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Abstract

The purpose of this pilot study was to provide a new approach for capturing and analyzing 

wheelchair maneuvering data, which are critical for evaluating wheelchair users’ activity levels. 

We proposed a mobile-cloud (MC) system, which incorporated the emerging mobile and cloud 

computing technologies. The MC system employed smartphone sensors to collect wheelchair 

maneuvering data and transmit them to the cloud for storage and analysis. A K-Nearest-Neighbor 

(KNN) machine-learning algorithm was developed to mitigate the impact of sensor noise and 

recognize wheelchair maneuvering patterns. We conducted 30 trials in an indoor setting, where 

each trial contained 10 bouts (i.e., periods of continuous wheelchair movement). We also verified 

our approach in a different building. Different from existing approaches that require sensors to be 

attached to wheelchairs’ wheels, we placed the smartphone into a smartphone holder attached to 

the wheelchair. Experimental results illustrate that our approach correctly identified all 300 bouts. 

Compared to existing approaches, our approach was easier to use while achieving similar accuracy 

in analyzing the accumulated movement time and maximum period of continuous movement (p > 

0.8). Overall, the MC system provided a feasible way to ease the data collection process, and 

generated accurate analysis results for evaluating activity levels.
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 1. Introduction

Wheelchair maneuvering data are fundamental for studying wheelchair users’ activity level 

(Tolerico et al., 2007), which is an important indicator of their quality of life and health 

status (Harris et al., 2010; Sonenblum et al., 2008). In addition, the characteristics obtained 

from wheelchair maneuvering data are critical for studying safety concerns, as wheelchair-

related accidents can occur and some may lead to serious injuries (McClure et al., 2009; H. 

Wang et al., 2009).

One major research direction in capturing and analyzing wheelchair maneuvering data is to 

simplify the installation of data loggers and improve the efficiency of data collection. For 

example, in order to measure wheelchair maneuvering activities, a conventional approach is 

to attach magnets to the wheels and mount a reed switch to the wheelchair frame to record 

the number of times the magnets passing the reed switch (Cooper et al., 2002). Recently, the 

inertial sensors, such as accelerometers or gyroscopes, have been used to collect wheelchair 

maneuvering data (Coulter et al., 2011; Hiremath et al., 2013; Sonenblum et al., 2012). The 

use of inertial sensors simplifies the installation as it eliminates the need of mounting 

multiple magnets and reed switches to the wheelchair.

Although existing research has achieved great advancement, there are areas for 

improvement. For example, existing approaches require placing data loggers on the wheels 

of a wheelchair to collect wheelchair maneuvering data (Cooper et al., 2002; Cooper et al., 

2008; Coulter et al., 2011; Harris et al., 2010; Hiremath et al., 2013; Sonenblum et al., 2012; 

Sonenblum et al., 2008; Tolerico et al., 2007). Since it is impractical to request wheelchair 

users to install the data loggers to the wheel, research personnel are needed to set up the 

experiments. The cost associated with research personnel and transportation (between the 

research lab and participants’ homes) can be high. In addition, commercial inertial sensors 

may not fit in the wheels of pediatric wheelchairs due to the limited space of the wheels. 

Furthermore, except for Hiremath et al. (Hiremath et al., 2013), who reported using a 

gyroscope that could communicate with a smartphone through Bluetooth for data collection, 

the majority of the data loggers do not support real-time data transmission, making it 

difficult to provide timely feedbacks on wheelchair maneuvering characteristics (Hiremath et 

al., 2013).

To enrich existing research and address the aforementioned challenges, we propose a mobile 

and cloud computing-based (MC) system to capture, transmit, store, and analyze wheelchair 

maneuvering data. Specifically, the MC system has a mobile computing-based subsystem 

that employs smartphones to capture and transmit wheelchair maneuvering data, utilizing 

their ubiquitous nature, ever-increasing processing power, and rich set of sensors, such as 

accelerometers and gyroscopes. On the other hand, the MC system has a cloud computing-

based subsystem that processes, stores, and analyzes wheelchair maneuvering data. This 

subsystem employs the cutting-edge cloud computing paradigm. The combination of mobile 

and cloud computing yields a distributed and integrated system, in which the mobile 

subsystem controls the sensors, collects wheelchair maneuvering data, and transmits it to the 

cloud, while the cloud subsystem handles the subsequent data management and analysis.
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A main challenge associated with the MC system is that sensors in a smartphone are very 

sensitive to noise. We combined two approaches to mitigate the effect of noise on the 

collected wheelchair maneuvering data. First, we improved an existing noise reduction 

algorithm to preprocess noisy sensor data. Then, we analyzed the preprocessed data by 

employing a machine-learning algorithm, which could tolerate noise by recognizing the 

patterns of wheelchair maneuvers.

