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Induction of mucosal immunity through systemic immunization: Phantom or reality?
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ABSTRACT
Generation of protective immunity at mucosal surfaces can greatly assist the host defense against
pathogens which either cause disease at the mucosal epithelial barriers or enter the host through these
surfaces. Although mucosal routes of immunization, such as intranasal and oral, are being intensely
explored and appear promising for eliciting protective mucosal immunity in mammals, their application in
clinical practice has been limited due to technical and safety related challenges. Most of the currently
approved human vaccines are administered via systemic (such as intramuscular and subcutaneous)
routes. Whereas these routes are acknowledged as being capable to elicit antigen-specific systemic
humoral and cell-mediated immune responses, they are generally perceived as incapable of generating
IgA responses or protective mucosal immunity. Nevertheless, currently licensed systemic vaccines do
provide effective protection against mucosal pathogens such as influenza viruses and Streptococcus
pneumoniae. However, whether systemic immunization induces protective mucosal immunity remains a
controversial topic. Here we reviewed the current literature and discussed the potential of systemic routes
of immunization for the induction of mucosal immunity.
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Introduction

The vast mucosal surfaces covering the gastrointestinal, uro-
genital and respiratory tracts, as well as the conjunctiva, inner
ear and ducts of the exocrine glands, are endowed with power-
ful mechanical and physicochemical mechanisms that either
prevent the entry of foreign bodies (including microorganisms)
or facilitate their degradation.1,2 Highly specialized innate and
adaptive mucosal immune responses at these surfaces are of
major importance to modulate the colonization of commensal
and pathogenic microorganisms, and to defend the host against
the extravasation of the pathogens through the epithelium to
cause diseases at other tissues.3 Extensive research has demon-
strated that secretory IgA is the main immunoglobulin isotype
mediating humoral immunity at mucosal surfaces, but some
studies have shown that locally produced IgM and IgG also
contribute to the mucosal immune defense.4-10 Therefore, vac-
cines that generate protective antibody (and cell-mediated)
responses at mucosal sites would greatly advance the field of
vaccinology.

Mucosal route of immunization elicits immune responses at
the local and distal mucosal sites, as well as systemic immune
responses. Therefore, most current efforts attempting to elicit
protective mucosal immunity have focused on the mucosal
(such as oral and intranasal) routes of vaccination. Although
live, attenuated oral vaccines are generally immunogenic and
induce excellent protective immunity against the targeted path-
ogen, the production of such vaccines are complex and need to

grow large amounts of the pathogen prior to their attenuation.
The use of nonpathogenic mutants is relatively safer, but suffers
from the potential risk of reversion to virulence. In contrast,
non-replicating mucosal vaccines, based on subunit or acellular
antigens, would be preferable from safety perspectives. How-
ever, subunit oral vaccines require administration of relatively
large amounts of antigens to compensate for antigen degrada-
tion in the gastrointestinal tract, the co-administration of
potent adjuvants and/or delivery system to facilitate antigen
uptake by the antigen presenting cells (APC), and the need for
neutralization of stomach acids prior to vaccine administra-
tion.11 In contrast, the intranasal (i.n.) route of immunization
requires lesser amounts of antigens than the oral administra-
tion, but the safety and efficacy of i.n. vaccines remain to be
established.12-14 For example, the currently licensed influenza
vaccine, FluMist, is not recommended for children aged <2 yr
or children aged <5 yr with a history of recurrent wheezing, or
for asthmatic children and adults of any age.15 Although great
advances have been made toward the development of safe and
effective subunit mucosal vaccines, there has been a renewed
interest in investigating the potential of systemic immunization
for eliciting mucosal immunity.

Systemic immunization has generally been considered as
incapable of generating protective mucosal immune responses
for a longtime now, however, cumulative data from recent stud-
ies suggest that some systemically administered vaccines are
capable of eliciting mucosal immune responses, including
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secreting IgA antibodies. Such systemic vaccines may offer
potential manufacturing and regulatory advantages over the
mucosal vaccines. Here, we reviewed the current literature and
discussed the potential of systemic routes of immunization
with non-replicating vaccines for inducing mucosal immunity
in mammalian hosts (Tables 1–3). We have also included some
references to transcutaneous immunization (TCI) in this
review, since many of these studies involve the use of micro-

needles or other means to penetrate past the intact skin surface
to deliver the vaccine to the epidermis.

