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Impact of host genetic polymorphisms on vaccine induced antibody response
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ABSTRACT
Many host- and vaccine-specific factors modulate an antibody response. Host genetic polymorphisms, in
particular, modulate the immune response in multiple ways on different scales. This review article
describes how information on host genetic polymorphisms and corresponding immune cascades may be
used to generate personalized vaccine strategies to optimize the antibody response.
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Introduction

In the last century, vaccines have become the primary preven-
tion strategy of many infectious diseases and have saved mil-
lions of lives.1 On the other hand, the development of effective
vaccines against global killers such as human immunodefi-
ciency virus, Mycobacterium tuberculosis, and malaria parasites
(Plasmodium spp.) remains a major challenge: Just recently, the
European Medicines Agency gave a positive scientific opinion
on the first malaria vaccine Mosquirix (RTS,S), although the
vaccine's efficacy is limited.2 Existing vaccines for Mycobacte-
rium tuberculosis are only partially effective.3 Also, vaccines
against influenza or measles may fail in some cases. In particu-
lar, patients at the extremes of age,4 pregnant women,5 as well
as patients with chronic diseases such as diabetes,6 autoimmune
diseases,7,8 or after transplantation9-11 show lower vaccine
response rates. A better understanding of the host-pathogen
interaction and new insights into vaccine immune response
modulating factors will help to improve current vaccination
strategies and to develop novel types of vaccines.12,13

Vaccination effectiveness is influenced by various vaccine-,
pathogen-, and host-related factors (see Fig. 1).4,14-16 Several
studies have demonstrated that the host genetic background
(genotype) has a strong influence on the immune response, e.g.
to influenza, Hepatitis B or measles vaccination.17-19 Over the
last few years, it has been proposed frequently that genetic
information might be used to predict vaccine effectiveness and
might help to develop more effective, individualized vaccina-
tion strategies.15,20,21 In this review, we summarize general con-
cepts of how the genetic variations of the host can contribute to
variability of vaccine-induced humoral immunity. Further, we

discuss important clinical studies and how mathematical,
mechanistic models help uncover therapeutic targets for per-
sonalized vaccination strategies.

The Vaccine Induced Immune Response: A Network
of Networks

In general, vaccines aim to induce a significant level of neutral-
izing antibodies against specific viruses or bacteria, leading to
protective immunity. In clinical studies seroprotection is nor-
mally defined as a specific antibody titer or antibody titer
increase (seroconversion).22 However, vaccine-induced immu-
nity is far more complex and can be understood as a dynamic
network of molecular, cell-to-cell and tissue interactions that
are organized in a hierarchical structure. Molecular interactions
form networks and are themselves organized in networks on a
higher cellular level: Dendritic cells detect the vaccine antigen
and other components through pattern-recognition receptors,
in particular Toll-like receptors (TLRs).23 Activated TLRs in
turn initiate various signaling pathways through Toll/interleu-
kin-1 receptor(TIR)-domain containing adaptor proteins such
as myeloid differentiation primary response protein 88
(MyD88) and TIR domain containing adapter molecule 1
(TICAM1). This results in the expression of inflammatory
genes, which are mainly regulated by a specific interferon regu-
latory factor or nuclear factor-kB (NF-kB), leading to a produc-
tion of various cell surface receptors, cytokines, and
chemokines.24 Activated dendritic cells mature to antigen-pre-
senting cells and migrate to lymph nodes, where they present
vaccine epitopes to T-cell receptors through human leukocyte
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antigen (HLA) molecules on their cell surface.25 This in turn
initiates the maturation of na€ıve CD4+ T-cells to effector T-
cells. The additional secretion of cytokines such as interleukin
(IL) 12 and interferon (IFN) g leads to proliferation of type 1 T
helper cells (Th1), while the secretion of cytokines such as IL-4,
IL-6, and IL-10 leads to proliferation of type 2 T helper cells
(Th2). Th2 cells in turn support the proliferation of B-cells and
their differentiation to antibody-secreting plasma cells and are
thus an important factor for a successful vaccination.26-28 Due
to its complexity, the vaccine-induced immune response is a
focus of on-going research and further processes involved in
the humoral immune response have been reported.29,30