We performed experiments of the MC system using a power wheelchair in indoor settings. 

As a baseline, we also attached an ActiGraph GT3X accelerometer (ActiGraph, 2011) to 

each side of the wheels of the wheelchair. Hence, we could compare the analysis results 

obtained from our MC system and from the approach of existing research (Coulter et al., 

2011; Sonenblum et al., 2012), which used data loggers attached to the wheels of the 

wheelchairs. Particularly, we analyzed the accumulated movement time, maximum period of 

continuous movement, and number of bouts (i.e., periods of continuous wheelchair 

movement) (Sonenblum et al., 2008), which are critical measures for evaluating a 

wheelchair user’s activity level (Cooper et al., 2008; Harris et al., 2010; Sonenblum et al., 

2008). Experimental results demonstrated that the MC system was capable of capturing 

wheelchair maneuvering data and automatically transmitting data to the cloud. Furthermore, 

the combination of the improved noise reduction algorithm and the machine-learning 

technique enabled the MC system to provide satisfactory analysis results, which were 

comparable to the existing research approach.

 2. Methods

The proposed mobile-cloud (MC) system consists of two major subsystems, namely, the 

mobile computing-based data collection subsystem and the cloud computing-based data 

management and analysis subsystem, as illustrated in Figure 2. The mobile subsystem 

utilizes a smartphone to record wheelchair maneuvering data and periodically transmits data 

to the cloud subsystem. The cloud subsystem is responsible for processing, storing, and 

analyzing wheelchair maneuvering data. The analyzed results, such as the accumulated 

movement time, maximum continued movement period, number of starts and stops, etc., can 

then be made available to researchers or healthcare providers through the Internet.

 2.1 Mobile-based Data Collection

The past decade has seen rapid development of smartphones, which has opened a new era of 

mobile computing (Zheng & Ni, 2006). The ever-increasing power in hardware, software, 

and communication empowers smartphones to play a critical role in the proposed MC 

system. In particular, since smartphones have a rich set of sensors, such as accelerometers, 

gyroscopes, compasses, GPS, etc., it is feasible to use smartphones to directly capture 

wheelchair maneuvering data and simplify the setup of the data collection process. We 

developed a mobile subsystem that controlled the built-in accelerometer of a smartphone to 

capture wheelchair maneuvering data. As illustrated in Figure 3, the accelerometer can 

record wheelchair accelerations in three dimensions (i.e., X, Y, and Z).

One characteristic of smartphone sensors is that they are event-driven, i.e., sensor data can 

be accessed whenever the sensors experience a change. Hence, the data sampling 
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frequencies of the built-in sensors are not fixed. Accordingly, the mobile subsystem records 

the time points at which the corresponding sensor reads the data instances. When 

transmitting recorded data to the cloud subsystem, the amount of data to transmit is 

configurable in our mobile subsystem. Specifically, the mobile subsystem temporarily stores 

the data instances in the smartphone’s memory and, when the number of data instances 

reaches a preset limit Δ (e.g., 1,000), they are transmitted to the cloud subsystem. Hence, if 

we preset a small value of Δ (e.g., 10), the MC system will work in a real- /near-real-time 

mode; otherwise, it will work in a batch mode. In the case of no Internet connection, our 

mobile subsystem can still collect wheelchair maneuvering data and organize them into a 

local file (i.e., a CSV file), which can be exported into the cloud later.

 2.2 Cloud-based Data Management and Analysis

In the proposed MC system, the cloud plays an important role in storing, processing, and 

analyzing wheelchair maneuvering data.

 2.2.1 Data storage—We used Google App Engine (GAE) (Google, 2011) as the cloud 

computing platform in our MC system. GAE allows web applications to be developed 

directly in the cloud. The cloud subsystem we developed is essentially a web application in 

GAE that interacts with the mobile subsystem. It responds to data transmission requests sent 

by our mobile subsystem, accepts transmitted maneuvering data, and saves them to the 

Google Blobstore, which is a data service that can store large data objects (e.g., 10,000 

wheelchair maneuvering data instances) in GAE. Note that wheelchair users do not need to 

create their own GAE accounts to participate because the interaction between our mobile 

subsystem and cloud subsystem is transparent to the users. In the meantime, the cost of data 

storage is also affordable in GAE. We present more discussions on the cost associated with 

our MC system in the Discussion Section.