Intraperitoneal immunization

Intraperitoneal (i.p.) administration of vaccines has long
been used and studied as an experimental immunization
route for the induction of systemic immunity in animal

Table 1. Levels of antigen-specific IgA antibody responses at systemic and mucosal sites.

Gastrointestinal Tract Respiratory Tract Reproductive Tract

Delivery
route Saliva Intestine Feces Upper Lower Vagina Uterus Serum

i.p. ¡(21,23,
24,26)
C (16,20)

CC (18,
20,26)

C (26)
CC(28)
CCC (27)

¡(18,20,
21,24,25)
C(26)
CC(27)
CCC(17)

C(18,26,28)
CC(20)

CCC(27) ¡(27,28)
C(18,23)

i.m. C(33)
CC(35)

CC(47) C(37)
CC(32,47)

¡(55)
CC(34,35)
CCC(38)

¡(30,38,
41,50)
C(36,47,49)
CC(34)

C(31) ¡(34) C(31,
36,37)
CC(47)
CCC(38)

s.c. CC(68) C(59)
CC(58)
CCC(61)

¡(64,65,66)
C(68)

CC(60) ¡(56,57,
63,67)

¡(62) C(68)
CC(59)

¡(57,62,63,
66,67)
CC(59,
60,68)
CCC(61)

i.d. ¡(76,77,78)
CCC(72)

¡(79) ¡(76,77)
CC(69,71)

CC(70,73) CCC(72) ¡(76,78)
C(73,77)
CC(74)

TC C(86) C
C(97)

C(88)
CC(86)

¡(90) C(88)
CC(80,
81,97)

C(86) C(83) C(85,97)
CC(86)

¡(90) C(84,
88,97)
CC(80,82)

Levels were scored as none (¡), slight (C), moderate (CC), or strong (CCC) based on the primary publication. The numbers in the parenthesis refer to the citations in
the References.

Table 2. Levels of antigen-specific IgG antibody responses at systemic and mucosal sites.

Gastrointestinal Tract Respiratory Tract Reproductive Tract

Delivery
route Saliva Intestine Feces Upper Lower Vagina Uterus Serum

i.p. C(20,23) CC(18)
CCC(20)

CCC(27,28) CC(18,20,27) C(18,28)
CC(20)

CC(27) C(23)
CC(25)
CCC
(16-21,
24-28)

i.m. C(33) ¡(38) CC(30)
CCC(38)

C(31)
CCC(39)

C(40)
CCC(39)

C(36)
CC(30,52)
CCC
(31-35,
37-39,41)

s.c. CC(68) C(59) C(68) CCC(60) CC(56,57)
CCC(63,67)

C(62,68)
CC(59)

CC(61,62,68)
CCC
(57,59,
60,63-67)

i.d. CC(72) CC(76)
CCC(75)

C(73,76) CCC(72) ¡(76,78) C
(73,77)
CC(74)
CCC(75)

TC CC(86)
CCC(97)

CCC(86) CC(97)
CCC(80)

CCC(80)
CC(83)

C(85)
CCC(86,97)

CC(90)
CCC
(80,81,
83-85,86,
88,97)

