL, follicular lymphoma; SMZL, 

splenic marginal zone lymphoma; DLBCL, diffuse large B cell lymphoma.
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Figure 2. Mechanisms of Notch pathway activation in lymphoid malignancies
A. Notch1 heterodimerization domain mutations in T-ALL. HD mutations destabilize the 

receptor and lead to constitutive ligand-independent proteolytic activation (right). HD-

mutated Notch1 receptors also remain sensitive to ligand-mediated activation (left). Both 

ligand-independent and ligand-dependent inputs can contribute to Notch signaling in 

malignant T cells.

B. Notch1/2 PEST domain mutations in T-ALL and B cell lymphoproliferative disorders. 

PEST mutations truncate the PEST domain, leading to decreased proteasomal degradation 

and increased half-life of cleaved ICN1/2. Notch signaling through PEST-mutated receptors 

requires ligand-dependent activation. The most frequent disease associations are shown as 

follows: T-ALL, T cell acute lymphoblastic leukemia; CLL, chronic lymphocytic leukemia; 

MCL, mantle cell lymphoma; FL, follicular lymphoma; SMZL, splenic marginal zone 

lymphoma; DLBCL, diffuse large B cell lymphoma.
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Figure 3. Emerging insights into transcriptional regulation of Notch target genes
Cleaved ICN translocates to the nucleus and interacts with the DNA-binding transcription 

factor RBPJ, a member of the Mastermind-like (MAML) family and other transcriptional 

coactivators (CoA). In T-ALL and possibly in other contexts, activation of key target genes 

such as MYC involves long-range interactions between the basal promoter and a distant 

superenhancer. Additional transcription factors (TF) such as ETS1, RUNX1, HEB, E2A, 

GABPA, and TAL1 converge with ICN to superenhancer sites. The PIAS-like coactivator 

ZMIZ1 binds ICN1/RBPJ and facilitates the recruitment of ICN to the MYC superenhancer 

in cancer cells.
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