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Abstract

MicroRNAs (miRNAs) play an important role in plant growth, development, and response to
environment. For identifying and comparing miRNAs and their targets in seed development
between two maize inbred lines (i.e. PHEWC and PH4CV), two sRNAs and two degradome
libraries were constructed. Through high-throughput sequencing and miRNA identification,
55 conserved and 24 novel uniqgue miRNA sequences were identified in two sRNA libraries;
moreover, through degradome sequencing and analysis, 137 target transcripts correspond-
ing to 38 unique miRNA sequences were identified in two degradome libraries. Subse-
quently, 16 significantly differentially expressed miRNA sequences were verified by qRT-
PCR, in which 9 verified sequences obviously target 30 transcripts mainly involved with reg-
ulation in flowering and development in embryo. Therefore, the results suggested that some
miRNAs (e.g. miR156, miR171, miR396 and miR444) related reproductive development
might differentially express in seed development between the PHEWC and PH4CV maize
inbred lines in this present study.

Introduction

MicroRNAs (miRNAs) are a class of endogenous, small RNAs (21-24 nt) that regulate gene
expression in plants and animals at the post-transcriptional level by translational repression,
target degradation and gene silencing [1-7]. Plant miRNAs play an important role in various
processes associated with organ polarity, developmental transitions, auxin signaling, leaf and
stem growth, floral organ identity, reproductive development and stress response [3-4, 7-12].
High-throughput sequencing combining with biological information analysis has improved
the discovery of miRNAs in several plants due to the conservation of miRNAs among related
plant species [13-21]. Recently, plenty of miRNA families have been discovered in plants [17-
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20]. With the application of degradome sequencing, miRNA targets in plants can be confirmed
on a large scale [17-20]. Therefore, identification of miRNAs and their targets in diverse spe-
cies have been a focus in recent years.

Maize (Zea mays L.), one of the most important crops in the world, is widely used as a
model plant for biological research [22]. Over recent decades, several published reports about
miRNAs in maize have focused on many biological processes, including leaf development, root
development, seed development and response to stresses [23-31]. For instance, Juarez et al.
showed miR166 constituted a highly conserved signal in maize leaf development [23]. Zhang
et al. revealed that submergence-responsive miRNAs were involved in the regulation of meta-
bolic, physiological and morphological adaptations of maize roots [24]. In addition, Kang et al.
identified 125 and 127 known miRNAs from seeds and leaves in maize [25]. Ding et al.
reported that 34 miRNAs belonging to 20 miRNA families were obtained in germinating
maize seeds by high-throughput sequencing [26]. Furthermore, Li et al. used high-throughput
sequencing to find that diverse and complex miRNAs were involved in the seed imbibition pro-
cess [27]. Through degradome sequencing, Liu et al. detected that 72 genes targeted by 62 dif-
ferentially expressed miRNAs might be attributed to the development of maize ears [28]. Jin
et al. researched the dynamic expression patterns of miRNAs at 4 distinct developmental grain
filling stages in maize [29]. Moreover, Wu et al. reported that miR811 and miR829 confer a
high degree of resistance to Exserohilum turcicum [30]. Sheng et al. described the identification
and characterization of novel miRNAs that are differentially expressed in drought-tolerant and
drought-sensitive maize inbred lines [31].

At the early stage of the hybrid maize breeding in America, there were two major races,
namely Southern Dent and Northern Flint [32]. After 1947, the maize races were divided into
two major germplasm groups, namely Reid group (from Southern Dent) and Lancaster group
(from Northern Flint) [32]. These two groups represent the main genetic diversity that is avail-
able for maize breeding in China and America [32-34]. In this study, miRNAs and their target
transcripts in the PH6WC and PH4CV maize inbred lines, which were respectively from Reid
and Lancaster groups [33-34], were investigated by using high-throughput sequencing and
degradome analysis. The results indicated that some miRNAs (e.g. miR156, miR171, miR396
and miR444) differentially expressed in the seed development between PH6WC and PH4CV
maize inbred lines under different genetic backgrounds.

