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Abstract

The present study evaluated the stability of math learning difficulties over a 2-year period and 

investigated several factors that might influence this stability (categorical vs. continuous change, 

liberal vs. conservative cut point, broad vs. specific math assessment); the prediction of math 

performance over time and by performance level was also evaluated. Participants were 144 

students initially identified as having a math difficulty (MD) or no learning difficulty according to 

low achievement criteria in the spring of Grade 3 or Grade 4. Students were reassessed 2 years 

later. For both measure types, a similar proportion of students changed whether assessed 

categorically or continuously. However, categorical change was heavily dependent on distance 

from the cut point and so more common for MD, who started closer to the cut point; reliable 

change index change was more similar across groups. There were few differences with regard to 

severity level of MD on continuous metrics or in terms of prediction. Final math performance on a 

broad computation measure was predicted by behavioral inattention and working memory while 

considering initial performance; for a specific fluency measure, working memory was not uniquely 

related, and behavioral inattention more variably related to final performance, again while 

considering initial performance.
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The present study had two goals. First, we examined the stability of math performance over 

time, in terms of categorical (diagnostic) and continuous (reliable) dimensions, and how this 

stability is influenced by the severity of math difficulty and the measure used to define it. 

Second, we evaluated predictors of performance over time and the extent to which these 

predictors are differentially relevant in the context of the above factors. We begin by 
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reviewing criteria for math difficulty (referred to as MD throughout this article), the 

rationale for subdividing MD into more versus less severe groups, methods for evaluating 

stability, measures used to establish math performance, and relevant predictors of math 

performance. Then, we present hypotheses.

 Criteria for MD

Several methods have been employed for identifying learning disabilities. These include (a) 

IQ–achievement discrepancy, (b) performance below a percentile cut point on an 

achievement test (low achievement definitions or cutoff scores, including methods that 

require consistent low achievement; Geary, Hoard, Byrd-Craven, Nugent, & Numtee, 2007), 

(c) intraindividual differences (National Center for Learning Disabilities, 2002); and (d) 

response to intervention (RTI; Fletcher & Vaughn, 2009). The attention given to methods of 

identification is important given that the population studied as learning disabled and given 

access to interventions on the basis of those learning disabilities may vary according to the 

definition employed (Barbaresi, Katusic, Colligan, Weaver, & Jacobsen, 2005). Despite the 

importance of accurate identification of learning disabilities, there is no current consensus 

regarding the “best” method. This is especially true in math, where less is known relative to 

reading in general and specifically with regard to identification, given a smaller math 

research base and a wide breadth of math skills. In this study, we establish MD on the basis 

of low achievement criteria because it plays a major role in many different identification 

procedures in clinical and research settings.

 Severity

In the context of low achievement, there is no consensus regarding what constitutes an 

appropriate cut point, particularly given an underlying continuous distribution. Therefore, 

examining different levels of severity allows one to address the extent to which moving the 

cut point leads to quantitative or qualitative differences among groups on either side of the 

threshold, including the stability of their math performance. Several investigations have 

compared students who have very low math achievement scores (e.g., less than the 10th 

percentile) to those with performance within the low average range, finding more pervasive 

difficulties in the former group (Geary et al., 2007; Mazzocco & Kover, 2007; Murphy, 

Mazzocco, Hanich, & Early, 2007; Raghubar et al., 2009). Dichotomizing a continuous 

distribution may clarify differences between the groups that are formed, but it introduces 

statistical artifacts; for example, forming subgroups on the basis of correlated cognitive tasks 

complicates the interpretation of the subgroup with both cognitive difficulties having poorer 

performance on the outcome (e.g., Compton, DeFries, & Olson, 2001; Schatschneider, 

Carlson, Francis, Foorman, & Fletcher, 2002). However, individual difference characteristics 

important for math (e.g., working memory) can still potentially operate differentially in 

students with more versus less severe difficulties.

 Stability 1: Categorical (Diagnostic) Change

Focusing on the issue of the stability of math performance (within or across cut points) is 

particularly relevant given the heterogeneity of math measures and what is assessed at 
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different developmental time points (Silver, Pennett, Black, Fair, & Balise, 1999). Previous 

work has focused on categorical change, that is, whether individuals stay in their original 

group (e.g., diagnostic concordance) over time. Several studies have demonstrated that 

students do not necessarily remain in their original group, with some students no longer 

identified as MD, whereas other students not initially identified may later be found to have 

difficulties (Geary & Brown, 1991; Silver et al., 1999). An epidemiological study of children 

from ages 5 to 19 (Barbaresi et al., 2005) found the prevalence of MD to vary depending on 

the identification criteria utilized (from 6% for regression-based discrepancy methods to 

14% for low achievement). Because categorical change is common at earlier ages (e.g., K–

1), many MD studies focus on older elementary students (Chong & Siegel, 2008; Geary, 

1993; Jordan, Hanich, & Kaplan, 2003). However, few studies follow students 

longitudinally, though more such studies have appeared recently (e.g., Jordan et al., 2003; 

Jordan, Kaplan, Locuniak, & Ramineni, 2007; Mazzocco & Thompson, 2005).

 Stability 2: Continuous (Reliable) Change

In addition to categorical change, stability may also be indexed according to whether 

continuous scores change over time. For students with MD or learning difficulties in general, 

continuous change is most often expected to be positive in direction (even if less positive 

relative to students without MD); that is, in experimental studies, intervention students are 

expected to outperform their relevant controls. Few studies have as their primary goal to 

examine continuous change over time, and even fewer focus on students with difficulty. 

Test–retest reliability (and practice effect information) is certainly available for most 

broadband standardized instruments, but these data are primarily for a subsample of the 

norming group (often within the average range) and focused on group-level (rather than 

individual-level) change. Cirino et al. (2002) examined the stability of experimental and 

standardized measures in a sample of young students with reading difficulty and found few 

systematic practice effects and adequate test–retest reliability. Even here though, individual-

level change was not evaluated, and analogous studies within the math domain are lacking. 

Continuous scores close to the population mean are less likely to change; more extreme 

(high or low) scores are expected to evidence more regression to the mean, which further 

complicates efforts to assess stability.

The reliable change index (RCI) is often used to assess the significance of continuous 

change at the individual level (Chelune, 2008; Jacobson & Truax, 1991; Jacobson, Truax, & 

Kazdin, 1992) and is judged relative to change in a relevant control group (to account for 

measurement error). In populations such as those with epilepsy or Alzheimer's disease, the 

clinical goal is to detect a meaningful decline in cognitive scores, though the technique was 

developed to detect reliable increases in mental health scores resulting from psychotherapy.