Immunological network structure and robustness

Basically, intercellular signaling processes of immune cells are
orchestrated by cytokines, chemokines, and cell surface receptors,
while intracellular signaling processes are conducted by various
signaling pathways (e.g., TLR or Janus Kinase (JAK)/Signal
transducer and activator of transcription (STAT) signaling path-
way). Gene regulatory networks control both intra- and intercel-
lular processes. As often described for biological interaction
networks,31-33 one can also assume that in an immune response
only few components such as NF-kB regulate many processes
(so-called key regulators) while most components regulate only a
few processes. An advantage of such a network topology is that
a single mutation in a random gene hardly affects the global
immune response, because the failure does not propagate.34 In
addition, gene redundancy, overlapping functions of genes as
well as regulatory feedback mechanisms are able to compensate
for gene perturbations. The concept underlying these phenomena
is known as biological robustness and is a key property of living
systems.35,36 The immune system shows features of robust sys-
tems such as functional redundancy of genes and proteins.37-39

For example, a mutation in IFN-a1 (IFNA1) may affect its bind-
ing affinity to a receptor, but it has many paralogues, which are
themselves potent alpha interferons (IFN-a2-14).37 On the other

hand, mutations in the NF-kB signaling pathway or several
mutations in HLA molecules has been linked to diseases such as
Crohn’s disease and other autoimmune disorders.40-42 We
assume that in immunosuppressed patients, e.g. transplant recip-
ients, the level of robustness is reduced due to immunosuppres-
sive drugs, which decreases the compensatory mechanisms.
Immunosuppressive drugs used in transplant patients mainly
affect different signals of T-cell activation, e.g., Calcineurin inhib-
itors, as well as proliferation capacities of T- and B-cells such as
mycophenolic acid, rapamycin or methotrexate.43 Other immu-
nosuppressive drugs affect signaling pathways such as JAK/
STAT or TNF-a inhibitors.44 Therefore in such risk groups,
genetic polymorphisms affecting the vaccine outcome may be
easier to unmask.

Genetic polymorphisms in vaccine response

Evolution acts on many levels

The immune response is continuously shaped by evolution-
ary adaptations on the genome level of both host and patho-
gen, although with different rates. The development of
vaccines against pathogens with dynamic antigen variation
(e.g., human immunodeficiency virus (HIV) and other RNA
viruses) remains a major challenge.45 Knowledge of geneti-
cally stable regions in the pathogen genome helps to develop
new vaccination strategies.46 Similarly, the knowledge of
genetic variations in the host, which lead to an increased
antibody response, may help to predict vaccine efficiency
and uncover important factors of the immune response. For
instance, HLA molecules show high genetic variation among
individuals (more than 13,000 alleles in the IMGT/HLA
database, release 3.21.0) and HLA polymorphisms have been
used to reconstruct human migration events.47 Due to the
key role of HLA in the self/non-self immune recognition, it
is not surprising that vaccine response shows variability
between individuals.

Figure 1. Selected factors for a successful vaccination.
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Single nucleotide polymorphisms (SNPs)

SNPs are single nucleotide variations of the genome sequence,
which occur frequently within a population (by definition at least
1%).48 In genetic studies, particular SNPs, so-called tag SNPs, are
used as markers for haplotypes. Haplotypes are regions with high
linkage disequilibrium and are represented by a set of SNPs.49 To
create a haplotype map of the considered genome, genotyping
studies usually only need to examine a set of characteristic SNPs
instead of sequencing the whole genome.50

Due to technical advances in genotyping techniques,51 the num-
ber of submitted SNPs in the NCBI dbSNP database has grown
exponentially over the last 10 y. The human genome has about
3 billion base pairs.52 Early studies estimated an average SNP fre-
quency within the human genome of about one SNP per 1000 base
pairs (corresponds to 3 million SNPs).53,54 Today, there are almost
98 million SNPs listed in dbSNP (release build 144). However, the
majority of SNPsmust be regarded as candidate SNPs as the results
of the studies that originally discovered them have not been repro-
duced. Some studies highlighted that a significant amount of SNPs
in the dbSNP database is not reliable.55,56 In comparison, the SNP
map provided by the international HapMap project reported about
10 million SNPs with a minor allele frequency (MAF) of at least
5%.57 Most SNPs, however, probably do not impact the phenotype
due to biological robustness (as mentioned above).