Materials and Methods
Plant materials

Two maize inbred lines (i.e. PH6WC and PH4CV) were separately grown in experimental
fields (JiangPu, Nanjing, China), without any artificial cultivation (for instance, fertilization
and deinsectization). According to previous studies, the maximum value of the grain filling
rate in maize seed development occurs between 21-25 days after pollination (DAP) [29, 35].
Therefore, samples form three stages (15, 25 and 45 DAP), which respectively represent early,
medium and late stages in seed development, were selected and combined together for repre-
senting the whole process of the maize seed development in this study. In addition, all samples
were frozen in liquid nitrogen and stored at -80°C. To minimize inter-individual differences,
three samples from the same sampling location were mixed together.

RNA extraction

Samples from PH6WC and PH4CYV lines were individually subjected to RNA extraction using
the TRIzol™ reagent (Invitrogen, Carlsbad, CA, USA). The quality of the extracted total RNAs
was verified by using an Agilent 2100 Bioanalyzer (for concentration, 285/18S and RIN
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detection; Agilent Technologies) and a NanoDrop 2000 spectrophotometer (for OD 540,250 and
OD 60,230 detection; Thermo Fisher Scientific). In addition, the total RNAs were used for high-
throughput sequencing, degradome analysis and qRT-PCR verification, identically.

High-throughput sequencing and miRNA identification

Two small RNA (sRNA) libraries were constructed using the Illumina TruSeq Small RNA
Preparation Kit (LC Sciences, Hangzhou, China). The total sSRNAs were ligated to 3p and 5p
adapters (ADTs), and the corresponding cDNA was obtained by reverse-transcription PCR.
Following purification, the cDNA from the two sSRNA libraries was sequenced using an Illu-
mina HiSeq 2000 (LC Sciences, Hangzhou, China). Removing low-quality data, the raw
reads were obtained using the Illumina Pipeline v1.5 (LC Sciences, Hangzhou, China). After
removing ADTs, sequences with lengths <18 and >25 nt, junk data, mRNA fragments, Rfam
and Repeats, the clean reads were subjected to miRNA identification by using the selected
Gramineae pre-miRNAs/miRNAs database in miRBase 21.0 and the maize genome database.
Three mismatches were allowed between the reads and the known pre-miRNAs/miRNAs
sequences. As results, the reads that mapped to known pre-miRNAs/miRNAs and also
mapped to the maize genome were identified as conserved miRNAs. In addition, the reads
that did not map to known pre-miRNAs/miRNAs but mapped to the maize genome were
considered as novel miRNAs. Furthermore, the secondary structures of all identified and
potential pre-miRNAs in the maize genome were predicted by using the UNAFold software
[36]. The minimal folding energy indexes (MFEIs) of the novel miRNAs should be equal or
greater than 0.9 [37-39].

Degradome sequencing and target identification

Two degradome libraries were constructed based on published methods [17, 19, 40]. Poly-A
RNAs were obtained and ligated to a 5p adapter, and the cDNA was obtained by PCR. Follow-
ing purification, the cDNA was sequenced through using an Illumina HiSeq 2000 (LC Sciences,
Hangzhou, China). Removing low-quality data, the raw reads were obtained by using the Illu-
mina Pipeline v1.5 (LC Sciences, Hangzhou, China). After removing ADT's and reads with
lengths <15 nt, the remaining reads were compared with a cDNA library from the maize
genome database. The mapped cDNA reads were then compared with the identified miRNAs
to perform an alignment analysis by using CleaveLand 3.0 (LC Sciences, Hangzhou, China).
The alignment scores < 4 were considered. Furthermore, based on the number of degradome
sequences and their abundance values, the miRNA targets were classified into 5 categories (0,
1, 2,3 and 4, S5 Table) in accordance with reported method [17, 19, 40]. To further elucidate
the potential functions, these miRNA targets were annotated through Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) [41].

qRT-PCR

Total RNA extraction was performed and subsequently used for quantitative real-time PCR
(qQRT-PCR). qRT-PCR was conducted by using SYBR Premix Ex Taq™ (Takara, Dalian, China)
system on a BIOER Line-Gene K RT-PCR machine (BIOER, Hangzhou, China). The primers
were listed in S6.1 Table, and U6 was used as internal reference [42-43]. In addition, reactions
were performed in triplicate, and relative expression levels were quantified by using 24"
method (S6.2 Table).