 2.2.2 Data analysis—While it is possible to conduct a variety of analyses based on 

wheelchair maneuvering data, in this pilot study, we focus on developing approaches for 

analyzing the accumulated maneuvering time, the maximum period of continuous 

movement, and the number of bouts, which are critical measures for studying a wheelchair 

user’s activity level (Cooper et al., 2008; Harris et al., 2010; Sonenblum et al., 2008). The 

accumulated maneuvering time and the maximum period of continued movement can reveal 

how the wheelchair is used (Tolerico et al., 2007). Bouts of mobility refer to periods of 

continuous wheelchair movement (Sonenblum et al., 2012; Sonenblum et al., 2008). The 

number of bouts can provide insightful information regarding the activities performed in 

different locations (Sonenblum et al., 2008).

The key to perform the aforementioned analyses is the ability to distinguish whether the 

wheelchair is moving or stationary. This is by no means easy owing to the presence of noise. 

As shown in Figure 4 (a), even if the phone is stationary (during the first half of the data 

curve), its accelerometer still generates readings due to the gravity, rotation of the earth, 

and/or environmental noise (Sonenblum et al., 2012). In this pilot study, we integrated two 

approaches to mitigate the impact of noise in order to accurately determine a wheelchair’s 
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status. In the following discussions, we use Figure 4 as a running example to illustrate how 

these two approaches work to overcome noise and determine wheelchair activities.

 (1) Data pre-processing: We improved the Common Average Reference (CAR) 

algorithm (Ng & Raveendran, 2007), which is widely used in EEG 

(Electroencephalography), by employing a threshold-based strategy. The improved CAR 

(ICAR) algorithm is specifically designed to process wheelchair maneuvering data. 

Particularly, by observing raw wheelchair maneuvering data captured in indoor settings with 

flat floors, we noticed that the values of noise fluctuated within a certain range. To 

counteract such noise, our ICAR algorithm takes three steps. First, for each dimension d, it 

averages the sensor readings of the immobile period to obtain the averaged value . 

Second, ICAR deducts all data instances in dimension d by  to shift the curve toward its 

actual position. Finally, based on data obtained in the second step, ICAR determines a 

threshold τ such that a data instance α is reset to 0 if |α| < |τ|. The value of τ is determined if 

it can reset 95% or more of the data instances to 0 for the immobile period. We chose the 

value of 95% so that the majority of the noise could be removed. As an intuitive example, 

Figure 4 (a) shows a series of segments of raw data. The first half represents data collected 

in a stationary period, which is drifted mostly above zero. After the ICAR algorithm (with 

 determined to be 0.1) is applied, the entire data curve is shifted toward its actual position, 

as shown in Figure 4 (b).

To effectively calculate , our mobile subsystem employs the text-to-speech technique to 

use audible messages to remind the wheelchair user to stay still for 5 seconds in the 

beginning of data collection.  is then calculated based on sensor data of the first 5 

seconds. While the calculated  is used by ICAR to preprocess all raw data points, we 

found that, as the flatness of the floor varies slightly at different locations, the noise-

reducing effectiveness of  is not uniform in all preprocessed data segments. As a result, 

certain data segments in a stationary period may still be classified as moving. We observed 

that the background noise tends to produce accelerations of the same values in a short period 

of time. In our implementation, we utilized this pattern to identify and fine-tune certain data 

segments. In particular, sensor data is partitioned into a series of data segments, each of 

which contains 10 data items. If a segment contains at least 3 identical items, we apply 

ICAR to this data segment individually, i.e., (1) calculating the averaged acceleration for this 

data segment; (2) deducting each item by the averaged acceleration; and (3) resetting data 

items whose values are smaller than a threshold to 0.

Although ICAR can largely reduce noise, it cannot completely eliminate noise. Hence, we 

utilize the machine-learning technique over the ICAR processed data to recognize 

wheelchair maneuvering patterns.

 (2) Data analysis with the machine-learning technique: We propose to use the 

machine-learning algorithm, k-nearest neighbors (KNN), to classify wheelchair maneuvers. 

KNN is a widely used classification algorithm due to its simplicity and effectiveness 

(Dhurandhar & Dobra, 2013; Shang et al., 2005). The use of KNN greatly enhances our MC 

system’s noise tolerance by recognizing the patterns of wheelchair maneuvers. Specifically, 

we design the KNN algorithm to perform binary classification: it classifies a given data 
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segment into one of the two classes, namely, moving or stationary. The classification 

decision is made based on the majority class of the data segment’s K nearest neighbors. This 

approach fits in the application because we can adjust the parameter K to mitigate the impact 

of noise.