Levels were scored as none (¡), slight (C), moderate (CC), or strong (CCC) based on the primary publication. The numbers in the parenthesis refer to the citations in
the References.
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models of vaccination. However, the i.p. route, in certain
antigen-adjuvant combinations, has also been reported to
induce mucosal immune responses, particularly gastrointesti-
nal IgA responses. For example, i.p. immunization of an
inactivated poliovirus vaccine with 1,25-Dihydroxyvitamin
D3 as an adjuvant significantly promoted not only serum
IgG but also salivary IgA responses in mice.16 Robust anti-
gen-specific serum IgG and pulmonary IgA responses were
generated in pigs upon i.p. immunization with a Mycoplasma
hyopneumoniae antigen co-administered with an oil emul-
sion.17 The i.p. administration of Bacillus thuringiensis
Cry1Ac protoxin in mice generated high levels of IgG and
IgM, and low but detectable levels of IgA in sera and the
lavage fluids from various mucosal sites (vagina, respiratory
tract, small and large intestine).18 The magnitude of individ-
ual Ig isotype responses induced appears to be depended on
the mucosal site analyzed, with IgA being the highest in
small intestine and both IgG and IgM being the strongest in
respiratory tract. Although the protective efficacies of the
induced mucosal immune responses were not evaluated in
this study, a subsequent study by this group has shown that
the mucosal immune responses elicited by i.p. immunization
with the Cry1Ac protoxin and amoebal lysates enhances the
protection against lethal intranasal challenges with Naegleria
fowleri in mice.19 Similarly, i.p. administration of an inacti-
vated SARS Coronavirus (SARS-CoV) vaccine adjuvanted
with a Poly (I:C) derivative induced antigen-specific IgG and
IgA responses at multiple mucosal sites in mice, with the
highest levels in the intestine and less significant but robust
responses in vaginal washes and lowest responses in the
mouth/saliva, while only strong IgG but no IgA responses
were observed in sera and lungs.20 Moreover, those systemic
and mucosal antibodies were effective in virus neutralization
activity.20 In contrast, i.p. immunization of mice with myco-
bacterium PstS-1 antigen failed to induce any specific IgA
responses in bronchoalveolar lavage (BAL) or saliva, nor did
it induce cytokine responses (e.g., IL-4, IL-5 and IFN-g) in
the lungs, although strong serum IgG responses were
observed.21 In another study, little protection was observed
against pulmonary infection in mice after i.p. vaccination
with a cholera toxin (CT)-adjuvanted Mycoplasma pulmonis-
vaccine.22 In a clinical study, i.p. immunization of patients
on continuous ambulatory peritoneal dialysis with tetanus
toxoid elicited significant specific IgG and IgA responses in
sera and peritoneal fluids, and salivary IgG but failed to
induce secretory IgA responses.23 The inefficiency of i.p.

immunization in generating mucosal immune responses was
also observed in several other studies.24,25

However, virus-like particles (VLPs) delivered by i.p. route
have shown good potential in generating both systemic and
mucosal immune responses. For example, i.p. administration of
mice with CpG-adjuvanted SARS-CoV VLPs increased anti-
gen-specific IFN-g and IL-4 producing cell populations in the
spleen, and IgA antibodies in lungs, intestine, feces, and vaginal
washes.26 Interestingly, i.p. immunization of mice with rotavi-
rus 2/6 VLPs was shown to be more effective than oral immuni-
zation in the induction of mucosal IgG and IgA in the feces and
uterine fluids, and serum IgG responses.27 Furthermore, it is
interesting to note that i.p. immunization with HIV-1 VLPs
could induce significant cross-clad neutralizing antibodies
against both autologous and heterologous primary isolates in
sera and vaginal washes, and elicit stronger cytotoxic T lym-
phocyte (CTL) responsesthani.n.immunization.28

Intramuscular immunization

Intramuscular (i.m.) administration is the most predominant
vaccine delivery method for humans, and it enables relatively
larger volumes to be injected.29 In addition, i.m. immunization
has been widely used in the immunogenicity and efficacy
studies of experimental DNA vaccines. Those studies have
demonstrated that i.m. vaccination can promote both systemic
and mucosal immune responses, and protect against mucosal
pathogen challenge.30-34 For example, i.m. immunization with
anti-caries DNA vaccine encoding S. mutans antigens fused to
cytotoxic T lymphocyte antigen-4 (CTLA-4) elicited strong
serum IgG and salivary IgA responses in both rabbits and
monkeys.35 Moreover, i.m. immunization of 2-week-old calves
with a bovine respiratory syncytial virus (BRSV) DNA vaccine
induced antigen-specific IgG and IgA responses in sera and
BAL fluids, and accorded protection against i.n.BRSV chal-
lenges.36 More importantly, i.m. immunization of a bovine
rotavirus VP6 DNA vaccine effectively protected mice against
oral challenges with a murine rotavirus strain by reducing
virus shedding in feces, suggesting that heterologous protec-
tion can be obtained by i.m. immunization of VP6 DNA vac-
cine.37 Heterologous protection was also observed against i.n.
H5N1 challenge in ferrets i.m. immunized with H1N1 VLPs.38