PLOS ONE | DOI:10.1371/journal.pone.0159810 July 27,2016 3/183



D)
@ : PLOS | ONE Comparison of miRNAs and Their Targets in Seed Development between Two Maize Inbred Lines

Statistical analysis

Log,(ratio) test and Chi-square 2x2 test were performed to identify differences in miRNA
expression between the PH6WC and PH4CV libraries. Moreover, p values from Chi-square
2x2 test were adjusted to False Discovery Rate (FDR) as previous studies [44-45].

Data availability

The datum of the high-throughput sequencing and degradome sequencing were deposited in
the short read archive (SRA) in National Center of Biotechnology Information (NCBI). Their
numbers are SRX1686992, SRX1686966, SRX1684509 and SRX1684462.

Results
Analysis of sRNA libraries

To identify miRNAs in seed develoment between two maize inbred lines (Fig 1a), two SRNA
libraries were constructed. Following high-throughput sequencing, a total of 5,677,694 (from
the PH6WC library) and 8,992,803 (from the PH4CV library) raw reads were generated (Fig
1b, S1 Table). After data filtering, 2,297,642 and 3,838,297 clean reads corresponding to
628,701 and 730,862 unique reads were obtained, respectively (Fig 1b, S1 Table). The distribu-
tion of the clean reads lengths was mainly between 21 and 24 nt (Fig 1c, S2 Table), which is
consistent with previous reports [25-31].
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Fig 1. Summary of miRNA sequencing in the PH6WC and PH4CYV libraries. (a) The mature maize cobs from the PHEWC and PH4CYV lines; (b)
Overview of sSRNA sequences in the PH6WC and PH4CYV libraries; (c) Length distributions of clean reads in the PHEWC and PH4CYV libraries; (d) miRNA
classification in the PHBWC and PH4CYV libraries.

doi:10.1371/journal.pone.0159810.g001
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Identification of conserved and novel miBRNAs

A total of 55 known unique miRNA sequences corresponding to 103 miRNAs were identified
as conserved miRNAs, in which the miRNA sequences belonging to maize miRbase were iden-
tified as conserved known miRNAs (abbreviated as Con-K) and the sequences belonging to the
selected Gramineae miRbase (except Zea mays) were identified as conserved novel miRNAs
(abbreviated as Con-N) (S3 Table). Furthermore, these 55 known unique miRNA sequences
were classified into 22 miRNA families (Fig 1d, S3 Table). On the other hand, a total of 24
novel unique miRNA sequences could form stem-loop structures with MFEI > 0.9 were identi-
fied in two libraries (S3 Table). For expression comparison between the PH6WC and PH4CV
libraries, unique miRNA sequences were analyzed through Log,(ratio) test and Chi-square 2x2
tests based on their normalized reads (Fig 2a, S3 Table). Following significant difference stan-
dard (p < 0.05 and |log,(PH4CV/PH6WC)| > 1), 60 differentially expressed unique sequences
were detected in two libraries (Fig 2, S3 Table). Comparing with the PH6WC library, 31 unique
sequences were at up-expressed level and 29 unique sequences were at down-expressed level in
the PH4CV library (Fig 2b, S3 Table).
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Fig 2. Expression comparison of miRNA sequences in the PH6WC and PH4CYV libraries. (a) Overview of expression comparison of conserved and
novel miRNAs in the PHEWC and PH4CYV libraries. (b) Distributions of miRNA expression in the PHEWC and PH4CYV libraries.

doi:10.1371/journal.pone.0159810.9002
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Identification of miRNA targets

The degradome analysis was performed in order to explore the potential miRNA targets. A
total of 9,591,315 and 9,061,915 raw reads were generated from the PH6WC and PH4CV
degradome libraries, respectively (54 Table). After removing the ADTs and reads <15 nt, the
remaining reads were compared with the Zea mays cDNA library. A total of 6,301,841 and
6,675,216 mapped cDNA reads were obtained from the two degradome libraries (5S4 Table).
The mapped cDNA reads were then compared with the identified miRNAs. Finally, a total of
137 miRNA targets corresponding to 38 unique miRNA sequences were discovered in the
PH6WC and PH4CV degradome libraries (S5 Table). Among these, 74 targets were detected in
both two libraries (S5 Table).