One difficulty is that the stationary and the linear constant speed maneuvers are theoretically 

indistinguishable because the accelerations for both maneuvers should be 0. Hence, KNN 

should not be directly applied to the raw data items collected by the accelerometer in the 

smartphone. In practice, after the ICAR is applied to the raw accelerations, we observed that 

a stationary maneuver contains less non-zero data items that also have smaller values than 

those in a linear constant speed maneuver. Hence, we take two steps to convert the raw data 

items into data vectors that can facilitate the accurate classification of maneuvers. First, we 

partition the raw data items into a series of data segments that have an equal length of 10. If 

the size of the last segment is less than 10, it will be discarded. This will not cause a loss of 

accuracy because a data segment of size 10 only corresponds to 0.59 ∼ 0.71 second (i.e., the 

sampling rate is SENSOR_DELAY_UI (14 ∼ 17 Hz)). Second, we convert every data 

segment of size 10 into a 7-tuple vector 〈 f1, f2, f3, f4, f5, f6, f7〉, namely, the number of 

positive accelerations (f1), the sum of the positive accelerations (f2), the number of positive 

accelerations greater than a threshold (e.g., > 0.3) (f3), the number of zeros (f4), the number 

of negative accelerations (f5), the sum of the negative accelerations (f6), and the number of 

negative accelerations less than a threshold (e.g., < −0.3) (f7). Figure 4 (c) shows a data 

vector (0, 0, 0, 0, 10, −6.5599, 10), which is derived from the 11th data segment in the series. 

The first four items (f1 to f4) are 0s because all accelerations in this data segment are 

negative. The first “10” means that there are 10 negative accelerations. The sum of the 

negative accelerations is −6.5599, and the number of negative accelerations less than a 

threshold (i.e., −0.3 in this example) is 10.

To measure the distance between a sample vector Si = (f1
i, f2

i, f3
i, f4

i, f5
i, f6

i, f7
i) (i = 1, 2, 

…, m, with m being the number of sample vectors) and a testing vector Tj = (f1
j, f2

j, f3
j, f4

j, 

f5
j, f6

j, f7
j) (j = 1, 2, …, n, with n being the number of testing vectors), we employ the 

Euclidean distance as follows:

where ft
i is the factor t (t = 1, …, 7) in a sample data vector Si and ft

j is the factor t in a 

testing data vector Tj.

For each class (moving or stationary), we prepared 36 sample data vectors. The choice of 36 

is to ensure that these sample data can cover possible situations in its class. For example, the 

sample data for the moving class includes data vectors of acceleration, deceleration, and 

constant speed for both linear and turning maneuvers (i.e., 6 moving maneuvers in total). 

Then, we collected both typical and boundary samples for each of the moving maneuvers 

(e.g., linear acceleration, turning deceleration, etc.). In addition, we tested K = 1, 3, 5, and 7 

for KNN. We chose odd numbers for the K values to avoid ties in voting for the majority 

because the classification is binary, i.e., stationary or moving. In addition, we considered 7 
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types of maneuvers including 6 moving maneuvers and 1 stationary maneuver. Hence, we 

could limit the K value to be no bigger than 7. Figure 4 (c) and (d) demonstrate how the 

KNN works using K = 3. For the 11th data vector in Figure 4 (c), its 3 nearest neighbors all 

belong to the moving class. Hence, it is classified as moving.

 2.3 Protocol for Data Collection

To collect wheelchair maneuvering data, the smartphone will be attached to the smartphone 

holder as shown in Figure 1. The use of the smartphone holder provides a convenient way to 

use our mobile subsystem. The wheelchair user can manipulate the wheelchair as usual 

while being able to see the smartphone. The interface of the mobile subsystem contains an 

arrow with descriptions, showing the direction of the smartphone orientation. The X-axis of 

the smartphone is aligned with the wheelchair moving direction (see Figure 1 and Figure 3). 

The text-to-speech technique is also incorporated to guide the user to properly set up the 

system. Specifically, when the function of data collection is turned on, the mobile subsystem 

will use the audible message to remind the wheelchair user, i.e., “Please remain stationary 

for 5 seconds”. When five seconds have passed, it will tell the wheelchair user “Now, you 

are ready to maneuver the wheelchair”.

As a baseline, we also attached an ActiGraph GT3X accelerometer (ActiGraph, 2011) on 

each side of the wheels of the wheelchair. In this way, we could use the approach employed 

in existing research (i.e., attaching data loggers to the wheels) (Coulter et al., 2011; 

Sonenblum et al., 2012) to analyze GT3X data. We could then compare analysis results 

based on data collected by GT3X accelerometers with those collected by our MC system. 

Note that we chose not to apply noise filtering to the sensor data from the GT3X sensors in 

our experiments. Since the GT3X sensors were attached to the wheels of the wheelchair, 

their sensor data resembled a clear sinusoid as the wheels rotated. This strong data pattern 

made the GT3X sensors resistant to the impact of the background noise.