Three types of RCI are classic RCI (Jacobson & Truax, 1991), RCI correction (for practice 

effects, Chelune, Naugle, Luders, Sedlack, & Awad, 1993; for measurement error, Chelune, 

2003), and RCI modified (RCIm), which considers different standard errors of measurement 

(SEM) for both an initial and a later time point (Iverson, 2001). Other variants have also 

been discussed (e.g., Marsden et al., 2011; McGlinchley, Atkins, & Jacobsen, 2002). Classic 

RCI uses the SEM from an initial time point to compute the standard error of the difference 
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(SEdiff), which describes the change scores’ distribution if there were no actual change 

(Blasi et al., 2009). The SEdiff is then used to determine the confidence interval by 

multiplying it by 1.65 (since it is most commonly 90%). An RCI greater than 1.65 without 

real change would be expected to occur only 10% of the time; therefore, statistically rare 

changes can be defined as those that exceed this expected amount (Zabel, von Thomsen, 

Cole, Martin, & Mahone, 2009). Corrected RCI permits practice effects to be accounted for 

by adding the difference of the retest and baseline score (practice effect) to the retest score 

and adjusting the distribution around the new score. Last, RCIm suggests using the SEM 

from the initial time point (baseline) and the SEM from the later time point (retest) in 

computing the SEdiff instead of doubling the baseline SEM. This would account for any 

change in the standard deviation of the scores over time.

The present study was naturalistic (i.e., not an intervention study) and standard scores were 

used (as opposed to raw scores), and so we expected negligible practice effects and therefore 

did not require the “corrected” RCI. However, because different SEMs at test and retest are 

possible, we determined that the RCIm approach, which is well represented in the literature, 

had the best fit with our data (Iverson, Brooks, Collins, & Lovell, 2006; Martin et al., 2002; 

Ryan, Glass, Sullivan, Gibson, & Bartels, 2009; Zabel et al., 2009).

Continuous change can also be assessed with the standardized regression method 

(McSweeny, Naugle, Chelune, & Luders, 1993); regression analyses predict retest scores 

from baseline scores and then transform the residuals into standardized z scores by dividing 

by the standard error of the estimate (Blasi et al., 2009). The advantage is that the resulting z 
scores consider regression artifacts (regression to the mean) that are present whenever two 

measures with nonperfect correlations are evaluated (e.g., Campbell & Kenny, 1999). 

Typically, estimates of residualized change are derived from a control group and then 

applied to a clinical group, but this method is not applicable in the present context because 

definition and predictor variables were confounded. That is, math scores at the initial time 

point were used to define subgroups (designation as MD involves cut points on the 

continuous distribution) as well as to predict performance at a later time; therefore, the 

percentage showing “unusual” change is derived from a single population and so could not 

exceed the nominal rate. Some studies though have found strong agreement between various 

methods of defining meaningful change under various conditions (e.g., Atkins, Bedics, 

McGlinchley, & Beauchaine, 2005; Marsden et al., 2010).

 Criterion Measures for Identification

For low achievement methods of defining MD, the key assessment tool is often a measure of 

computational skill (Barnes et al., 2002; Mabbott & Bisanz, 2008), particularly within the 

research literature. The use of such measures is not without problems. First, the use of 

common norm-referenced measures that assess many aspects of math may contribute to the 

heterogeneity of students identified with MD (Geary, 2004). For example, on measures such 

as the Wide Range Achievement Test–4th Edition (WRAT-4; Wilkinson & Robertson, 2006), 

Wechsler Individual Achievement Test–3rd Edition (Wechsler, 2009), Woodcock–Johnson 
Tests of Academic Achievement–III (WJ-III; Woodcock, McGrew, & Mather, 2001), and 

Kaufman Test of Educational Achievement–2nd Edition (Kaufman & Kaufman, 2004), math 
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computation subtests include items of arithmetic calculations with integers and real numbers 

as well as algebra, geometry, and calculus. Second, recent longitudinal research suggests 

that direct assessment of core deficits in MD, such as math fact retrieval (Geary & Hoard, 

2001) or number sense (Gersten & Chard, 1999; Jordan, Kaplan, Nabors Olah, & Locuniak, 

2006), likely are more important for identifying MD, particularly at younger ages. Finally, 

norm-referenced measures of computation skill may fail to capture individuals with 

difficulties in other areas of mathematics, for example, those with problem-solving weakness 

who may also have different patterns of cognitive functioning (Fuchs et al., 2008). Despite 

these difficulties, computational measures are most commonly used, and alternative 

measures are also not without problems. Therefore, we focus on a general, broadband 

measure of computation but also evaluate results with a measure of arithmetic fluency, 

which assesses specific skills that are more closely related to fact retrieval than broader 

based assessments.

 Predictors: Demographic

 Characteristics and Individual Differences

Demographic characteristics, such as socioeconomic status and sex, have been shown to 

predict the level of mathematical performance as well as rate of growth (Jordan et al., 2006; 

Jordan, Kaplan, Ramineni, & Locuniak, 2009). In addition, studies of students with MD 

with or without comorbid reading difficulties (Fuchs & Fuchs, 2002; Jordan et al., 2003; 

Powell, Fuchs, Fuchs, Cirino, & Fletcher, 2009; Silver et al., 1999) suggest larger 

differences on math word problems but more similar performance on arithmetic fact skills, 

implicating language in math development. Furthermore, reading and math skills are 

strongly correlated in typical students (~ r = .60), which highlights the need to consider 

reading skills when studying math performance (Shapiro, Keller, Lutz, Santoro, & Hintze, 

2006). These studies demonstrate the importance of assessing reading performance as both a 

categorical and a continuous variable in relation to math achievement.

In addition, cognitive skills such as attention and working memory have also been related to 

math skills. Cognitive attention assessed by continuous performance tests has been identified 

as a predictor of math calculation skill in children (Huckeba, Chapieski, Hiscock, & Glaze, 

2008). On balance, though, more consistent relations with overall math competence have 

been shown with behavioral rating scales of inattentive behavior (Cirino, Fletcher, Ewing-

Cobbs, Barnes, & Fuchs, 2007; Compton, Fuchs, Fuchs, & Bryant, 2006; Fuchs et al., 

2005). Working memory also has been consistently linked to math performance (Bull, Espy, 

& Wiebe, 2008; De Smedt et al., 2009; Gathercole, Pickering, Knight, & Stegmann, 2004; 

Geary, Hoard, Byrd-Craven, & DeSoto, 2004; Swanson & Kim, 2007). All three working 

memory components of the Baddeley and Hitch (1974) model (phonological loop, 

visuospatial sketchpad, and central executive) have been implicated. In many studies, the 

central executive, which has a supervisory role over the integration of information from the 

visuospatial sketchpad and phonological loop (Wu et al., 2008), plays a major role and has 

been shown to be related to skills such as number storage (Andersson & Lyxell, 2007) and 

concurrent counting tasks (Geary, Hoard, & Hamson, 1999; Hitch & McAuley, 1991) as 

well as overall achievement (Lehto, 1995).
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Although much is known regarding factors that are predictive of math performance (reading, 

behavioral inattention, working memory), further replication is still needed, as many studies 

are selective in terms of the range of predictors used or examine only concurrent prediction 

(Alloway, 2009; Andersson & Lyxell, 2007; Fuchs et al., 2005; Geary et al., 1999; Jordan et 

al., 2007; Lehto, 1995; Siegel & Ryan, 1989). Furthermore, few studies have examined the 

extent to which such predictors may differ according to group designation or severity level.