However, in mice only homologous protection was observed.
In a human trial involving 6 healthy female volunteers, i.m.
immunization with an alum-adjuvanted human papilloma
virus (HPV) vaccine increased the numbers of circulating

Table 3. Levels of antigen-specific IgM antibody responses at systemic and mucosal sites.

Gastrointestinal Tract Respiratory Tract Reproductive Tract

Delivery route Saliva Intestine Feces Upper Lower Vagina Uterus Serum

i.p. CC(18) CCC(18) CC(18) CC(18)
i.m. C(49) CC(34,41)
s.c. CC(61)
i.d. CC(73) C(73)CC(69)
TC -(80)CCC(82)

Levels were scored as none (¡), slight (C), moderate (CC), or strong (CCC) based on the primary publication. The numbers in the parenthesis refer to the citations in
the References.
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IgG- and IgA-secreting cells (ASCs) and generated HPV-spe-
cific IgG and neutralizing antibodies in sera, and cervical and
vaginal wash fluids,39 in consistence with the previous work
where women i.m, immunized with HPV16 VLPs in men-
strual cycle developed antigen-specific IgG in cervical secre-
tions.40 Furthermore, it was found that i.m. vaccination with
an inactivated influenza virus elicited wide dispersion of IgG
memory B cells to secondary lymphoid tissues including
Peyer’s patches (PP) and the nasal-associated lymphoid tis-
sues, which would ensure prompt activation in the event of
influenza infection.41 In addition, i.m. vaccination of humans
with the licensed inactivated hepatitis A and B vaccines
induced high levels of specific antibody responses in sera and
protection against hepatitis A and B infection,42-45 Moreover,
a recent meta-analysis of clinical studies indicate that i.m.
immunization of >10-wk-old infants with 2 full or 1/5 doses
of inactivated poliovirus vaccine resulted in >80% seroconver-
sion and is likely to protect >80% of vaccinees against
poliomyelitis.46

In addition to promoting robust antibody responses, i.m.
immunization has been shown to induce cell-mediated
immune (CMI) responses at mucosal sites. For instance, i.m.
immunization of mice with a DNA vaccine co-delivered with
CCL25 chemokine enhanced antigen-specific IFN-g secretion
by CD3CCD8C and CD3CCD4C T cells in mesenteric lymph
nodes (MLNs), and conferred complete protection against a
lethal i.n. influenza challenge.47 Similarly, i.m. administration
of retinoic acid to mice immunized with a replication-defec-
tive adenovirus vector increased both effector and memory T
cell numbers in the intestinal mucosal tissue and protected
mice from an intravaginal vaccinia virus challenge.48 More-
over, i.m. immunization of 7-day-old pigs with an inactivated
M. hyopneumoniae vaccine significantly increased the number
of IL-12 and IL-10 secreting cells in the lungs and bronchial
lymph nodes, and generated antigen-specific IgG, IgM and
IgA antibodies in BAL fluids as well.49 In Indian rhesus maca-
ques, a plasmid DNA vaccine expressing several SIV antigens
delivered by i.m. electroporation increased antigen-specific
IFN-g-secreting, but not IL-2-secreting, T cells in blood and
BAL fluids, with a greater proportion of specific CD8C T cells
in BAL fluids than that in the blood.50 Furthermore, a fourth
i.m. immunization administered 90 weeks after the third one,
rapidly boosted antigen-specific humoral and cellular
responses with higher population of specific IFN-gC memory
T cells in the BAL fluid than in the blood. On the other hand,
some vaccines administered by i.m. route were less effective or
inefficient in inducing mucosal immune responses.51,52 For
example, in the herpes simplex virus type 2 (HSV-2) vaccine
trials, i.m. vaccination of subunit vaccines such as glycoprotein
B in oil-in-water adjuvant and glycoprotein D in alum and 3-
O-deacylated monophosphoryl lipid A, failed to protect
against genital HSV-2 infection despite the good immunoge-
nicity.53,54 Moreover, i.m. vaccination of the nursing home
residents (aged 60–82 years) with an inactivated commercial
influenza vaccine failed to elicit IgA responses in nasal washes,
although strong haemagglutination inhibition (HI) titers were
detected in the sera.55 It is possible that the age or sex of the
vaccinees or the type of vaccine administered was a contribut-
ing factor to these observations.