 2.4 Experiments

We implemented the proposed MC system using Google’s platforms, i.e., Android + Google 

App Engine (GAE). The smartphone we used was a Samsung Galaxy SII (GT-I9100) with 

Android OS 4.1 Jelly Bean. The built-in sensor, i.e., accelerometer, was used to capture 

wheelchair maneuvering data. As discussed previously, the built-in sensor is event-driven so 

that its data sampling frequencies are not fixed. Android APIs offer four data sampling 

settings; each corresponds to a range of data sampling frequencies. For example, if a phone 

app needs to obtain sensor data as frequent as possible, it should choose the option of 

SENSOR_DELAY_FASTEST, with a sampling frequency falling within 96 ∼ 100 Hz for 

the Samsung Galaxy SII smartphones. Other options in the descending order of sampling 

rates are SENSOR_DELAY_GAME, SENSOR_DELAY_UI, and 

SENSOR_DELAY_NORMAL (Zhao et al., 2010). In our experiments, we chose a slower 

option, i.e., SENSOR_DELAY_UI (14 ∼ 17 Hz), because we found it adequate for our data 

analyses while consuming less battery power (Liu et al., 2015). During the data collection 

period, our mobile subsystem automatically transmitted data to the cloud whenever 10,000 

data instances were recorded until the data collection was finished.
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We used an Invacare® Formula CG power wheelchair in the study. The experiments were 

conducted inside an academic building on campus. Since our focus was on indoor settings, 

we used short bouts that lasted for 7 to 24 seconds, during which the wheelchair moved 5 to 

26 meters. The wheelchair speed was set to indoor mode with the peak speed at about 1.2 

meter/s. All data was collected by the same driver. In addition, we conducted another set of 

experiments to evaluate whether our approach could achieve satisfactory results with the 

same training dataset when driving inside a different building, i.e., evaluating the 

generalization capability of our approach. In these experiments, we set up a fixed route with 

waypoints indicating where the wheelchair should turn in a bout. Then, we used a timer to 

record the duration for each bout so that we could compare the accuracies achieved by the 

GT3X and KNN. In this study, all statistical tests were performed using Excel Data Analysis 

Tools at the significance level of 0.05.

 3. Results

 3.1 Analysis of Bouts

We followed the approach discussed in Section 2.2.2 to use the KNN to analyze the number 

of bouts. A bout is identified by determining continuous moving data segments that are 

sandwiched in between two consecutive stationary data segments. In our experiments, we 

conducted 30 trials, each containing 10 bouts. As illustrated in Table 1, except K = 1, our 

approach accurately determined all the bouts (for K = 3, 5, and 7). This result suggested that 

KNN correctly distinguished the stationary segments from the moving ones so that the 

correct number of bouts was obtained. This experiment demonstrated that data collected by 

the built-in sensor of a smartphone could lead to accurate analysis results.

 3.2 Analysis of Accumulated Maneuvering Time

After a bout is recognized, the time spent within the bout can also be determined since all 

the collected data items were time-stamped (see Section 2.1). By summing up the time spent 

on bouts, we could analyze the accumulated maneuvering time. Since K = 1 may not 

determine the correct number of bouts, we used K = 3, 5, and 7 in this experiment. As shown 

in Table 2, we considered the average time, standard deviation (SD), standard error (SE), and 

the p-value measured by using the one-way ANOVA. The experimental results of the 

accumulated maneuvering time obtained by our MC system were very close to those 

calculated using data from the GT3X accelerometers in each trial. The differences between 

the use of GT3X and our approach were statistically insignificant (the p-values varied from 

0.751 to 0.868). When K was set to 3, our approach achieved the most similar result 

measured by the SD, SE, and p-value.

 3.3 Analysis of Maximum Continued Maneuvering Time

The maximum continued maneuvering time is the time of the bout that has the longest 

maneuvering duration. Table 3 illustrates the analysis results for the maximum continued 

maneuvering time. We considered the average time, standard deviation (SD), standard error 

(SE), and the p-value measured by using the one-way ANOVA. Once again, our approach 

achieved similar analysis results to those based on GT3X. The differences were statistically 

insignificant (the p-values varied from 0.801 to 0.863).
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 3.4 Analysis of Bouts in a Different Building

In this experiment, we used the same training dataset for KNN to classify data collected in a 

different building. As shown in Table 4, our approach achieved satisfactory accuracy in 

calculating the wheelchair maneuvering time. The difference between the KNN and the 

timer was insignificant (the p-values varied from 0.18 to 0.32 measured by using the one-

way ANOVA). When K was set to 3, the KNN achieved the best result measured by the 

p_value. We could also see that the results obtained by using the GT3X sensor were slightly 

better than those by KNN. However, the difference was not statistically significant (the p-

values varied from 0.54 to 0.81).