 Purpose and Hypotheses

A major goal of this study was to evaluate categorical (diagnostic) change and compare this 

to the RCIm approach of continuous (reliable) change in math performance over 2 years. In 

doing so, we focused on students in later elementary school, after arithmetic skills are firmly 

established. In terms of categorical stability, we expected that children with MD would be 

more likely to change categorical group than would children without difficulty (no LD), 

given the more extreme and restricted range of scores of the former group. With regard to 

continuous stability, we expected that students with MD would be more likely to change 

positively on RCIm (i.e., to significantly improve in math performance more than expected) 

over the 2-year period relative to no LD, but we did not expect differences in negative RCIm 

change. Subdividing MD students into those with more versus less severity, we expected the 

more severe group to show less change in diagnostic category but a greater incidence of 

(positive) RCI change, relative to those in the LA group. We also evaluated the extent to 

which RCI changes would be minimized when estimated true scores were utilized. Within 

each type of change (categorical and continuous), we evaluated hypotheses with both a 

broad measure of calculation (which in this age range assesses primarily arithmetic but also 

procedural computations) and a specific measure of fluent arithmetic performance confined 

to single-digit calculations; however, we did not expect differences in terms of our stability 

hypotheses according to measure.

A second goal was to evaluate whether other demographic, academic, cognitive, and 

behavioral performance are predictive over time. We expected to replicate previous work 

that shows the relations of these characteristics and performances with math concurrently, as 

well as 2 years later, in the sample as a whole. We also expected that students’ original 

categorization (as having difficulty and/or the severity of that difficulty) would not alter the 

predictive pattern; in other words, we did not expect an interaction between the predictors 

and group or subgroup.

 Method

 Participants and MD

 Low Achievement Criteria—Participants were students in Grade 3 or Grade 4 from 

two urban school districts in two states (Tennessee and Texas) who were selected from a 

larger (N = 291) longitudinal study on math difficulties. In that larger study, students were 

tested at four time points; only the first (spring 2004) and last (in spring 2006) time points of 

data were utilized in this study and are referred to as the “initial” and “final” time points 

throughout this work, for ease of discussion, and as we were most interested in long-term 

stability. Students were also classified in the larger study as having math, reading, both math 

Martin et al. Page 6

J Learn Disabil. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and reading, or no learning difficulty. Because our focus was on change within mathematics 

over time, students with only reading difficulties (n = 66) and those not followed for the full 

2 years (typically resulting from transferring from the school and thus missing data at the 

final time point; n = 81) were not included. The present study included the remaining 144 

participants. Children who did not complete the study were compared to those who did on 

the characteristics in Table 2 (see below). Within those originally classified as MD or no LD, 

students were highly similar; however, no LD students who left the study had lower 

WRAT-3 Arithmetic scores. The overall proportion of students among those who left and 

those who remained was similar; however, for MD, those who left the study had higher free 

lunch rates, whereas among no LD, those who remained in the study had higher free lunch 

rates.

MD at the initial time point was characterized by math performance (WRAT-3 Arithmetic or 

WJ-III Math Fluency) below the 32nd percentile (standard score of 92) and WRAT-3 

Reading subtest performance above the 40th percentile; controls performed above the 40th 

percentile on both math and reading measures (these criteria were used in the larger study, 

and the liberal cutoffs are consistent with other work; Cirino et al., 2007; Geary, Bow-

Thomas, & Yao, 1992; Jordan et al., 2003). All children also had performance on one of the 

two subtests of the brief form of the Wechsler Abbreviated Scale of Intelligence (WASI; 

Wechsler, 1999) that was above the 2nd percentile (T = 30). Because we were interested in 

the influence of the measures used, we formed two subgroups with MD and two subgroups 

of controls, though with strong overlap (see Table 1). Of the 119 students classified by both 

measures, 84% of students were similarly identified as MD, χ2(1, N = 119) = 54.92, p = .

0001, φ coefficient = .68.

Table 1 shows 83 students with MD (and 81 controls) according to the WRAT-3 Arithmetic 

subtest and 64 students (and 55 controls) according to the WJ-III Math Fluency subtest. 

Fewer students overall were classifiable under WJ-III criteria given the operational group 

criteria used in the larger study, which was based on the WRAT-3. Therefore, evaluation of 

categorical groups for this measure used this smaller sample, whereas evaluation of 

predictive influences for this measure relied on the total group as well as the reduced 

sample. In further analyses on MD, we also subdivided these groups into those with less 

severe difficulties (math performance between the 16th to 32nd percentiles) and those with 

more severe difficulties (below the 16th percentile; see Raghubar et al., 2009, for a similar 

grouping). Reading performance was not used to further subdivide groups but rather was 

included as a continuous predictor in the models presented below. Participant demographic 

data and performances under WRAT-3 Arithmetic criteria are presented in Table 2 (with 

similar results when comparisons were made according to WJ-III Math Fluency, except that 

those groups did not differ on working memory measures).

 Measures—All measures were administered at the initial time point. For purposes of 

this study, the only measures utilized at the final time point were the math achievement 

measures.

The WRAT-3 (Wilkinson, 1993) is a frequently used measure of academic achievement 

assessing math, word reading, and spelling. We used two subtests. Arithmetic involves 
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number identification, counting, number comparisons, and other number tasks for young 

children; at school age, the task is primarily computations of increasing difficulty. Reading 

includes letter identification for young children; at school age, the task consists of word 

identification of increasing difficulty. Median internal consistency reliability of Arithmetic 

is .86; for Reading, .91. Test–retest reliability for Arithmetic is .87 (the value used to 

compute the RCI); for Reading, the test–retest reliability is .93.

 WJ-III: The Math Fluency subtest of the WJ-III (Woodcock et al., 2001), a commonly 

used achievement battery, was utilized as our more specific test of basic arithmetic skill. For 

this subtest, participants solve as many single-digit problems (addition, subtraction, and 

multiplication) as possible in 3 min. Standard scores were used in analyses. Immediate test–

retest reliability is .95 in a small sample of students, and 1-year test–retest reliability with a 

larger sample is reported to be .86 (McGrew & Woodcock, 2001); however, these latter 

scores were not used for reliable change as standard deviations were not provided. Standard 

errors of measurement are provided in the standard score metric and vary considerably (from 

4.54 to 7.21) across our age range (McGrew & Woodcock, 2001); therefore, the standard 

errors corresponding to the students’ specific ages of testing were utilized for purposes of 

computing reliable change.