Subcutaneous immunization

Subcutaneous (s.c.) route of immunization is another conven-
tional vaccination route widely used for various human vac-
cines and experimental vaccines in animal models. Recent
studies suggest that s.c. immunization of non-replicating vac-
cines could induce both systemic and mucosal antigen-specific
antibody responses, and protect the vaccinated animals against
infectious challenge.56-58 In a macaque study, s.c. immunization
with HIV gp140 with recombinant macaque major histocom-
patibility complex (MHC) class I and II elicited serum and
mucosal (recta and vagina) antigen-specific IgG and IgA
responses to both HIV gp120 and MHC class I alleles, and con-
ferred significant reduction in the plasma viral load after a rec-
tal challenge with simian HIV.59 In addition to mucosal
humoral immune responses, s.c. vaccination can potentially
enhance mucosal CMI responses. In this regard, s.c. immuniza-
tion of 3- to 8-week-old calves with a BRSV immunostimulat-
ing complex (BRSV-ISCOM) vaccine induced potent
lymphocyte proliferation responses concomitant with high lev-
els of IFN-g and IL-4 production in PBMCs as well as higher
antigen-specific IgA and IgG in sera, nasal passages, and BAL
fluids.60 More significantly, in spite of the presence of variable
levels of BRSV-specific maternally derived antibodies, the
immunized calves were significantly protected against an aero-
sol BRSV challenge with significant reduction in virus titers in
the upper and lower respiratory tracts.60

Hammerschmidt et al.61 demonstrated that s.c. adminis-
tration of retinoic acid to mice upregulated gut-homing
molecules on activated CD4C and CD8C T cells, and trig-
gered the generation of gut-tropic IgAC ASCs in the skin-
draining inguinal lymph nodes. Furthermore, s.c. immuni-
zation with retinoic acid plus CT or inactivated Salmonella
typhimurium elicited robust antigen-specific anti-CT and
anti-Salmonella mucosal immune responses in the small
intestine, and protected mice from cholera-related diarrhea
and oral Salmonella challenge. It is important to note that
some vaccines, such as inactivated influenza H5N1 vaccine,
administered by s.c. route successfully protected mice
against heterosubtypic challenge with potent cross-reactive
antibody responses in sera and mucosal sites (such as
vagina).62,63 Interestingly, although i.m. immunization of
mice with the B subunits of Shiga toxin type 1 and 2as a
fusion protein failed to induce any fecal antibody responses,
the vaccination efficiently reduced fecal bacterial shedding
after oral challenge with E. coli O157:H7.64 On the other
hand, s.c. immunization with Tir proteins and type III
secreted proteins IpaB and IpaD from E. coli O157:H7
failed to elicit protective mucosal immunity against subse-
quent pathogen challenges, although strong systemic
immune responses were detected.65-67 By using a combined
s.c. and i.m. immunization strategy, rhesus macaques vacci-
nated with a vaccine comprising of Chlamydia trachomatis
serover F native major outer membrane protein (MOMP)
with CpG-2395 and Montanide ISA 720 VG as adjuvants
developed potent systemic and mucosal humoral and CMI
responses with high levels of antigen-specific IgG and IgA
in plasma and mucosal secretions (vaginal washes, tears,
saliva and stools), as well as enhanced lymphocyte
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proliferation responses and IFN-g, TNF-a and IL-6 produc-
tion by PBMCs.68

