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Abstract

Cystic fibrosis (CF) results from mutations in the CF transmembrane conductance regulator 

(CFTR) gene, which codes for the CFTR channel protein. The most common mutation in CF is 

F508del, which produces a misfolded protein with diminished channel activity. The development 

of small-molecule CFTR-modulator compounds offers an exciting and novel approach for 

pharmacological treatment of CF. The corrector lumacaftor helps rescue F508del-CFTR to the cell 

surface, and potentiator ivacaftor increases F508del-CFTR channel activity. The combination of 

lumacaftor-ivacaftor (Vertex Pharmaceuticals Incorporated) represents the first FDA-approved 

therapy for CF patients with two copies of the F508del mutation. Although this combination 

therapy is the first treatment to directly target the F508del-CFTR mutation, patients taking this 

drug displayed only modest improvements in lung function. This article summarizes recent data 

from clinical trials and research discoveries relating to the lumacaftor-ivacaftor treatment, and 

considers options for identifying future therapies that will be most efficacious for all CF patients.
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 1. Introduction

Cystic fibrosis (CF) is the most common life-limiting genetic disease in Caucasians. The 

underlying defect in CF is abnormal epithelial ion transport resulting from mutations in the 
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CFTR protein, which mediates Cl− and HCO3
− transport of secretory and absorptive 

epithelial cells in multiple organs including lungs, pancreas, liver, intestine, and sweat 

glands. Although CF affects many organ systems, the primary cause of morbidity and 

mortality is airway disease related to disturbances of airway surface liquid (ASL) 

homeostasis. The absence of CFTR activity results in decreased Cl− transport and enhanced 

Na+ uptake via the epithelial sodium channel (ENaC) in airway epithelial cells, leading to 

excessive water absorption and the characteristic thick secretions [1–3]. Recent findings 

highlight the importance of CFTR-dependent HCO3
− transport in mucus formation and 

clearance [4–6]. The thick and viscous mucus leads to mucus stasis, airway obstruction, 

persistent infection, inflammation, and a progressive decline in lung function [7–9]. Major 

clinical advances in treating the symptoms and delaying disease progression have 

significantly improved survival of CF patients [10]. Much of the progress in extending life 

expectancy has been due to comprehensive treatments including antibiotics to eradicate 

and/or manage bacterial lung infections as well as improved strategies to increase 

mucociliary clearance and nutritional status [11, 12].

Although substantial clinical gains have been made using therapies that targeted the 

consequences of CFTR dysfunction, the ultimate therapeutic goal is to restore normal (or 

near normal) CFTR function via drugs that modulate the activity of CFTR (CFTR 

modulators). However, this strategy is complicated by the fact that there are nearly 2000 

different mutations that can cause CF and interfere with normal CFTR function in different 

ways. The most common CFTR mutation, F508del, produces a protein with a trafficking 

defect that prevents significant amounts of the protein from reaching the apical cell surface, 

and those proteins that do reach the surface are defective in channel gating [13]. This 

mutation is found in approximately 90% of CF patients in the US, with nearly 50% of 

patients homozygous for this mutation. Because the majority of CF patients carry the 

F508del mutation, the identification of therapeutics that correct this defect represents an 

attractive initial approach. Importantly, cross-sectional studies of patients with various 

residual levels of CFTR activity suggest that even 5% of normal CFTR activity could convey 

clinical benefit [14].