The Strengths and Weaknesses of ADHD and Normal Behavior (SWAN-IV; Swanson et al., 

2005) is an 18-item teacher rating scale of inattention and hyperactivity or impulsivity rated 

on a 7-point Likert-type scale ranging from −3 to +3, with lower scores indicating more 

problematic behaviors. Each behavior corresponds to specific ADHD criteria identified in 

the Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric 

Association, 2000), with two factors: inattention (e.g., “gives close attention to detail and 

avoids careless mistakes”) and hyperactivity or impulsivity (e.g., “sits still, plays quietly”). 

We used the total score of the inattention scale, which has an alpha of .98 in the overall 

project sample, given its relation to mathematical outcomes (Cirino et al., 2007; Fuchs et al., 

2005; Raghubar et al., 2010). One student was missing a score on this scale.

 Working memory: We used the Categorization Listening Span Task and the Visuospatial 
Working Memory Task (Cornoldi, Marconi, & Vecchi, 2001) as measures of verbal and 

visual working memory, respectively. Categorization listening span requires the child to 

listen to strings of words, remember the last word in each group, tap whenever an animal 

name is presented, and repeat the final words in order. The stimuli include 16 trials. A single 

trial consists of presentation of a word string set of three or four words, with 4 trials at each 

of four levels (16 trials). Each trial of Level 1 requires recall of the last word of a single 

string; Level 2 requires recall of the last word of a set of two-word strings, in order; Levels 3 

and 4 require recall of the last word of a set of three- or four-word strings, also in order. The 

Verbal Span Task has reduced linguistic demands in comparison to other verbal working 

memory tasks such as Listening Span (Daneman & Carpenter, 1980) because the stimuli are 

single words rather than complete sentences. The Visuospatial Working Memory Task is 

structured similarly, with four trials at each of four levels. Here, the experimenter touches 

three contiguous positions in a 4 × 4 matrix. The child taps the table if the positions are in a 

linear pattern (horizontal, vertical, or diagonal), remembering the last location touched in 
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each string showing the final locations on a blank matrix (recalling 1–4 locations). The 

verbal and visual working memory span tasks are designed to have similar response 

requirements but to differ only in the type of material to be remembered and manipulated. 

The structure of these tasks meets demand requirements similar to other often-utilized 

measures of working memory capacity, which have been shown to be useful in a variety of 

work (Conway et al., 2005). Examination of raw data indicated that students were in fact 

performing the secondary tasks (e.g., tapping when the word was an animal or the sequence 

was linear and refraining from doing so when it was not). The dependent measure from each 

task was a weighted total score depending on the number of words or locations to be recalled 

(e.g., Level 3 was weighted 3 because each trial required the recall of 3 words or locations to 

be considered correct).

 Procedures—To assess categorical stability, students were reclassified at the final time 

point as MD or no LD, again using either WRAT-3 Arithmetic or WJ-III Math Fluency; a 

simple cut point was utilized (e.g., no LD were not required to have performances above the 

40th percentiles in both reading and math as at the initial time point, only above the 32nd) to 

maximize sample size for comparisons. The MD groups were further subdivided into less 

severe (16th to 32nd percentile) and more severe (< 16th percentile).

To assess continuous stability, we calculated an RCIm (Iverson, 2001), which we illustrate 

for WRAT-3 Arithmetic. First, we calculated the SEM with the following formula, SEM1 = 

(1 – r12)1/2*SD1, where r12 is the test–retest correlation coefficient of the normative sample 

(.87) and SD1 is the standard deviation at the initial test–retest time point (15.3). Next, we 

computed the SEM at the final time point using the same formula with an r12 of .87 and a 

SD2 of 14.7 (Wilkinson, 1993). Using these SEMs, we calculated the standard error of the 

difference (SEdiff) = [(SEM1)2 + (SEM2)2]1/2 = 7.65. We then used the SEdiff to determine 

90% confidence limits by multiplying it by 1.65, giving an RCI of 12.62. For WJ-III Math 

Fluency, we followed a similar procedure but used the standard score SEMs reported in the 

manual (McGrew & Woodcock, 2001) directly, according to the students’ ages. The 

resultant 90% RCIs varied from 11.32 (for ages 11–13) to 14.90 (for ages 8–10). True-score 

estimates were computed by subtracting the population mean from the observed initial score 

and multiplying by reliability (.87 in the case of WRAT-3;.77 to .89 in the case of WJ-III 

Math Fluency) and then adding the population mean; for example, an observed score of 81 

on the WRAT-3 yields a true-score estimate of 83.47.

 Analyses—To evaluate our first hypothesis (change in performance), we defined groups 

categorically at the final time point according to the same criteria used at the initial time 

point, into MD and no LD using WRAT-3 Arithmetic. We then evaluated the extent to which 

the groups crossed the cut point over the time interval using the chi-square statistic. We 

further subdivided the students into more versus less severe subgroups and reevaluated 

categorical change among these subgroups. Then, we repeated these analyses, using WJ-III 

Math Fluency.

On the other hand, continuous change was noted when the difference in students’ scores 

over time exceeded (increased or decreased relative to) the expected change (RCIm). Using 

this metric, we again compared the percentages of students with chi-square analyses, first 
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according to their original WRAT-3 Arithmetic classification as MD or no LD and then also 

compared subgroups of MD severity. These analyses were then repeated using groups 

classified on the basis of WJ-III Math Fluency.

To evaluate our second hypothesis, regression analyses were conducted to replicate relations 

previously found in the literature among working memory, behavioral inattention, and 

reading with math at both time points; initial math performance was also included in models 

at the final time point. Although the present sample was oversampled for math difficulties, 

the initial and final time point math performance scores were normally distributed, with the 

overall sample means only slightly below normative means. We also evaluated potential 

covariates of age, sex, ethnicity, and free lunch status; covariates were retained on the basis 

of their relationships with the math performance measures, predictor variables, and one 

another. We considered the extent to which WASI IQ influenced results, but substantive 

conclusions were unaltered. Then, variables were added to the model that designated level of 

math performance to determine whether relationships varied according to severity and for 

both criterion measures (WRAT-3 and WJ-III). Because we were most interested in how 

these factors influence the final outcome, these analyses were conducted only at the final 

time point.

 Results

 Categorical Change

Table 3 shows proportions of students who changed diagnostic groupings. For WRAT-3 

Arithmetic, at the initial time point, 83 of the 144 students (58%) were classified as MD, but 

at the final time point, only 57 students (40%) were so classified. There was a significant 

difference in the proportion of students with MD versus no LD who changed, χ2(1, N = 144) 

= 39.16, p < .0001. The pattern was consistent with the hypothesis: Of the group with MD, 

38.6% showed categorical change (i.e., they no longer met criteria), whereas only 9.8% of 

the no LD group showed categorical change (i.e., they now met criteria). Regarding severity, 

the three groups differed overall, χ2(2, N = 144) = 17.84, p < .0001; however, there was no 

significant difference in the proportion of students with more versus less severe initial 

difficulties who no longer met criteria for MD, χ2(1, N = 83) = 2.39, p > .05. The directional 

pattern of categorical change was, however, consistent with predictions (45% for less severe, 

28% for more severe).