Intradermal immunization

Intradermal (i.d.) vaccination, developed for the original
smallpox vaccine and referred as scarification at the time,
was reported to induce both systemic and mucosal immune
responses.69,70 In pigs, i.d. immunization with a commercial
inactivated M. hyopneumoniae whole-cell vaccine elicited
robust M. hyopneumoniae-specific serum IgG and pulmo-
nary IgA responses, significantly increased level of IL-10,
but not IL-6, TNF-a or IFN-g, in the BAL fluids, although
the number of antigen-specific IFN-g producing cells in
PBMCs was significantly higher in the i.d. immunized
pigs.71 Mice intradermally immunized with a HPV DNA
vaccine together with a CTB plasmid vector generated high
antigen-specific IgA and IgG titers in cervical secretions
and feces, and showed enhanced CTL activity and Th1 (IL-
2 and IFN-g) cytokine expression in spleen.72 Interestingly,
i.d. administration of a sperm-DNA vaccine to female mice
elicited mainly IgG responses in sera and largely IgM and
IgA responses in the vaginal wash fluid.73 Pigs i.d. immu-
nized with a DNA vaccine showed significant reduction of
gross pathological lesions and bacterial shedding in urogeni-
tal tract after a vaginal C. Trachomatis challenge.74 It has
been recently shown that i.d. vaccination of mice with inac-
tivated influenza virus using microneedles induced more
robust serum and lung IgG responses, increased expression
of IL-4 and IFN-g in spleen and IL-12 in lung, and pro-
vided better protection against i.n. viral challenge than i.m.
vaccination.75 Moreover, i.d. immunization (using micro-
needles) of mice with IpaB and IpaD adjuvanted with dou-
ble mutant E. coli heat labile toxin (dmLT) resulted in the
local recruitment of APCs (macrophages, CD11cC dendritic
cells and Langerhans cells), serum IgG responses, and secre-
tion of various cytokines from T cells. The vaccinated mice
were protected against lethal pulmonary challenges with S.
flexneri (70% survival) or S. sonnei (50% survival) although
little mucosal immune responses(mucosal IgA or mucosal
and systemic IgA-ASCs) were detected.76 However, some
vaccines (such as a b-galactosidase and a rotavirus DNA
vaccine) administered by i.d. route failed to induce suffi-
cient mucosal antibodies or to protect against mucosal chal-
lenge.77-79 The observation of adverse local reactions caused
by i.d. injection or scarification in some studies should be
considered in the future applications of i.d. vaccination to
protect against mucosal pathogens.69

Transcutaneous immunization

Transcutaneous immunization (TCI) is an approach of deliver-
ing the vaccine through the skin layer. Since this method
requires some physical/chemical means to breach the intact
skin so as to deliver the antigen/adjuvant into the epidermal
layer, it is discussed in this review in the context of potential to
elicit mucosal immunity although it is debatable whether TCI
is truely a systemic immunization or not. Vaccination by TCI
would be more acceptable by the patients as opposed to by

traditional i.m., i.d., or s.c. methods, and TCI has been demon-
strated to induce robust systemic and mucosal immune
responses that protect the host against mucosal infection.80-84