 2. Overview of the market

According to the FDA website (www.fda.gov), an orphan disease is a disease that affects 

fewer than 200,000 people in the U.S. CF is therefore considered an orphan disease because 

it affects approximately 30,000 people in the U.S., as reported by the Cystic Fibrosis 

Foundation (www.cff.org). Of these individuals with CF, only 5% have a CFTR gating 

mutation such as G551D that may benefit from ivacaftor (Kalydeco; Vertex) treatment [15] 

but 50% are F508del-CFTR homozygotes that may benefit from the lumacaftor-ivacaftor 

combination treatment (Orkambi; Vertex) [16]. Nevertheless, costs of care for individual CF 

patients are high [17], and the CF drug market was predicted to reach $3.9 billion by 2019 

based on annual revenues of individual therapeutic agents in the hundreds of millions of 

dollars [18]. However, this prediction was made prior to the introduction of CFTR 

modulators and may have underestimated the market, since these modulators have been 

priced aggressively with annual costs over $250,000–$300,000 [19, 20]. Ivacaftor has 

estimated annual revenues over $600 million, and the more recently released lumacaftor-
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ivacaftor combination treatment has quarterly revenues that would support annual revenues 

of $1 billion dollars or more. These figures suggest that the market for CFTR modulators is 

potentially lucrative.

Both ivacaftor and the lumacaftor-ivacaftor combination drug have the market advantage of 

being the only drugs for their indication, as there are currently no other CFTR modulators 

approved by regulatory agencies. However, there are a large number of potential competitor 

compounds in various stages of clinical development, including some that are in late phase 

clinical trials. As described in more detail below, the clinical benefit seen in patients treated 

with the lumacaftor-ivacaftor combination therapy was modest, leaving opportunities for 

other drugs that have greater clinical impact [21]. Furthermore, the lumacaftor-ivacaftor drug 

was not effective in patients heterozygous for the F508del mutation, suggesting that a more 

potent modulator may be applicable to a larger group of patients.

There are several CFTR modulators currently in development (Table 1). Examples being 

tested in clinical trials include the following: N91115 (Nivalis), an S-nitrosoglutathione 

reductase (GSNOR) inhibitor predicted to function as a CFTR stabilizer, that is in phase 2 

trials for F508del homozygous patients who are taking the lumacaftor-ivacaftor combination 

drug. QR-010 (ProQR Therapeutics), which repairs the genetic defect in RNA, is in phase 

1b for F508del homozygous patients. QBW251 (Novartis), a CFTR modifier, is in phase 2 

clinical trials for F508del homozygous and heterozygous patients. Riociguat (Bayer), 

stimulator of soluble guanylate cyclase, is in phase 2 for F508del homozygous patients, and 

is predicted to improve sweat chloride content and increase FEV1. AbbVie/Galapagos has 

developed a triple-combination therapy with two corrector compounds (GLPG2222 and 

GLPG2665) and one potentiator (GLPG1837). VX-661 (Vertex) is a corrector compound 

expected to have a lower likelihood of drug interactions with ivacaftor, and is generally well 

tolerated by patients. VX-661 combined with ivacaftor is in phase 3 trials in patients 

homozygous for F508del allele, or heterozygous for F508del in which the copy of CFTR on 

their other chromosome is grouped according to the following responses to therapies: 1) is 

not predicted to respond to therapy, 2) has residual function, or 3) responds to ivacaftor. The 

results of a phase 2 study using VX-661 with and without ivacaftor in F508del homozygous 

patients showed reductions in sweat chloride with VX-661 alone and in the presence of 

ivacaftor, and showed significant but modest improvements in lung function (FEV1) [22], 

similar to what was observed with the lumacaftor-ivacaftor combination therapy. If 

successful, these drugs being tested in the clinic may enter the market soon.

 3. Introduction to the drug

CFTR modulators aimed at improving function of F508del mutation are generally divided 

into 2 main categories: correctors that rescue misfolded protein to the cell surface, and 

potentiators that improve channel activity [23]. Using high-throughput screening strategies, 

a series of small-molecule corrector compounds were identified that have corrector or 

potentiator activity that were then optimized through medicinal chemistry [24–28]. The 

initial corrector compound for clinical development was lumacaftor (structure shown in 