For WJ-III Math Fluency, at the initial time point, 64 of the 119 students (54%) met MD 

criteria, and at the final time point, 47 students (40%) met criteria. There was a significant 

difference in the proportion of students with categorical change, χ2(1, N = 119) = 30.66, p 
< .0001, and the pattern was similar to that just described: Students were more likely to 

move from MD to no LD (38%) than the reverse (13%). By severity group, overall 

categorical change was significant, χ2(2, N = 119) = 15.64, p = .0004; students with less 

severe initial difficulties were more likely to no longer meet criteria for MD (52%) relative 

to students with more severe difficulties (24%), χ2(1, N = 64) = 5.11, p = .0238.
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 Continuous Change

Table 4 shows the percentage of each group that changed in terms of RCIm. For WRAT-3 

Arithmetic, of the 144 students, 38 (26%) exhibited a continuous change. There was a 

significant difference between the MD and no LD groups, χ2(2, N = 144) = 16.14, p = .0003; 

34% of the no LD group showed continuous change compared to 20% of the MD group. For 

RCIm, however, scores may either increase or decrease, so single degree of freedom contrast 

follow-up analyses were conducted to elucidate the effect. There were no group differences 

in the proportion who showed an improvement versus those who did not (those who 

remained stable or declined), χ2(1, N = 144) = 3.43, p > .05; however, students in the no LD 

group were more likely to decline relative to the MD group (as opposed to remaining stable 

or improving), χ2(1, N = 144) = 14.45, p < .0001. By severity group, overall continuous 

change was significant, χ2(4, N = 144) = 17.60, p = .0015; however, among those with more 

versus less severe difficulties, there was no difference in the proportion who showed 

continuous change, χ2(2, N = 83) = 1.09, p > .05; other comparisons were also not 

significant (all p > .05). When estimated true scores were used instead of initial observed 

scores, the overall proportion of students who exhibited any change was similar to the 

original analyses (n = 34, 24%), although now the difference between the MD and no LD 

groups was not significant, χ2(2, N = 144) = 3.87, p > .05. With observed scores, 29.51% of 

no LD and 6.02% of MD declined; here, though, the proportions were now 19.67% and 

10.84%, respectively. By severity group, overall continuous change was also now not 

significant, χ2(4, N = 144) = 5.13, p > .05.

When assessed with WJ-III Math Fluency, the pattern of continuous (RCIm) change was not 

significant, χ2(2, N = 119) = 4.14, p > .05. There were no differences in the proportion who 

improved, χ2(1, N = 119) = 2.25, p > .05, declined, χ2(1, N = 119) = 2.48, p > .05, or 

remained stable, χ2(1, N = 119) = 0.11, p > .05. When evaluated by severity group, there 

were no overall differences in continuous change, χ2(4, N = 119) = 4.36, p > .05; there were 

also no differences when only those with more versus less severe initial difficulties were 

compared, χ2(2, N = 64) = 0.34, p > .05. The pattern of results did not change at all when 

estimated true scores were used instead of observed scores.

 Predicting Math Performance

Characteristics from the initial assessment were evaluated as predictors of math performance 

at both time points. Table 5 shows the correlations between the predictors and outcomes. 

Evaluation of covariates revealed the following: Age was significantly related to both math 

performance measures at both time points, sex was related to WJ-III but not WRAT-3 scores 

(at both time points, with girls outperforming boys), free lunch status was related to 

WRAT-3 but not WJ-III scores (at both time points), and ethnicity was not related to math 

performance in this sample. Therefore, age and free lunch status were initially included in 

predictive models for WRAT-3 Arithmetic, and age and sex for WJ-III Math Fluency. 

However, 14 students had missing values for free lunch, and this variable did not contribute 

uniquely over age alone in predicting final WRAT-3 Arithmetic; therefore, this variable was 

not included in our models.
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Table 6 shows regression results. At the initial time point, WRAT-3 scores were regressed on 

reading performance, verbal and visual working memory, and behavioral inattention. 

Consistent with our second hypothesis, these variables predicted 51% of the variability in 

WRAT-3 scores at the initial assessment, F(5, 137) = 28.99, p < .0001; reading performance 

(p < .0001) and inattention (p < .0001) were uniquely predictive (as was age), but working 

memory was not. Parameter estimates for predictors were positive, suggesting that better 

reading performance and less attention difficulty were associated with stronger math 

performance. The estimate for age was negative, however, with lower scores associated with 

older age. At the final time point, the autoregressor (initial WRAT-3 scores) was also 

included as a predictor; 55% of the variability was accounted for by the initial time point 

variables, F(6, 136) = 27.30, p < .0001; initial WRAT-3 performance, inattention, and both 

verbal and visual working memory performance (and age) demonstrated unique effects (all p 
< .05); reading did not.

Similar analyses were run with WJ-III Math Fluency (Table 6 shows values for the reduced 

sample—those who could be classified). At the initial time point in the full sample, the 

overall model was significant, F(6, 136) = 19.54, p < .0001, R2 = .46. Reading (p < .0004), 

and inattention (p < .0001) as well as age (p < .0006) were uniquely predictive variables, 

with estimate interpretation similar to that for WRAT-3 Arithmetic. Results were highly 

similar in the reduced sample, F(6, 111) = 22.87, p < .0001, R2 = .55, with a similar pattern 

of unique influences. For the final time point, the overall WJ-III Math Fluency model in the 

entire sample was also significant, F(7, 135) = 23.78, p < .0001, R2 = .55; only the 

autoregressor (p < .0001) and inattention (p < .04) were uniquely predictive. The reduced 

sample was also significant, F(7, 110) = 22.70, p < .0001, R2 = .59, but attention was no 

longer significant (t = 1.72, p < .09). The covariates were not uniquely contributory to either 

of the final time point models, and results were similar with or without them. We then also 

ran similar analyses that predicted difference scores over the time points, and although there 

are known issues with the use of such scores (Nunnally & Bernstein, 1993), results were 

substantively similar to those presented above.