Verification of miRNAs

One extremely high expressed miRNA sequence (i.e. zma-miR166b,d,e,g,h,i-3p) and sixteen
significantly differentially expressed miRNA sequences (normalized reads > 50, p < 0.01 and
[log,(PH4CV/PH6WC)| > 1) were verified by QRT-PCR. The results nearly agreed with the
high-throughput sequencing data (Fig 3, S3 Table). However, three of them were not in accor-
dance with sequencing results. This presumably was due to differences in sensitivity and speci-
ficity from different approaches, which also appeared in previous studies [25-31].

Discussion

High-throughput sequencing and degradome sequencing were used to identify differentially
expressed miRNAs and their targets in seed development between PH6WC and PH4CV maize
inbred lines. In total, 79 conserved and novel unique miRNA sequences corresponding to 127
miRNAs were identified in two inbred lines, in which 60 unique miRNA sequences existed
different expression (p < 0.05 and |log,(PH4CV/PH6WC)| > 1). Among these, 16 miRNA
sequences showed significantly difference (normalized reads > 50, p < 0.01 and |log2(PH4CV/
PH6WC)| > 1), and were verified by qRT-PCR.

Nine verified significantly differential miRNA sequences targeted 30 transcripts. By gene
annotation, we found that most these targets were connected with maize reproductive develop-
ment (Table 1). For instance, the targets of zma-miR156a,b,c,d,e,f,g,l-5p were predicted as
SPL10 and SPL11 from Squamosa promoter-binding-like protein family, taking part in the reg-
ulation of timing of transition from vegetative to reproductive phase [46]. According to the
previous studies, miR159 and miR319 probably from a homology family potentially regulate
heterochronic development [47]. Similarly, zma-miR159¢_L-1R-1-3p and zma-miR319a_R+1,
b_R+1,c_R+1,d_R+1-3p in our study targeted to a same gene TCP2. Moreover, Gong et al. also
reported that miR159 and miR319 might influence sweet corn seed vigor [48]. APUMI gene,
might regulate mRNA translation [49], was considered as the target of zma-miR167g_R+1,h_R
+1,i_R+1-5p. Additionally, SCL6 gene was predicted as the target of zma-miR171c_1ss4CT,d,e,
n_R+1_1ss12CT-3p. Previous studies declared SCL family is able to influence flowering time,
which can control seed development [50-51]. In this present study, the major targets of zma-
miR396a,b-5p and zma-miR396¢_L-1 were GRFs (3, 5 and 6), members of growth-regulating
factors, involved in regulation of cell expansion in leaf and cotyledons tissues [52]. This result
agreed with previous study in miRNA identification in maize grain filling stages [29]. Besides,
we found that QQT2 was another target of zma-miR396a,b-5p. QQT2 gene possibly is a
regulator in embryo development [53]. EDA18 gene as the target of zma-miR444a_1ss12TC,
b_1ss12TC might participate in pollen and embryo sac development [54-55]. zma-miR827_R-
1-3p should be conjectured to take part in maize seed development although its target was
unknown in our study, because miR827 had obvious differences in expression level in our
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Fig 3. qRT-PCR validation of unique miRNA sequences in the PH6WC and PH4CV lines.
doi:10.1371/journal.pone.0159810.g003

study and another previous study [29]. We believed that zma-miR166b,d,e,g,h,i-3p probably
relate to the maize seed development, because 1) it high expressed in our study and other previ-
ous study [29]; 2) its target, ATHBY gene, is involved in the determination of adaxial-abaxial
polarity in ovule primordium [56].

In summary, our preliminary results suggested some miRNAs differentially expressed in
seed development between PH6WC and PH4CV inbred lines. This situation we found might
be an evidence that can prove the complexity of the maize genetic background on miRNAs
level. As reported in previous studies, two maize lines might be on average as diverged from
one another as humans are from chimpanzees [57]. Furthermore, the targets of the miRNAs
differentially expressed in this study mainly involved with regulation in flowering (e.g. SPL and
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Table 1. qRT-PCR validated miRNAs and their targets in the PH6WC and PH4CYV lines.

miRNA Name

Target Transcript

Transcript Annotation

Homologous Genes and Biological Function

zma-miR156a,b,c,d,e,f,g,-5p

GRMZM2G126827_T01

SBP12; SBP transcription factor
family protein

SPL10, SPL11; regulation of timing of transition from
vegetative to reproductive phase [46]