For example, CT- or CpG-adjuvanted chlamydial MOMP
applied to the shaved skin on the back region of mice enhanced
MOMP-specific IgG and IgA responses in sera, vaginal and
uterine lavage fluids, and increased IFN-g (but not IL-4)
mRNA expression in the mononuclear cells from the reproduc-
tive tract-draining caudal and lumbar lymph nodes, and pro-
tected the mice against an intravaginal C. muridarum
challenge.85 Moreover, an adjuvant-free, powdered, inactivated
influenza vaccine placed on the shaved abdominal skin of mice
elicited specific IgG and IgA responses in serum and at several
mucosal sites (e.g, small intestine, saliva, vagina, and nasal pas-
sages), and effectively increased the survival rate of mice against
an i.n. challenge with the influenza virus.86 Furthermore, based
on the presence of antigen-specific IgA secreting ASCs in lam-
ina propria of small intestine and the secretion of specific IgA
from in vitro cultured tracheal and small intestinal samples, it
was suggested that the antigen-specific antibodies were locally
produced at the relevant mucosal sites, rather than diffusing
from sera.86 Specific IgG and IgA to both tetanus toxoid (TT)
and CT were detected in sera, saliva, vaginal lavages and fecal
extracts of mice transcutaneously immunized with TT admixed
with CT, with comparatively higher titers in sera, saliva and
vaginal lavage as compared to in fecal pellets.87 In another
study, it was shown that TCI with CT or its B subunit (CTB)eli-
cited more potent anti-CTB serum IgG responses and compa-
rable specific IgA responses in serum, feces and bile, when
compared to oral immunization with live vaccine strain of Vib-
rio cholerae expressing CTB.88

The immune responses elicited by s.c., i.d. and TCI immuni-
zation of an HIV nanoparticle vaccine were compared in
mice.89 The population of antigen-specific cytokine (IL-2 or
IFN-g or TNF-a) producing CD4C T cells in the spleen from i.
d. or s.c. immunized mice were significantly higher than those
from TCI mice. However, the population of poly functional T
cells which produce all 3 cytokines (IL-2, IFN-g and TNF-a)
was highest in TCI group, and lowest in i.d. immunized group.
Significantly increased antigen-specific CD8C T cells were
found in blood after i.d. and TCI immunization while absent
after s.c. immunization, consistent with higher population of
CD3CCD8C T cells in vaginal mucosa of TCI and i.d. vaccina-
tion when compared to s.c. vaccination. These results suggest
that TCI and i.d. immunization redirected homing of antigen-
specific effector/memory CD8C T cells to the vaginal mucosa.
Interestingly, TCI of mice at different anatomic skin sites
(back, abdomen, and ear) induce different magnitude of sys-
temic (spleen) and mucosal (PPs) CTL responses, with the
strongest CTL responses in both mucosal and systemic sites eli-
cited by TCI on the back.87 In contrast, TCI immunization of
mice with a synthetic hexasaccharide-protein conjugate vaccine
failed to induce detectable mucosal immune responses or pro-
vide any protection against oral V. cholera challenges despite
the presence of robust serum IgG and IgA responses.90 In a
double-blind, placebo-controlled clinical trial wherein 59 ran-
domized adults were transcutaneously immunized with either
the LT from enterotoxigenic E. coli (ETEC) or placebo, higher
serum IgG and IgA as well as fecal IgA responses were detected
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in vaccinees compared to the placebo controls.91 However, the
vaccination only mitigated, but did not prevent, the infection
after an oral challenge with a virulent ETEC strain.

Potential mechanisms of systemic vaccination-
induced mucosal immunity

Although systemic immunization (s.c., i.m., i.d., i.p. and TCI)
can induce mucosal immune responses under certain antigen
and adjuvant combinations, the mechanism of this induction
remains poorly understood, So far, several mechanisms have
been proposed to explain the induction of mucosal antibodies
after systemic immunization (Figure 1). Based on the relatively
low number of APCs in some of the systemic tissues, it was
hypothesized that an antigen first diffuses from a s.c., i.m. or i.
p. immunization site to the regional draining lymph nodes, and
from there is taken up by the local APCs (such as DCs, B cells,
and macrophages). These APC cells then migrate to the
mucosa-associated lymphoid tissue (MALT), such as PPs and
nasopharynx-associated lymphoid tissue (NALT), where they
activate CD4C T cells and B cells.92,93 On the other hand, anti-
gen administered by i.d. or TCI can activate APCs, mainly the
Langerhans cells and DCs, in the epidermis and dermis of the
skin. These cells migrate to MALT and present the antigen to
na€ıve T cells for the generation of antigen-specific T cells,
including Th1, Th2, Th17, and cytotoxic T cells.94,95