To evaluate whether predictors operated differently within group, we repeated the analyses 

above predicting final time point performance but added interaction variables that crossed 

each predictor with initial performance. This is a proxy for whether students had MD and/or 

whether they were more or less severe. However, we also ran models that included the actual 

two- or three-group designation term in the models (MD vs. no LD; more severe MD vs. less 

severe MD vs. no LD), and the results were highly substantively similar; therefore, only the 

continuous term interactions are reported below. For WRAT-3 Arithmetic, the model 

including the interaction terms of predictor by initial performance resulted in a significant 

overall model, F(11, 131) = 15.57, p < .0001, R2 = .57. However, none of the individual 

interaction terms was significant; the ΔR2 was .02 for all the interaction terms together and 

was not significantly larger than the model reported above without these terms (p > .05). For 

the WJ-III, only the reduced sample models could be evaluated since not all students were 

classifiable. The overall model with the interaction terms was significant, F(13, 104) = 

11.83, p < .0001, R2 = .60; however, none of the individual interaction terms was significant. 

The overall ΔR2 at .01 was also not significant (p > .05).

Martin et al. Page 12

J Learn Disabil. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



 Discussion

The first goal of this study was to determine which factors, including categorical versus 

continuous change, liberal versus conservative cut point, and broad computational versus 

specific math fluency assessment, affect stability versus change in math performance in 

elementary school-children. The second goal was to evaluate the influence of other skills 

(reading, working memory, and attention) on concurrent and future math performance and to 

examine whether such predictors operated differentially among students with different initial 

designations as MD or no LD. The key contributions of the present study are the 

differentiation of categorical versus continuous change and its implications and the 

evaluation of predictive factors relevant for math that also considers how they might vary 

according to diagnostic group.

 Categorical and Continuous Change

Generally, change depended on all three factors. Change was more common for categorical 

distinctions, for students closer to a set cut point relative to those farther from it, and for 

broader rather than more specific assessments. The question of how stable MD is over time 

has been previously addressed in other contexts (Badian, 1999; Geary & Brown, 1991; 

Mazzocco & Kover, 2007; Silver et al., 1999). In those studies, the focus has been on 

whether students change (categorically) rather than the degree of individual change, and 

multiple definitions are not often considered. In the present study, nearly 40% of the children 

who were initially identified as MD were recategorized to no LD over time, relative to about 

10% of initial no LD students, who later met criteria for MD. This was true whether we 

assessed a broad (WRAT-3 Arithmetic) or a specific (WJ-III Math Fluency) computational 

measure. In a longitudinal study from Grade 1 to Grade 8, Badian (1999) classified 5.7% of 

the sample as having persistently low math achievement (mean standard score on a measure 

of math computation over a 7- or 8-year period that was < 25th percentile); in that study, 

there were lower prevalence rates of persistent difficulty in math only (3.9%) than for 

reading only (6.0%). However, defining persistent by mean scores makes it difficult to 

examine fluctuations from any given point or to account for scores close to the cut point. 

Silver et al. (1999) found that between one-third and one-half of the original group of 

children with arithmetic difficulties remained stable over time regardless of whether the size 

of IQ–achievement discrepancy was 1 versus 1.5 standard deviations. Relative to Silver et 

al., we found higher rates of categorical stability overall (74%) as well as among those 

originally identified with difficulty (61%), though using a different identification procedure 

(low achievement) and a somewhat longer time frame (24 relative to 19 months).

However, categorical change can be misleading because it does not consider the extent to 

which scores fluctuate naturally given measurement error. The present study explicitly 

considered this type of continuous change by employing an RCI statistic, which to our 

knowledge has not previously been evaluated in the MD literature. Here, the proportion of 

students who changed continuously differed according to the type of measure examined and 

also differed from the rates of categorical change across subgroups. When a broad 

computational measure was utilized, overall continuous change was the same as categorical 

change (26%). However, within the MD subgroup, categorical change was twice as common 
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as continuous change (39% relative to 20%); students with MD were more likely than those 

with no LD to change (to increase past the criterion threshold). By contrast, students with no 

LD were more likely to show continuous change (to have scores decrease), though even 

here, this is likely the result of their greater distance from the cut point, which was in part 

accounted for by the true-score adjustment. When a more specific fluency measure was 

used, overall continuous change was similar to categorical change (27% relative to 26%), 

and this was generally true within the subgroup with MD specifically as well (28% 

compared to 38%). Similar to the results with the broad measure, students with MD were 

more likely to change than those with no LD categorically. Change was even more similar 

for the specific measure in these two subgroups when it was evaluated with RCI.

Our results concerning the difference in categorical versus continuous change may have 

implications for assessing responsiveness in RTI. For example, some studies refer to or 

specify a criterion to be considered “no longer at risk” for learning disability following 

intervention (Scanlon, Gelzheiser, Vellutino, Schatschneider, & Sweeney, 2008). However, 

there is not clear agreement regarding the correct identification of nonresponders versus 

responders (Barth et al., 2008). At the individual level, therefore, RCI may provide an 

alternative strategy for gauging responsiveness by determining whether the amount of 

change is reliable and potentially meaningful, independent of reaching the criterion goal. In 

some ways, this use is conceptually similar to the use of slope measures to gauge 

responsiveness, often used in combination with performance level (McMaster, Fuchs, Fuchs, 

& Compton, 2005; Speece & Case, 2001). Such a process becomes particularly important 

for struggling students since passing a static benchmark would become more difficult as the 

initial distance from the criterion grows and may supplement group-based differences in 

intervention studies. Clearly, however, in terms of external validity of a student's RTI, 

benchmarks will likely remain important goals.

There were relatively few differences between students with less severe versus more severe 

MD. Across change metrics and types of criterion measures, the only significant finding was 

for categorical change on WJ-III Math Fluency, where students in the less severe MD group 

were more likely to change (52%) relative to those with more severe MD (24%); a similar 

though not significant pattern was noted for WRAT-3 Arithmetic (45% to 28%). However, 

given that there was no difference in the proportion of students who showed reliable 

(continuous) improvement, using either the broad or specific measure, the seemingly greater 

stability seen in the more severe MD group is likely more a function of their initial distance 

from a benchmark rather than fundamental rates of change versus stability.

 Prediction of Performance Over Time

At the initial time point, overall models were strongly predictive (R2 = 51% and 46%) of 

both broad computational and specific fluency skill; reading and inattention were uniquely 

predictive, but working memory was not, for both models. At the later time point, overall 

models were again strongly predictive (R2 = 54% and 55%), although a different pattern 

emerged according to type of measure. For broad computations, initial score, inattention, 

and both verbal and visual working memory were all unique predictors. However, for the 
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more specific skill of computational fluency, only initial score was a unique predictor in the 

reduced models of Table 6.

Previous work has noted the utility of reading for prediction of broad computational or 

fluency measures (Fletcher, 2005). Geary et al. (2007) also found more severe word reading 

difficulties in their MLD group in kindergarten and first grade than in their low achieving 

and typically achieving math groups. The relation between word reading deficits and math 

performance has been explained through a possible deficit in processing speech sounds, 

which would affect both skills (Geary & Hoard, 2001; Jordan et al., 2003). The influence of 

reading, which we found on both math measures, was restricted to the initial time point, 

however. This is in contrast to Jordan et al. (2002), whose growth curve study indicated that 

reading skill was more likely to influence math growth than vice versa. However, the 

outcome in that case was a composite measure that included problem solving, which is more 

closely related to reading skills than are measures of computation or fluency.