 4. Discussion

Mobile cloud computing is an emerging paradigm, which has attracted significant research 

efforts, such as augmented execution, elastic applications, and migration optimization (Han 

& Gani, 2012). In this pilot study, we demonstrated that our MC system is promising in 

advancing research on capturing and analyzing wheelchair maneuvering data, which can 

either be used independently or complement existing approaches. First, our MC system 

substantially simplifies the installation of data loggers and makes possible the timely 

feedback on wheelchair maneuvering characteristics. Specifically, the MC system does not 

need external data loggers. Either the wheelchair user or a family member can set up the 

sensor/data logger, since no specialized skills are required as it only takes a single step to 

complete, i.e., attaching a smartphone to the smartphone holder as shown in Figure 1. The 

use of the smartphone itself to collect wheelchair maneuvering data is more feasible owing 

to the smartphone’s rich set of sensors and communication capabilities (WIFI, 3G/4G 

networks, Bluetooth, etc.). The MC system can transmit recorded data to the cloud 

subsystem in either a real- /near-real-time mode or a batch mode by configuring the preset 

limit on the number of data instances to transmit. The real- /near-real-time mode can provide 

fast feedbacks on wheelchair maneuvers, but it may consume a large amount of battery 

power because WIFI or 3G/4G network connection is power-consuming (Crk et al., 2009). 

The batch mode, on the other hand, has the advantage of preventing smartphones from 

frequent network connections, which saves battery power consumption of the phone.

Second, our MC system largely simplifies data management. Current research typically uses 

data loggers to continuously collect wheelchair maneuvering data for one or two weeks. The 

large amount of data generated by data loggers makes data management very challenging. 

For example, if a data logger is set to collect data at a frequency of 15 Hz, it will generate 

about 9 million data instances in one week. Manually downloading and managing 9 million 

data instances from data loggers may be cumbersome. Collecting and managing data from 

multiple wheelchair users can be even more difficult. In comparison, our MC system can 

automate data transmission between the mobile and cloud subsystems and hence save much 

effort on data management.

Third, the cost associated with the MC system compares favorably with those of existing 

approaches. Up to May 2013, the majority of adults (56%) in the U.S. own a smartphone 

(Smith, 2013). We can reasonably assume that a large number of wheelchair users can use 

the MC system with their own smartphones. Even if the researchers need to provide 
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smartphones, the cost still compares favorably with that of the commercial data loggers. For 

example, a smartphone of $200 is sufficient for the MC system. In comparison, the prices of 

accelerometers commonly used in research vary from $225 (ActiGraph, 2011) to more than 

$600 (PalTechnologies, 2013). The cost will grow even higher if multiple data loggers are 

used (e.g., accelerometers and gyroscopes), let alone the cost of software used for managing 

the data loggers. For the cloud subsystem, the cost for data storage is also affordable. For 

example, GAE offers 5GB of free storage space for a regular user account and the price for 

additional storage is $0.13/GB for one month (Google, 2011). If the MC system stores the 9 

million data instances (as discussed in the previous example) in GAE, the cost will be less 

than $0.13 for each wheelchair user because a single data instance in our study occupies 

only 0.1 KB and the 9 million data instances only need a space of 0.9 GB. In terms of the 

communication cost, statistics show that the majority of households (61%) in the U.S. own a 

WIFI network (Business-Wire, 2012). Hence, our mobile subsystem will most likely be able 

to use the wheelchair user’s private WIFI network to communicate with the cloud 

subsystem. In case when a WIFI network is unavailable, the researchers will still have two 

options: (1) reimburse the expense on the Internet data usage (the cell phone carriers usually 

charge $10/GB or less (AT&T, 2013)), or (2) use the local storage option of the MC system 

to store sensor data locally in the smartphone (data can be manually uploaded into the cloud 

later).

One challenge we faced in the development of the MC system was to deal with the noise 

generated by the sensors, especially the accelerometer, in the smartphone. As discussed 

earlier, even when the wheelchair was stationary, the accelerometer still recorded small 

acceleration values in the range of −0.2 to −0.5 m/s2. As a result, it is even difficult to 

determine whether a wheelchair is stationary or moving. The Kalman filter (KF) is a widely 

used algorithm for handling noisy inputs and generating statistically precise estimates of the 

underlying system state (Welch & Bishop, 1995). For example, the KF was applied to shoe-

mounted inertial sensors (i.e., accelerometer and gyroscope) to correct the velocity error 

(Foxlin, 2005). Also, due to its light computation nature, the KF was widely used in indoor 

localization. Particularly, the KF was used to “fuse” multiple techniques, such as the WiFi-

based, pseudo-odometry measurements, and/or pedestrian dead reckoning techniques, to 

achieve better localization accuracy (Chen et al., 2015; J. Wang et al., 2015). We have 

studied the KF in processing the accelerometer data. The KNN was then applied to the KF-

processed data for classification. As shown in row 1 of Table 5, the classification accuracy of 

KNN was low if the KF was applied directly to the raw sensor data. This is because the KF 

could not remove the background noise, which shifted the entire data curve away from its 

actual position. If the KF was applied to data with background noise removed, the 

classification accuracy was improved for K = 1 and 3 as shown in Row 2 of Table 5. 