In general, SNPs can be located within coding or non-coding
sequences58: Within the coding region, a SNP may change the
amino acid sequence of the respective protein (missense SNP),
result in a stop-codon (nonsense SNP) or just have no effect on
the protein sequence (synonymous SNP). SNPs within the
non-coding region can affect the produced protein amount on
the DNA or RNA level: At the DNA level, SNPs in the 50
untranslated region (UTR) may affect the transcription factor
binding, which leads to an up or down regulation of gene
expression. SNPs in the 30-UTR may affect microRNA binding
and, as a result, gene silencing. At the RNA level, SNPs may
affect mRNA degradation, RNA splicing, or the RNA sequence
of non-coding RNA.

Impact of SNPs on the humoral immune response

Presuming an evolutionary pressure exerted by host-pathogen
interaction, one can hypothesize that SNPs either have none, a
positive or a negative, but never a fatal effect on the host. In
fact, several independent studies identified a couple of SNPs to
influence treatment outcome of infectious disease such as influ-
enza, Hepatitis C virus (HCV), and cytomegalovirus (CMV) as
well as the antibody response after vaccination (e.g., influenza,
measles).19,59-62

A very prominent example concerns IFN-λ.63,64 Since 2009,
SNPs in IFNL3/4 genes are associated with the HCV treatment
outcome.60,61,65-70 In particular, SNPs in IFNL3 (rs8099917) and
IFNL4 (rs368234815) have been proposed as predictors for spon-
taneous viral clearance and treatment success to pegylated inter-
feron a/ribavirin (PEG-IFN-a/RBV) treatment.60,61 The IFNL4
SNP (rs368234815) has also been associated with CMV retinitis
in HIV-infected risk patients (nD1134, p-valueD7E-3),71 as well
as with CMV replication in solid-organ transplant recipients at
risk (nD455, p-valueD4E-02).72 Moreover, an IFNL3 SNP

(rs8099917) may modulate the humoral immune response after
vaccination.62 Individuals carrying the minor allele in one or both
alleles showed an increased seroconversion rate after influenza
vaccination.62 Quantitative real-time PCR investigations have
shown, that IFNL3 expression in individuals carrying the minor
allele in one or both alleles was lower in PBMCs.70 In vitro studies
showed that IFNL3 suppressesTh2-cytokines74-77 and modulates
B-cell function.62,78 Although the impact of IFN-λ on immune
cells is not yet understood, these studies indicate that IFNL3 is an
important regulator of the Th1/Th2 balance and modulates viral
clearance/antibody response.

Further SNPs that influence the humoral immune response
to influenza vaccination have been reported (see Table 1):
Gelder et al. investigated associations between HLA class II
alleles and H1N1/H3N2 hemagglutination-inhibition (HAI)
titers in an influenza risk group. They identified 4 alleles (n D
73, p-value range of 2.3E-03 to 1.6E-02, significance level p-
value < 5.0E-2).79 Poland et al. were not able to reproduce the
HLA class II associations to H1N1/H3N2 antibody titer (likely
due to insufficient statistical power). Instead, they found associ-
ation of HLA class I alleles and H1N1 antibody titer, as well as
several SNPs in coding and non-coding regions of cytokines
and cytokine receptors (n D 184, p-value range of 2.3E-03 to
9.0E-02, significance level p-value < 5.0E-2).80 Franco et al.
combined genotype, gene expression and antibody titer infor-
mation in order to identify genes whose genotype influences
the antibody response through an alteration of gene expression.
They identified 20 genes (n D 199, p-value < 5.0E-08, signifi-
cance level p-value < 5.0E-2).17 Most of the identified genes
are not specifically linked to the immune system, but to intra-
cellular transport and membrane trafficking. Seven genes
encode proteins involved in antigen transport and antigen
processing, but these findings have to be confirmed through
further studies with larger sample size.20

Several genome wide association studies (GWAS) investi-
gated the antibody response to various other vaccines, e.g. hep-
atitis B,81 smallpox,82 measles19,73,83,84 and rubella.85 These
studies mainly identified SNPs in cytokines, cytokine receptors
and co-receptors, but these findings are hard to interpret,
because there are no replication studies by other research
groups and none of the SNPs has been investigated on the
RNA or protein level, which is required though for a biological
interpretation.86 Similarly to influenza vaccination, variations
in HLA molecules have been associated to hepatitis B vaccine
response: Png et al. identified three independent variants in
HLA class II and class III regions in an Indonesian popula-
tion.87 Interestingly, polymorphisms associated to antibody
response in cytokines and cytokine receptors have been found
in genotyping studies of cytokine coding genes but not in
genome-wide genotyping studies. Common caveats of GWAS
are summarized in the next section.