The current study also highlights the role of inattention with regard to our mathematical 

outcomes, particularly for the broader computational measure. The impact of inattention 

predicting math performance has been found previously in several studies (Fuchs et al., 

2006; Huckeba et al., 2008; Raghubar et al., 2009). However, the mechanism remains 

unclear. For example, it has been suggested that inattention contributes to certain types of 

mathematical errors, including switching from one operation to another on mixed format 

computation tasks (Raghubar et al., 2009), which can negatively affect math performance, 

although that study did not find inattention to relate directly to switch errors. There is also a 

distinction between the behavioral inattention assessed in both Raghubar et al. (2009) as 

well as the present study versus measures of cognitive attention. For example, measures of 

sustained attention (e.g., omissions on continuous performance tests) have been shown to be 

related to weaker computation performance (Lindsay, Tomazic, Levine, & Accardo, 2001). 

Clearly, more work is needed to understand specifically why and what type of inattention is 

predictive of math performance, which may also differ according to the measure evaluated. 

The present study found that inattention was not uniquely related to fluency skills at the final 

time point, though the zero-order relations of inattention with both types of math skill were 

similar at both time points, and in the full sample inattention was uniquely predictive.

Working memory has been found to be a predictor of math performance (Bull & Scerif, 

2001) and to differentiate level of math performance (Gathercole, Pickering, Ambridge, & 

Wearing, 2004). Here, working memory was a unique predictor for broad math computations 

but not for specific math fluency. Although working memory is likely a strong contributor to 

the development of math fact learning and retrieval, at the grades studied here (3–6) its 

contribution may be more muted to the extent that such facts are established. An intriguing 

finding was that for broad math computations, working memory predicted later but not 

initial (concurrent) performance, whereas the opposite pattern was true for the reading 

predictor. At the initial time point, the majority of the types of problems solved are similar to 

those of the more basic fluency measures, where similar predictive patterns were evidenced. 

In contrast, more complex computation (such as those that students encountered at the final 

time point) requires a wider range of procedures and algorithms that require the storage, 
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processing, and manipulation of the contents of working memory to produce a correct 

answer.

Although predictors differed according to the type of math measure examined, we did not 

find a similar distinction among students with different levels of math performance (utilizing 

either continuous predictors or MD group designations). We did not find evidence that the 

predictors operated on final performance differentially according to initial performance. We 

therefore conclude that the predictors of math performance are similar across the continuum 

of skill level. These results are on the surface at odds with other studies that have found 

differences among students with more versus less severe MD (Geary et al., 2007; Geary et 

al., 2009; Murphy et al., 2007), where the implication is that cognitive skills operate 

differently in students with more severe MD (typically referred to as MLD in those studies) 

than in students with less severe MD (referred to as low achievement). However, differences 

in predictors employed and identification procedures can help account for differences in 

interpretation. For example, Geary et al. (2007) found that the central executive fully 

mediated the relationship of both counting knowledge and retrieval errors on complex 

addition with group severity. Those authors also reported that although working memory is 

predictive of math performance in MLD (< 15th percentile in both kindergarten and Grade 

1) and LA groups (23rd to 39th percentiles), only the MLD group exhibited working 

memory deficits. In a later study, Geary et al. (2009) found that although number sense 

measures are significantly predictive of both MLD or LA membership, below-average IQ 

and working memory deficits explained the distinction between them.

It is also possible that the cut score we employed for the more severe MD group was still too 

liberal to find significant group differences. For example, Murphy et al. (2007) used a more 

stringent cutoff of less than 10% and found their MLD group to have a significantly lower 

rate of growth from kindergarten to Grade 3 than both their LA group and their typically 

achieving comparison group. Another example is seen in children with developmental or 

acquired dyscalculia, (cutoff < 5%) who have also been found to remain stable (Auerbach, 

Gross-Tsur, Manor, & Shalev, 2008; Temple & Sherwood, 2002). The latter study concluded 

that mathematical deficits are more related to number-based factors than cognitive ones such 

as working memory (Temple & Sherwood, 2002). These studies identify a small proportion 

(~5%) of students with MLD, primarily by requiring scores to be below a relatively stringent 

cutoff level at more than one time point. The results of the present study suggest that any 

group of students identified by such criteria may be more stable (when scores pass the 

categorical threshold but remain within the expected RCI) or less stable (when scores do not 

pass the categorical threshold but still show greater than expected RCI) than might be 

initially assumed, and this stability can be influenced by both where the threshold is set and 

what type of math measure is used to define groups.

 Limitations and Future Directions

The present study expands the literature in a number of ways by considering multiple factors 

that influence stability of math scores among students with and without MD. Readers 

should, however, interpret findings with some important limitations in mind. These include 

the use of a liberal cutoff score, reliance on only computational measures to define the MD 

Martin et al. Page 16

J Learn Disabil. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



group, inclusion of a relatively limited sample of predictors, and restriction to initial and 

final time points.

A liberal cutoff has been used and supported in several studies (Hanich et al., 2001; Geary et 

al., 2004; Jordan, Kaplan, & Hanich, 2002). Moreover, subgrouping of participants within 

this larger sample allowed for comparison of severity levels directly. Although using a 

composite measure or both (or additional) types of criterion math skills simultaneously may 

have advantages, the use of computational measures is still the most common way math 

difficulties are identified in research studies (Berg, 2008; Mabbott & Bisanz, 2008; Rosselli, 

Matute, Pinto, & Ardila, 2006; Siegel & Ryan, 1989; H. L. Swanson & Beebe-

Frankenberger, 2004). Still, patterns of change and correlates may differ for problem solving 

and computations (Fuchs et al., 2008). Additional predictors could also have been utilized, 

particularly those focused on numbers that may be more specific in identifying students 

most likely to have the lowest scores because of an underlying lack of both procedural and 

conceptual number knowledge. Yet although instruments of this type have been more 

commonly used at younger ages (Cirino, 2011; Jordan et al., 2006; Krajewski & Schneider, 

2009; LeFevre et al., 2006), they are less commonly available for the age of the students in 

this study. Nevertheless, this represents an interesting avenue for future research. Finally, 

given that the students in this study were evaluated on up to four occasions, it would be 

possible to track their performance with growth curves, as has been done in other 

longitudinal math research (Jordan et al., 2009). Although such studies are clearly 

informative and would no doubt offer another perspective on the issues considered here, the 

present study emphasized change from one point to another because this is the case when 

making a diagnosis or determining whether improvement has occurred. In sum, it would be 

beneficial to evaluate the hypotheses of the present study across multiple time points and 

with several outcomes, with a broader range of predictor variables, and using different 

definitions of MD.