Figure 1, bottom), which has the chemical name 3-[6-({[1-(2,2-difluoro-1,3-benzodioxol-5-

yl)cyclopropyl]carbonyl}amino)-3-methylpyridin-2-yl]benzoic acid. The molecular formula 
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of lumacaftor is C24H18F2N2O5 and the molecular weight is 452.41. In CF patients, the half-

life of lumacaftor alone is approximately 26 hours [29]. Nearly all of lumacaftor 

(approximately 99%) is bound to plasma proteins, mainly albumin. In humans, the majority 

of lumacaftor is not extensively metabolized and is therefore excreted unchanged. However, 

in vitro and in vivo data have shown that the small amount of lumacaftor that is metabolized 

is done so via oxidation and glucuronidation [29]. Lumacaftor is thought to increase the 

conformational stability of CFTR by improving interactions of the intramolecular domains 

of CFTR protein during folding [30–33]. Data suggest that lumacaftor binds directly to 

CFTR [34] and restores F508del maturation and function up to 15% of WT CFTR in vitro 

[30–33, 35–37]. However, studies in cultured cells demonstrated that the channel activity of 

F508del-CFTR rescued to the cell surface remained low due to the residual gating defect 

[38]. This problem could be addressed through addition of the potentiator ivacaftor, which 

has the chemical name N-(2,4-di-tertbutyl-5-hydroxyphenyl)-1,4-dihydro-4-oxoquinoline-3-

carboxamide. The molecular formula of ivacaftor is C24H28N2O3 and the molecular weight 

is 392.49. In healthy subjects, the half-life of ivacaftor when combined with lumacaftor is 

approximately 9 hours. Ivacaftor is a hydrophobic molecule and most of it (approximately 

99%) is bound to plasma proteins, mainly alpha 1-acid glycoprotein and albumin [39]. In 

humans, ivacaftor undergoes extensive metabolism. In vitro and in vivo data indicate that 

metabolism of ivacaftor occurs primarily through CYP3A [40]. In cell cultures treated with 

lumacaftor and ivacaftor, it was found that ivacaftor accumulated in cells [41]. Ivacaftor was 

initially developed to improve activity of CFTR mutants with gating defects and was first 

approved to treat CF patients with the G551D mutation [42–45]. Ivacaftor appears to 

directly affect CFTR channel gating and was later approved for other gating mutations 

(G178R, S549N, S549R, G551S, G1244E, S1251N, S1255P, and G1349D) as well as 

R117H. Ivacaftor also activates rescued F508del-CFTR that is present at the cell surface [45, 

46], and the combination of lumacaftor with acute addition of ivacaftor yielded significantly 

improved F508del-CFTR channel activity in vitro [37]. Based on these studies and early 

phase clinical trials described below, the lumacaftor-ivacaftor combination therapy was 

predicted to result in an improvement in ASL hydration and produce more hydrated mucus 

that will enhance microbe clearance from the lungs, as reviewed in [16, 47, 48] and 

illustrated in Figure 2. The lumacaftor-ivacaftor drug is a tablet for oral administration 

containing 200 mg of lumacaftor and 125 mg of ivacaftor. For pharmacodynamics of 

ivacaftor-lumacaftor, changes in sweat chloride activity were measured in patients in the 

phase 2 clinical trial [49]. The difference between lumacaftor-ivacaftor treatment 

(lumacaftor 400 mg/ivacaftor 250 mg every 12 hours) and placebo was −11 mmol/L (95% 

CI −18, −4). However, this decrease in sweat chloride levels did not directly correlate with 

an improvement in lung function, as measured by FEV1 [29].

 4. Clinical efficacy

Although lumacaftor alone showed a strong increase in formation of mature F508del-CFTR 

in vitro [37], a phase 2a clinical study of CF patients homozygous for the misfolded 

F508del-CFTR mutation treated with lumacaftor did not show any significant changes in 

lung function at any of four dose levels tested (25, 50, 100, or 200 mg once daily) [50]. This 

was not entirely surprising, since CFTR rescued to the cell membrane by lumacaftor was 
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known to have reduced channel activity and rapid turnover from the cell surface [38, 51]. 