GRMZM2G156621_TO1

SBP transcription factor family
protein

SPL10, SPL11; regulation of timing of transition from
vegetative to reproductive phase [46]

zma-miR159c_L-1R-1-3p

GRMZM2G020805_T01

TCP family transcription factor

TCP2; positive regulation of development, heterochronic
[48]

zma-miR167g_R+1,h_R+1,i_R+1-

GRMZM2G042623_TO01

Pumilio-family RNA binding

APUMT; regulation of translation [49]

5p protein
GRMZM2G042623_T02 Pumilio-family RNA binding APUMT1; regulation of translation [49]
protein
zma-miR171c_1ss4CT,d,e,n_R | GRMZM2G037792_T01 | GRAS79; GRAS transcription SCL6; regulation in flowering time [50-51]
+1_1ss12CT-3p factor

GRMZM5G825321_T01

GRAS transcription factor

SCLB6; regulation in flowering time [50-51]

GRMZM5G825321_T02

GRAS transcription factor

SCL6; regulation in flowering time [50-51]

zma-miR319a_R+1,b_R+1,c_R+1,

GRMZM2G020805_TO01

TCP family transcription factor

TCP2; positive regulation of development, heterochronic

d_R+1-3p [48]
zma-miR396a,b-5p GRMZM2G024293_T01 XPA-binding protein 1 QQT2; embryo development ending in seed dormancy
(53]
GRMZM2G024293_T03 XPA-binding protein 1 QQT2; embryo development ending in seed dormancy
(53]

GRMZM2G034876_TO01

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G034876_T02

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G034876_T03

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G041223_T01

GRF6; GRF transcription factor

GRF®6; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G045977_TO1

GRF13; GRF transcription factor

GRF3; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G129147_TO1

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G129147_T02

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G149543_T01

zma-miR396¢_L-1

GRMZM2G034876_TO01

GREF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G034876_T02

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G034876_T03

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G041223_TO01

GRF6; GRF transcription factor

GRFB6; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G045977_TO01

GRF13; GRF transcription factor

GRF3; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G129147_T01

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

GRMZM2G129147_T02

GRF transcription factor

GRF5; regulation of cell expansion in leaf and
cotyledons tissues [52]

zma-miR444a_1ss12TC,
b_1ss12TC

GRMZM2G001024_TO1

RING/U-box superfamily protein

EDA18; pollen and embryo sac development [54—55]

GRMZM2G001024_T02

RING/U-box superfamily protein

EDA18; pollen and embryo sac development [54—55]

GRMZM2G001024_T03

RING/U-box superfamily protein

EDA18; pollen and embryo sac development [54—-55]

zma-miR827_R-1-3p

GRMZM2G003992_T01

(Continued)
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Table 1. (Continued)

miRNA Name Target Transcript Transcript Annotation Homologous Genes and Biological Function
zma-miR166b,d,e,g;h,i-3p GRMZM2G038198_T01 START domain containing ATHB9; determination of adaxial-abaxial polarity in
protein ovule primordium [56]

doi:10.1371/journal.pone.0159810.t001

SCL) and development in embryo (QQT and EDA), and might have coordinated functions in
the maize seed development (Fig 4).

Conclusions

In this study, several differentially expressed miRNAs and their targets were identified in seed
development in two maize inbred lines (i.e. PH4CV and PH6WC) by using high-throughput
sequencing and degradome analysis. The results indicated that miR156, miR171, miR396 and
miR444, which respectively targeted to SPL, SCL, QQT and EDA genes, might differentially
expressed in the seed development in two maize inbred lines, especially involved in flowering

miR159
miR319
Seed vigor

miR171 PH6WC vs. PH4CV
[ > ‘ in maize seed

development

Flowering time

&1 | % [Embryo development

Pollen and embryo
sac development

Polarity determination

miR166

Fig 4. Differentially expressed miRNAs and their targets involved in seed development between the PH6WC and PH4CYV lines.

doi:10.1371/journal.pone.0159810.9004
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regulation and embryo development. Therefore, this preliminary results might improve our
understanding on the regulatory roles of miRNAs in maize seed development under different
genetic backgrounds.
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