Alternatively, soluble or phagocytosed antigens may migrate to
the MALT directly.3

The immunostimulatory molecules (such as those provided
by adjuvants) in the vaccines increase the local recruitment,
antigen processing and presentation efficiency of the APCs at
the site of vaccination, promote the proliferation of antigen-
specific T cells and antibody-secreting B cells, which then
migrate to the distant effector sites, such as lamina propria
(LP) of the gut and salivary glands96,95,97 Under the influence
of the specialized mucosal homing and imprinting mecha-
nisms, antibody-secreting B cells finally differentiate into
plasma cells and produce specific antibodies whereas a subpop-
ulation of the antigen-activated T cells expressed different
adhesion molecules, depending on the anatomic location of the
lymph nodes and differentiated as tissue-resident memory T
cells (TRM). Recent studies indicate that these TRM cells persist
in the tissue long after vaccination or the clearance of the infec-
tion for maximal and efficient control of locally invaded patho-
gens.98,99,100 In addition, mucosal antibody responses can also
be induced through exudation, transcytosis, or production by
the local plasma cells.

Conclusion

Based on the published literature to date, it is well recognized
that the protective efficacy of a vaccine delivered by varying
routes of immunization is affected by the choice of the antigen,

Figure 1. Potential mechanisms of systemic vaccination-induced mucosal antibody responses. Intradermal (i.d.) or transcutaneous (TC) immunization activates Langer-
hans cells and dermal dendritic cells in the epidermis and dermis of skin, which then migrate to the mucosa-associated lymphoid tissue (MALT) where they present the
antigen to CD4C T cells and B cells. An antigen delivered by i.m. or s.c. route mainly diffuses to the draining peripheral lymph nodes (DPLN) where it activates APCs, such
as B cells, dendritic cells and macrophages. Mucosal antibody responses are triggered when they reach to the MALT and present the antigen to CD4C T cells and B cells.
A free antigen may migrate to MALT directly.
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the antigen carrier/delivery vehicle, and the adjuvant, among
many other factors. It is also generally acknowledged that
immunization via mucosal routes, using subunit antigens, can
elicit robust mucosal (and systemic) immune responses that
accord protection against specific mucosal pathogens. Increas-
ing evidence from experimental vaccine and animal model
studies suggest that under some circumstances (antigen, adju-
vant, delivery vehicle) systemic routes of immunization have
the potential to induce immune responses in both the systemic
and multiple mucosal compartments (Tables 1–3). However, it
is currently unknown as to under what specific circumstances
would a systemic immunization elicit a protective mucosal
immune response in an animal model, or if the observations in
animal models would be translated to human subjects? How-
ever, it appears that i.p. immunization generally induces non-
protective mucosal (particularly the gastrointestinal) IgA
responses while i.m. immunization with DNA-based vaccines
is likely to induce a protective mucosal immune response
including CMI. In addition, TCI appears to be another encour-
aging route of systemic immunization to induce protective
mucosal immunity.

The results from many studies on the potential of systemic
immunization to elicit protective mucosal immunity in animal
models are often difficult to interpret because there is the fail-
ure to evaluate whether the protection (if seen) was due to the
mucosal immune responses elicited or could have been as a
result of strong systemic responses per se? Part of the challenge
may be that there are no appropriate animal models of disease,
wherein it is clearly known that only a strong mucosal immune
response would protect the vaccinated host against the specific,
mucosal pathogen challenge. Moreover, observations on the
presence of mucosal immune responses (such as serum and sal-
ivary IgA) in human subjects that have been immunized with a
systemic vaccine were often complicated by the prior exposure
to the antigens or pathogens. In spite of these limitations, the
ongoing studies to date do indicate that there is the potential to
develop systemic vaccination strategies that may offer an alter-
native approach to mucosal immunization for the elicitation of
both mucosal and systemic immune responses.
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