Therefore, a second Phase 2 clinical trial was conducted that combined lumacaftor at various 

doses with ivacaftor to address the gating defect [49], summarized in Table 2. In CF patients 

homozygous for the misfolded F508del-CFTR mutation, treatment with a combination of 

lumacaftor and ivacaftor resulted in modest but meaningful improvements in lung function, 

with the most significant effects at the higher lumacaftor doses (600 mg daily or 400 mg 

twice daily). However, in the same phase 2 trial, combination therapy using ivacaftor with 

lumacaftor in F508del heterozygous patients did not result in a significant change in FEV1 

[49].

Based on the phase 2 results, two phase 3 clinical trials, TRAFFIC and TRANSPORT, were 

conducted using a combination of lumacaftor (600 mg daily or 400 mg twice daily) and 

ivacaftor (250 mg twice daily) in patients 12 years and older homozygous for the F508del-

CFTR mutation [52], summarized in Table 2. Both trials met their primary outcome measure 

of statistically significant improvement in FEV1, although the increase of 2.6–4% [52] were 

modest and significantly below those observed with ivacaftor in CF patients with gating 

mutations (10.6–12.5%) [15, 54]. The TRAFFIC and TRANSPORT studies did show 

significant reduction in pulmonary exacerbations as an important secondary outcome 

measure, as well as other secondary measures including the Cystic Fibrosis Questionnaire-

Revised (CFQ-R) quality of life respiratory scale and body mass index. Adverse events were 

generally similar between placebo and treatment groups, with the exception of increased 

chest tightness noted more frequently in the treatment groups.

The phase 3 TRAFFIC and TRANSPORT clinical studies lasted for 24 weeks, and the 

ongoing PROGRESS extension study is designed to address longer term effects. Preliminary 

results from PROGRESS suggest that improvements in lung function (FEV1) and secondary 

outcomes in CF patients aged 12 and older with 2 copies of the F508del mutation taking 

lumacaftor-ivacaftor were maintained for an additional 24 weeks, though there were no 

further improvements [55].

 5. Post-marketing surveillance

Since the lumacaftor-ivacaftor combination therapy was only recently approved in July of 

2015, at this time there are no post-marketing surveillance data available beyond the 

PROGRESS extension study mentioned above. The results of safety and tolerability analyses 

in the PROGRESS extension study indicated that adverse events were similar to what was 

observed during the first 24 weeks of the study, with the most commonly observed events 

including shortness of breath, chest tightness, viral infection of the upper respiratory tract, 

and gastrointestinal symptoms, as listed in adverse events tables of the phase 2 and phase 3 

trials [49, 52]. An observational study, PROSPECT, is ongoing and focuses on examining 

biomarkers of CFTR function and banking of specimens. This study will evaluate potential 

outcome markers including FEV1 and sweat chloride in CF patients that have either partial 

or absent CFTR function (Part A) or are F508del patients receiving lumacaftor-ivacaftor 

combination treatment (Part B).
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 6. Regulatory affairs

The lumacaftor-ivacaftor combination therapy was approved for use in the US by the FDA, 

in Europe by the EU, and in Australia by the TGA in CF patients ages 12 and older who are 

homozygous for the F508del mutation [56–58]. There are approximately 8,500 CF patients 

in the US, 12,000 CF patients in Europe, and 1,000 CF patients in Australia who fit these 

criteria.

 7. Conclusion

Up until recently, treatments for CF addressed only symptoms, but it is now clear that 

compounds that directly modulate the activity of CFTR represent a viable therapeutic 

strategy. In some ways, treatment with lumacaftor-ivacaftor represents a breakthrough 

therapy, since it is the first CFTR modulator that provides benefit for patients carrying the 

most common mutation in CF. However, despite very promising in vitro studies, the results 

from clinical studies showed only modest improvement. As discussed further below, 

additional laboratory studies have revealed that potentiator ivacaftor might destabilize 

F508del-CFTR rescued by lumacaftor. Such studies offer opportunities to develop more 

potent drugs and drug combinations for F508del and other CFTR mutations, with the 

ultimate goal of restoring CFTR activity in all patients with CF.