Toward personalized vaccination strategies:
identification and investigation of SNP impacts

Gene-association studies propose the first hypothesis

In summary, the impact of genetic polymorphisms on the vac-
cine induced humoral immune response has been studied
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mostly in GWAS despite two main caveats: First, the replica-
tion of GWAS results proves to be difficult, and second, GWAS
show at best statistical but not causal associations. In order to
infer causal associations and to understand mechanistic details,
the impact of SNPs has to be studied on several levels such as
on the RNA or protein level as well as on the immune cell
response and on the host antibody response12 (see Fig. 2).
However, it is reasonable to infer the first hypothesis from a
genetic association with the host antibody response, because
not every SNP that affects the RNA or protein level has a physi-
ological effect.

Several factors complicate the replication of genetic associa-
tion data: Many GWAS are insufficient for solid statistical anal-
ysis due to various reasons, e.g., an insufficient case/control
ratio, an insufficient sample size or different case/control popu-
lation groups. The linkage disequilibrium and thus the selected
tag SNPs strongly influences the statistical power of a sample
size and it is not clear to which extent tag and haplotype maps
are transferable across population groups.86,88 Furthermore, the
required sample size increases with the number of tested SNPs
(when investigating small effects) and decreases for high minor
allele frequencies and high prevalence of the investigated phe-
notype (e.g., weak antibody response to vaccination).86,89,90

This is the reason why GWAS that test few SNPs in risk groups
need relatively low sample sizes. In contrast, a healthy group
may show a very robust immune response such that a large
group needs to be tested to find a particular geno-/phenotype
association. In a less robust patient cohort, e.g., after

transplantation, lower patient numbers may depict a particular
phenotype. However, confounding effects such as differences in
the level of immunosuppression must be ruled out thoroughly.
A further caveat is that definitions of vaccine response pheno-
types and tests are often not standardized. The surrogate
marker “seroprotection” has an arbitrary titer for different
pathogens, e.g. >1:40 for influenza. Conventional serological
parameters can seriously over- or underestimate the clinical
protection of an individual.91

However, if no prior knowledge of vaccination-related genes
exists, a GWAS can be helpful to propose a first hypothesis86: A
GWAS identifies a broad set of candidate genes and alleles
associated to a vaccine induced antibody level, which then need
to be replicated and associated to further vaccine response phe-
notypes, such as cytokine profiles. Several papers have
highlighted that the careful design of a GWAS significantly
improves its quality.86,89,90 Subsequent case-control studies are
required to confirm the first findings and, finally, the explora-
tion of SNP impacts on RNA, protein and immune cell level
will complement GWAS results and help to understand the
underlying mechanism behind genotype-associated vaccine
response (see Fig. 2).

Although various genetic associations with vaccine
response already have been proposed, only few replication
studies and subsequent research studies have been per-
formed. In contrast to vaccine research, the research of
genetic factors for cancer susceptibility and cancer therapy
is more advanced.92,93 A bibliometric analysis of recent

Table 1. Genes with polymorphisms that influence the vaccine induced antibody level (selected studies).

Vaccine Gene(s) Function Study n Remarks Reference

HBV CD11a (ITGAL) part of LFA-1 43 candidate SNPs across
133 genes1

662 reproduced in second
group (nD393)

Hennig et al. 2008

HLA-DR, HLA-DP HLA class II molecules GWAS2 1683 reproduced in second
group (nD1931)

Png et al. 2011

HLA Class III GWAS2 1683 reproduced in second
group (nD1931)

Png et al. 2011

Measles CD46 co-receptor 66 candidate SNPs across 3 genes3 744 replication study,
prev. identified

Ovsyannikova et al.
2011

Influenza HLA-DRB1, HLA-DQB1 HLA class II molecules HLA class II alleles4 73 Gelder et al. 2002
HLA-A HLA class I molecule HLA class I and class II alleles5 184 Poland et al. 2008
IL6, IL12B, IFNB1 cytokine candidate SNPs in cytokines5 184 SNPs in coding or

regulatory region only
Poland et al. 2008

IL1R1,IL2RA, IL10RA,
IL12RB2, IL1RN

cytokine receptor candidate SNPs in cytokine
receptors5

184 SNPs in coding or
regulatory region only

Poland et al. 2008

NAPSA, GLMP, GM2A,
DYNL1, SNX29, TAP2,FGD2

antigen transport
and processing

GWAS and gene expression6 199 reproduced in second
group (nD125)