Comparing Table 1 and Table 5, we can see that the performance of KNN dropped when it 

was applied to the KF-processed data. The reason is that the KF tended to shrink the data 

curves in height and widen the curve in length (i.e., move a data item to a later time point). 

However, the proposed 7-tuple scheme needs to count the number of positive/negative 

accelerations and add up their values. The changes in data curves by the KF made it difficult 

for KNN to capture the right patterns. In comparison, the ICAR algorithm does not alter the 

characteristics of wheelchair maneuvering data. Table 1 shows that our approach could 
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accurately recognize all the bouts. Table 2 and Table 3 illustrate that our approach achieved 

satisfactory results in analyzing the accumulated maneuvering time and the maximum 

continued maneuvering time, which were comparable to the approach employed by the 

existing research. We also verified our approach in a different building by using the same set 

of training data. As shown in Table 4, our approach could generalize to achieve satisfactory 

accuracy. Hence, these experimental results demonstrate that the proposed MC system is 

feasible in collecting wheelchair maneuvering data and generating accurate analysis results.

Another challenge faced by the MC system is the limited battery life of a smartphone. We 

address this problem with two options. First, a wheelchair can be equipped with a mounting 

and charging kit, which can provide power supply while firmly holding the smartphone 

(Broaden-Horizons, 2015). Second, a portable battery charger could also provide a 

financially affordable solution. A portable charger has a small size (similar to or smaller than 

a smartphone) and is easy to carry. It will enable the wheelchair user to use our MC system 

while charging the smartphone.

Besides inertial sensors, researchers have attempted to use other means to capture 

wheelchair maneuvering data. Bitsch et al (Bitsch Link et al., 2012) tried to estimate 

wheelchair speed by analyzing video streams captured by a smartphone’s camera. This 

approach may not be practical because taking videos consumes a significant amount of 

battery power. Also, this approach is not as balanced as our MC system since all processing 

and analyses are conducted solely by the smartphone. Our MC system is not subject to these 

potential problems due to its distributed workload between the mobile and cloud 

subsystems.

Nowadays, smartphones have been increasingly used to monitor a person’s health status. For 

example, all mainstream mobile operating systems, such as iOS, Android, and Windows, 

have built-in apps for monitoring a person’s activity by counting the number of steps. This is 

achieved through step detection and step length estimation (Link et al., 2011; Microsoft-

Research). Unfortunately, these smartphone apps are designed for healthy people. The 

dynamics of a power wheelchair do not possess the strong characteristics of steps. For 

example, the acceleration and deceleration periods of a wheelchair are usually short (less 

than 3 seconds). The subtle changes in maneuvers as well as the noise in maneuvering data 

compound the difficulty in determining maneuvering types. Therefore, our approach has 

enriched the research by expanding the scope of using smartphones as mobile sensors to 

wheelchair users.

Other related work includes QMedic (QMedic, 2014) and the research projects in the 

mHealth research group (“mHealth Research Group“, 2012). QMedic targets at seniors who 

are at risk of falling or other dangers at home. Through a wearable bracelet that wirelessly 

communicates with a base station installed in the home, the system can communicate with 

QMedic representatives through the landline phone outlet if an emergency occurs. The 

projects at mHealth employ mobile computing techniques to deal with a wide range of 

health topics, such as weight management for young adults, African-American children’s 

sleep, active transportation in urban areas, etc. Comparing with the existing systems, our MC 
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system is unique in several aspects, including the research goal, targeted users, methods, and 

equipment.

In summary, we propose a new approach to conveniently collect, store, and analyze 

wheelchair maneuvering data. Our approach will enrich research for collecting wheelchair 

maneuvering data and analyzing wheelchair users’ activity levels.