 8. Expert commentary

The lumacaftor-ivacaftor drug received the designation of breakthrough therapy [59, 60]; 

however, the clinical impact on lung function and pulmonary exacerbations was less than 

that of ivacaftor in G551D patients and more similar to previous CF therapies targeted at 

downstream pathophysiology including dornase alfa (to cleave DNA, which breaks down 

thick secretions), hypertonic saline (to hydrate viscous mucus), or azithromycin (to fight 

bacteria) [20, 61–63]. In vitro studies on the action of lumacaftor and ivacaftor indicated that 

corrected F508del-CFTR is destabilized in the presence of these 2 compounds [41, 64], 

which may explain why the lumacaftor-ivacaftor combination treatment was less successful 

than anticipated and exemplifies the value of bench research to guide clinical drug 

development [65, 66]. There was hope that the newer corrector VX-661 might avoid the 

destabilizing effect of ivacaftor, but in vitro studies suggest that this may not be the case [41, 

64] as ivacaftor interfered with restoring F508del-CFTR function whether lumacaftor or 

VX-661 was used as the corrector.

For future translation of promising in vitro data to clinical efficacy, the bioavailability of the 

agents’ exact drug concentrations in lung tissue should be considered. Matthes et al. [67] 

suggested that the inhibitory effects of the lumacaftor-ivacaftor combination therapy is due 

to high concentrations of free ivacaftor present in plasma, and that improving CFTR 

function would require lowering potentiator concentration and using more efficacious 

correctors. It was recently discovered that some other potentiators did not appear to 

markedly inhibit the correction of F508del [64, 68]. While it is important to identify 

potentiators that do not interfere with corrector action or CFTR stability, the goal should be 
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to develop drug combinations that exhibit additive or synergistic effects to obtain a marked 

improvement in CFTR function in vitro, and ultimately, patient lung function.

The clinical improvements seen in trials with lumacaftor-ivacaftor may be due to activity of 

this drug that is not directly related to the CFTR molecule. There is evidence that ivacaftor 

displays antimicrobial activity [69], which may enhance lung function by clearing infective 

microbes from the lung. An increase in CFTR activity is predicted to improve viscoelastic 

properties of mucus in CF patients, which in turn will lead to enhanced lung function [70]. 

However, whether the lumacaftor-ivacaftor drug might also directly affect mucus properties 

has not yet been investigated. It should also be considered that in vitro studies using 

ivacaftor have resulted in decreased activity of ENaC [41], which leads to an increase in 

airway surface hydration that may contribute to the observed improvement in lung function 

[71]. Although ENaC is regulated by CFTR, the drug activity of ivacaftor may be directly 

affecting ENaC. Indeed, modulation of ENaC activity is a strategy that is of interest to 

companies seeking to identify pharmaceuticals that repair the CF defect [72].

In October 2015, Vertex described next-generation correctors, VX-152 and VX-440, which 

are predicted to further improve rescue and activity of F508del-CFTR [73]. In HBE cells 

from patients homozygous for the F508del mutation, combining VX-152 or VX-440 

together with VX-661 plus ivacaftor (triple combinations) resulted in chloride transport that 

was approximately three-fold greater than what was observed upon the lumacaftor-ivacaftor 

combination treatment of cells with the same genotype [73]. Importantly, similar findings 

were observed in HBE cells from patients heterozygous for F508del mutation in which the 

copy of CFTR on the other chromosome contains a mutation that results in minimal CFTR 

function. Treatment using these triple combinations also resulted in a significant increase in 

cilia beat frequency compared to treatment of cells with the same genotype with the 