Franco et al. 2013

JUP, FBLN5 cell junction and adhesion genotype and gene expression6 199 reproduced in second
group (nD125)

Franco et al. 2013

OAS1 antiviral response genotype and gene expression6 199 reproduced in second
group (nD125)

Franco et al. 2013

LST1 lymphocyte proliferation
inhibition

genotype and gene expression6 199 reproduced in second
group (nD125)

Franco et al. 2013

CHST13, PAM metabolism genotype and gene expression6 199 reproduced in second
group (nD125)

Franco et al. 2013

RPL14, NAPSB, DIP2A,
LRRC37A4, NSG1, HRC2

various or unknown genotype and gene expression6 199 reproduced in second
group (nD125)

Franco et al. 2013

IFNL3 cytokine 2 candidate SNPs in IFNL3 gene7 196 reproduced in healthy
volunteers (nD28)

Egli et al. 2014

1 infants
2 Indonesian population over 5 y of age
3 schoolchildren
4 influenza risk group according to ACIP
5 18–40 y old male Caucasians
6 18–40 y old males, ethnically homogeneous
7 immunosuppressed patients
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publications in vaccine and/or SNP related research reflects
the current scientific landscape (see Fig. 3; 94): Although
immunobiological research (green cluster) shows close prox-
imity to genetic studies (blue cluster), vaccine research and
clinical studies (red cluster) are almost separated from
genetic studies. In contrast, cancer research (yellow cluster)
highly overlaps with both genetic studies and immunobio-
logical research.

Experimentally validated mathematical models unravel
mechanistic details

Systems Biology applies mathematical models to test mechanis-
tic hypotheses on biological processes: For instance, transport
and recycling processes of cell surface recepors or signaling
pathways are simulated and the simulation results are validated
against experimental data.95,96 Such mechanistic models can be

Figure 2. Multiscale impact of single nucleotide polymorphisms (SNPs).

Figure 3. Bibliometric map automatically created with Visualization of Similarity (VOS) viewer. Scientific terms are clustered with respect to their co-occurrence in title and
abstract of PubMed references, which are published over the last 3 y (2013/01/01 - 2015/08/14) with ‘vaccination’, ‘vaccine’, ‘humoral immune response’, ‘single nucleo-
tide polymorphism(s)’ or ‘SNP(s)’ in title. Term proximity reflects co-occurrence and term size reflects occurrence frequency. Genetic terms (blue cluster) overlap with can-
cer terms (yellow cluster) and show close proximity to immunobiological terms (green cluster). In contrast, clinical and vaccination terms (red cluster) are almost
separated from genetic terms. Bridging terms are for instance ‘liver transplantation’, ‘chronic hepatitis’ and ‘ethnicity’. In total, 4,366 terms from 16,658 references are
clustered.
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also applied to test hypotheses on how SNPs modulate the
immunological signaling network and cause the observed vari-
ability in vaccine response: Cell signaling and effector cell com-
munication can be formalized in mathematical models and
simulated.97,98 The consequences of the investigated genetic
polymorphism need to be implemented, for instance in the
form of changes in protein concentration or changes in kinetic
factors. If the simulation results do not match the observed vac-
cine response phenotype, further experiments are required to
identify missing parts in the model such as crucial interactions.
If simulation results match experimental results, perturbation
experiments can be applied to test the predictive power of the
model: for instance, antagonists can be used to block cytokine
receptors. If the model is able to predict the impact of such per-
turbations, it can be further used to test modifications for
improved antibody response. If the experimental tests do not
show the same results as the model, the model has to be vali-
dated again. This iteration between experiments and mathe-
matical modeling helps to unravel crucial interactions involved
in vaccine response. Finally, such models can be used to predict
the vaccine response based on patient data. Predictive models
enable in silico experiments, for instance to determine potential
adjuvant targets or to suggest personalized vaccination strate-
gies (e.g., antigen amount and vaccination frequency).13,99,100

Conclusion

In summary, the association of SNPs and vaccine outcome has
just begun. Important steps for a more profound understanding
of these associations will be the mechanistic exploration of the
impact of SNPs through an integrative analysis of gene expres-
sion, protein and immune cell data and their integration in
mathematical models. In the near future we hope to use this
knowledge to improve current vaccine strategies and develop
new types of vaccines.
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