A strength of this study is its consideration of an RCI for evaluating individual change and 

comparing this to categorical metrics. However, components of RCI were derived from 

normative manuals (McGrew & Woodcock, 2001; Wilkinson, 1993) and differed across 

measures. For broad computations, the criterion for change was established with a test–retest 

coefficient (and the standard deviations of that sample), whereas age-specific SEMs were 

utilized for the fluency measure. Ideally, comparisons across measures would compute the 

RCI in the same way, as would be the case in an intervention study with a randomized 

control group. Nonetheless, both measures are highly reliable, and the changes required to 

exceed RCI were similar (approximately 11–14 standard score points).

 Conclusion

The present study highlights the impact cut-point designation and the choice of measure 

have on who is potentially identified as having difficulty. The findings of this study also 

suggest promise for the use of a continuous change measure of stability (RCI) over a 

categorical one (cut point). These continuous stability results were more similar than 

different across measures and for students with differing initial levels of performance; future 

research should evaluate other discrete measures in analogous manner to determine their 
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relevance both for identification and for establishing change. Further consideration of the 

emerging implications of MD as a categorical versus continuous dimension is also 

warranted. Taken together, such information may help to identify patterns of academic and 

cognitive skills that are more or less likely to remain stable over time and may point to 

productive avenues for designing interventions.
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Table 1

Diagnostic Grouping at the Initial Time Point.

Criterion Group n %

WRAT-3 Arithmetic MD 83 57.6

Control 61 42.4

WJ-III Math Fluency MD 64 54.2

Control 55 45.8

Both criteria MD both 54 45.4

MD WRAT-3; control WJ-III 9 7.5

Control WRAT-3; MD WJ-III 10 8.4

Control both 46 38.7

Note: WRAT-3 = Wide Range Achievement Test–3rd Edition; MD = math difficulty; WJ-III = Woodcock–Johnson Tests of Academic 
Achievement–III. A total of 25 students could not be classified under WJ-III criteria given the conditions of the larger study. Percentages within 
each group sum to 100.
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Table 2

Descriptive Statistics on Math Difficulty and Control Groups.

MD (n = 83) No LD (n = 61)

Variable Category or Scale M SD M SD

Age Years 9.75 0.82 9.25 0.71

Sex Female (%) 47.0 52.5

Ethnicity African American (%) 52.4 52.5

Caucasian (%) 15.9 18.0

Hispanic (%) 25.6 26.2

Other (%) 6.1 3.3

Reduced or free lunch Received total (%) 75.68 51.79

WASI FSIQ Standard score 89.77 9.4 101.87 10.7

WRAT-3 Arithmetic Standard score 86.77 4.6 109.89 7.7

WRAT-3 Reading Standard score 91.37 12.5 108.23 8.2

WJ-III Math Fluency Standard score 88.45 12.4 102.39 10.6

SWAN-IV Inattention –27 to +27 –6.29 9.9 +4.49 13.4

Visual WM Raw score 7.94 2.4 9.56 3.6

Verbal WM Raw score 6.33 2.4 7.98 3.1

Note: Values are means and standard deviations, unless otherwise noted. MD = math difficulty; no LD = no learning difficulties; WASI FSIQ = 
Wechsler Abbreviated Scale of Intelligence Full Scale IQ; WRAT-3 = Wide Range Achievement Test–3rd Edition; WJ-III = Woodcock–Johnson 
Tests of Academic Achievement–III; SWAN-IV = Strengths and Weaknesses of ADHD and Normal Behavior–4th Edition; Visual WM = Visual 
Working Memory from the Visuospatial Working Memory Task; Verbal WM = Verbal Working Memory from the Categorization Listening Span 
Task. Groups are significantly different on all measures, p < .01, except for sex and ethnicity.
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Table 3

Rate of Categorical Change by Diagnosis and Measure.

No Change Change

Diagnosis n % n %

WRAT-3 Arithmetic

    No LD 55 90.16 6 9.84

    MD 51 61.45 32 38.55

WRAT-3 Arithmetic Severity

    Less severe 28 54.90 23 45.10

    More severe 23 71.88 9 28.13

WJ-III Math Fluency

    No LD 48 87.27 7 12.73

    MD 40 62.50 24 37.50

WJ-III Math Fluency Severity

    Less severe 15 48.39 16 51.61

    More severe 25 75.76 8 24.24

Note: WRAT-3 = Wide Range Achievement Test–3rd Edition; no LD = no learning difficulties; MD = math difficulty; WJ-III = Woodcock–Johnson 
Tests of Academic Achievement–III. “More severe” (< 16th percentile) and “less severe” (16th to 32nd percentile) subdivide the groups identified 
as MD in the section above.
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Table 4

Rate of Continuous Change by Diagnosis and Measure.

Better Stable Worse

Diagnosis n % n % n %

WRAT-3 Arithmetic

    No LD 3 4.92 40 65.57 18 29.51

    MD 12 14.46 66 79.52 5 6.02

WRAT-3 Arithmetic Severity

    Less severe 9 17.65 39 76.47 3 5.88

    More severe 3 9.38 27 84.38 2 6.25

WJ-III Math Fluency

    No LD 7 12.73 41 74.55 7 12.73

    MD 15 23.44 46 71.88 3 4.69

WJ-III Math Fluency Severity

    Less severe 7 22.58 23 74.19 1 3.23

    More severe 8 24.24 23 69.70 2 6.06

Note: Continuous change gauged by reliable change index. WRAT-3 = Wide Range Achievement Test–3rd Edition; no LD = no learning 
difficulties; MD = math difficulty; WJ-III = Woodcock–Johnson Tests of Academic Achievement–III. “More severe” (< 16th percentile) and “less 
severe” (16th to 32nd percentile) subdivide the groups identified as MD in the section above.
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Table 5

Correlations Among Predictor and Outcome Measures in Full Sample.

Measure 1 2 3 4 5 6 7

1.WRAT-4 Reading

2.Verbal WM .227

3.Visual WM .306 .481

4. SWAN-IV Inattention .323 .299 .368

5.WJ-III Math Fluency initial .485 .276 .280 .567

6.WJ-III Math Fluency final .406 .243 .329 .541 .706

7.WRAT-3 Arithmetic initial .598 .248 .282 .514 .587 .456

8.WRAT-3 Arithmetic final .512 .350 .379 .534 .584 .641 .639

Note: Predictor variables administered at initial time point.WRAT-4 = Wide Range Achievement Test–4th Edition; Verbal WM = Verbal Working 
Memory from the Categorization Listening Span Task; Visual WM = Visual Working Memory from the Visuospatial Working Memory Task; 
SWAN-IV = Strengths and Weaknesses of ADHD and Normal Behavior–4th Edition; WJ-III = Woodcock–Johnson Tests of Academic 
Achievement–III; WRAT-3 = Wide Range Achievement Test–3rd Edition. All correlations significant p < .01.
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