lumacaftor-ivacaftor drug. These in vitro data using cell cultures suggest that a triple 

combination that includes a next-generation corrector with VX-661 plus ivacaftor may 

improve CFTR function in patients that are homozygous for the F508del mutation and in 

patients that are heterozygous for the F508del mutation when the other CFTR gene codes for 

a protein that displays minimal CFTR function. These correctors will be tested both alone 

and in combination with VX-661 plus ivacaftor in Phase 1 studies. Until more efficacious 

potentiators are identified, increasing corrector activity with multiple correctors [32] or 

addition of stabilizers may compensate for the detrimental effects of ivacaftor.

Considering the high cost of ivacaftor and the lumacaftor-ivacaftor combination therapy, an 

attractive goal is to identify drugs that target multiple CFTR defects to augment CFTR at the 

cell surface, channel function, and protein stability. Thus, discovery of new drug therapies 

should be aimed at identifying: 1) correctors that further improve processing of mutant 

CFTR to augment levels of CFTR at the cell surface, 2) correctors that also display 

substantial potentiator function, 3) correctors that also stabilize CFTR, 4) potentiators that 

do not destabilize CFTR, 5) stabilizers that can be used with correctors/potentiators. 

Because currently used potentiators are extremely expensive and their activity leads to 

destabilization of rescued F508del-CFTR at the plasma membrane, novel correctors that 

rescue the F508del-CFTR trafficking defect and also stabilize the protein at the cell surface 

may eliminate the need for potentiators.
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 9. Five-year view

The introduction of ivacaftor and the lumacaftor-ivacaftor combination therapy represent a 

turning point in treatment of CF, both because of their direct impact on CF care and what 

they represent for the future of CFTR modulators. The next five years will hopefully see 

approval of multiple other CFTR modulators that address different aspects of CFTR 

dysfunction. These will provide multiple options for individual CF patients, which we 

predict will be necessary to provide optimal care given the plethora of CFTR mutations that 

can cause disease.

The availability of new CFTR modulators will require us to rethink how we classify CFTR 

mutations. CFTR mutations have historically been grouped into different classes according 

to their defects. For example the misfolding mutation, F508del-CFTR, belongs to Class II 

while the gating mutation, G551D-CFTR, belongs to Class III. It could be anticipated that 

patients with other misfolding mutations may benefit from lumacaftor-ivacaftor combination 

treatment. However, while it would seem that different mutations that belong to the same 

class should respond similarly to drug treatments, recent observations indicate that the 

original mutation classifications do not accurately describe responses to CFTR modulators 

[74, 75]. Furthermore, patients with identical CFTR mutations may show diverse drug 

responses.

These observations suggest that a precision medicine approach will likely be needed to 

optimize patient therapies. One such approach involves the use of organoids readily prepared 

from rectal [35], bronchial, and nasal tissues derived from individual CF patients. These 

spheroid cultures display acute volume changes resulting from ion and fluid movement upon 

CFTR activation by drug treatments. Additionally, nasal and bronchial spheroid cultures can 

be used for examining mucus properties and ciliary function. This precision ex vivo 

approach would potentially allow testing of different combinations and doses of correctors 

and potentiators in individual patients, allowing development of optimal treatment strategies 

for each CF patient. Such studies are imperative for identifying and conducting preclinical 

testing of candidate compounds before they enter the clinical trials, maximizing the 

likelihood of achieving the dramatic enhancements in lung function and secondary outcomes 

necessary to make the therapy a worthwhile product for CF patients.