 4.1 Study Limitations

In this pilot study, we conducted experiments with a Samsung Galaxy SII smartphone, 

which was attached in a smartphone holder. The use of smartphone holder avoids affecting 

the manipulation of the wheelchair while allowing the wheelchair user to see the 

smartphone. The arm of the holder is sturdy and bendy. The smartphone may vibrate slightly 

while the wheelchair is moving. In the next step, we will investigate how the rigidness of 

mounts will impact the analysis accuracy by testing mounts of different rigidness. The 

rigidness may also yield different data patterns when a wheelchair user stops to type on the 

phone. We will comprehensively consider screen touch events and employ additional 

sensors, such as the proximity sensor, to identify stationary maneuvers with noise, such as 

bumping into the phone, typing on the phone, etc. In addition, we will study other ways to 

hold the smartphone, such as putting the smartphone into the wheelchair user’s shirt/pant 

pocket.

In this study, the sampling frequency of data collection was fixed to SENSOR_DELAY_UI. 

In a separate study (Liu et al., 2015), we analyzed the effect of different settings of the 

sampling frequency. Our preliminary study shows that higher sampling rates achieved better 

analysis accuracy, but consumed more battery power. Subsequent work is needed to study 

the impact when different brands of smartphones are used. In addition, the experiments were 

conducted in indoor settings, where the floor was flat without up and down variations, such 

as ramps. As a next step, we will conduct experiments on different floor surfaces and in 

more complex indoor settings. We will also study how to further balance the data storage 

and processing between the mobile and cloud subsystems to improve performance and 

reduce power consumption of smartphones.

 5. Conclusion

We proposed a mobile and cloud computing-based (MC) system for capturing and analyzing 

wheelchair maneuvering data in this study. We developed a mobile-computing subsystem 

that controls the smartphone sensors, collects sensor data, and periodically transmits 

recorded data to the cloud. We also developed a cloud-computing subsystem that controls 

data storage and analysis. To determine wheelchair maneuvering states, we improved the 

Common Average Reference algorithm to reduce noise in raw accelerometer data. We then 

employed the machine-learning algorithm, KNN, to further mitigate the effect of noise by 

recognizing wheelchair maneuvering patterns. Experimental results demonstrated that our 

MC system could simplify data collection by allowing the wheelchair user or his/her family 

members to easily set up the system. The MC system can also improve data collection 

efficiency by automating data transmissions from the mobile subsystem to the cloud 

subsystem. Furthermore, the MC system produced accurate results for analyzing the number 
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of bouts, the accumulated maneuvering time, and the maximum continued maneuvering 

time. Since mobile computing and cloud computing are two dynamic areas undergoing rapid 

development, as more and more sensors are being added to smartphones and the cloud is 

becoming more efficient and convenient to use, we see great potential in the proposed MC 

system for depicting a timely and comprehensive picture of a wheelchair user’s daily 

activities.
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Figure 1. 
The Mobile Subsystem of the MC System
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Figure 2. 
The Architecture of the MC System
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Figure 3. 
Three Dimensions of a Smartphone
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Figure 4. 
A Running Example for Data Processing
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Table 1

Analysis of Bouts for 30 Trials

K= 1 K= 3 K= 5 K= 7

Actual No. of
Bouts 300 300 300 300

Calculated
No. of Bouts 301 300 300 300

Accuracy 99.67% 100% 100% 100%
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Table 2

Analysis of Accumulated Maneuvering Time (Second)

GT3X K = 3 K = 5 K = 7

Average 115.767 115.325 115.302 114.915

Standard
Deviation - 0.452 0.465 0.487

Standard
Error - 0.083 0.085 0.089

P_value - 0.868 0.862 0.751
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Table 3

Analysis of Maximum Continued Maneuvering Time (Second)

GT3X K = 3 K = 5 K = 7

Average 15.759 15.585 15.608 15.539

Standard
Deviation - 0.770 0.751 0.717

Standard
Error - 0.141 0.137 0.131

P_value - 0.843 0.863 0.801
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Table 5

Bout Classification Accuracy with KF

K = 1 K = 3 K = 5 K = 7

KF on Raw Data 64.30% 61.30% 59.70% 61%

KF without Base Noise 92.30% 78.70% 55.70% 46.30%

Assist Technol. Author manuscript; available in PMC 2017 July 01.


	Abstract
	1. Introduction
	2. Methods
	2.1 Mobile-based Data Collection
	2.2 Cloud-based Data Management and Analysis
	2.2.1 Data storage
	2.2.2 Data analysis
	(1) Data pre-processing
	(2) Data analysis with the machine-learning technique


	2.3 Protocol for Data Collection
	2.4 Experiments

	3. Results
	3.1 Analysis of Bouts
	3.2 Analysis of Accumulated Maneuvering Time
	3.3 Analysis of Maximum Continued Maneuvering Time
	3.4 Analysis of Bouts in a Different Building

	4. Discussion
	4.1 Study Limitations

	5. Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