Approval of other CFTR modulators may also address concerns over cost. The lumacaftor-

ivacaftor combination therapy is currently priced at $259,000 per year [19, 20], with 

ivacaftor at $311,000 per year [19], and the two drugs are predicted to represent well in 

excess of $1 billion dollars in revenue for Vertex Pharmaceuticals Inc. These revenues 

represent an enticing motivation for investment, which is enhanced by their orphan drug 

status that provides the manufacturer with certain benefits such as financial incentives and 

market exclusivity [20, 59]. However, this orphan drug designation also results in 

disproportionate overpricing, which may be unsustainable by patients and health insurance 

companies, particularly since these therapies would ideally be utilized throughout the life of 

a CF patient [76]. The relatively modest benefits of the lumacaftor-ivacaftor drug coupled 

with its high price have led many to question whether its clinical effect can justify its cost 
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[19]. Competition from other drugs that convey similar benefits could help reduce the cost to 

patients, as could more effective treatments that alter the cost-benefit ratio.
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Key issues

• Cystic fibrosis results from mutations in the CFTR gene, which codes 

for the CFTR channel protein. The most common mutation in CF 

patients is F508del, which produces a misfolded protein with 

diminished channel activity.

• Corrector and potentiator compounds directly affect CFTR function. 

Compounds predicted to enhance CFTR activity are currently in the 

clinical drug pipeline.

• The lumacaftor-ivacaftor drug is an FDA-approved combination 

therapy administered to CF patients homozygous for F508del-CFTR; 

however, this therapy resulted in modest improvements in lung 

function.

• Strategies to identify novel therapeutics must focus on drug 

combinations that improve CFTR maturation, function, and stability, 

thereby enhancing mucociliary clearance in the lungs. Preclinical 

laboratory testing of candidate compounds is important for 

understanding drug mechanisms.

• The goal of identifying effective therapies is to maximize benefit to 

patients without unreasonable costs.
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Figure 1. Drug Structures
Chemical structures of ivacaftor (top) and lumacaftor (bottom) are shown.
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Figure 2. Correction and Potentiation of CFTR
A. Correctors promote transfer of mutant CFTR from the ER to the apical membrane, 

whereas potentiators enhance activity of apical CFTR. B. Trafficking defect of F508del-

CFTR. Confocal immunofluorescence images show apical WT and intracellular-retained 

F508del-CFTR (green) expressed as Extope-variant in primary HBE cells. Cilia are stained 

in red and nuclei in blue.
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Table 1

CFTR-targeting drugs currently in the drug pipeline or in clinical trials.

Company Compound

AbbVie/Galapagos Triple-combination therapy with two corrector compounds (GLPG2222 and 
GLPG2665) and one potentiator (GLPG1837)

Bayer Riociguat to correct F508del function

Calista Therapeutics CAL inhibitor CT-007 to stabilize CFTR at the cell membrane

Concert Pharmaceuticals Potentiator compound CTP-656, a deuterium-modified version of ivacaftor

DiscoveryBioMed Dual acting correcting and activating CFTR ligand

Flatley Discovery Lab Corrector compounds FDL160, FDL169 FDL042(FDL282), FDL392, and 
FDL304

Genzyme/Sanofi Non-viral gene transfer agent (PGM169/GL67A), corrector compounds for 
F508del-CFTR

Nivalis Therapeutics N91115 to stabilize rescued F508del-CFTR

Novartis Potentiator compound (QBW251) and other potentiator and corrector compounds 
(picolinamide)

Parion Corrector compounds

PTC Therapeutics Ataluren for treatment of CFTR nonsense mutations*

Pfizer Corrector compounds (PYR-41 decreases the CFTR ubiquitination) and potentiator 
compounds (CP-628006)

ProQR Therapeutics QR-010, a 33mer antisense oligonucleotide designed to repair F508del-CFTR 
encoded mRNA

Proteostasis Therapeutics CFTR amplifier (PTI-428) that increases the levels of CFTR; combination of 
PTI-428 with corrector and potentiator compound (PTI‐NC-733)

Reata Pharmaceuticals Corrector compounds

Shire Rare Disease Unit Technology to deliver normal CFTR to the lungs

Southern Research Repurposing of known drugs for translational readthrough of rare CF nonsense 

mutations*

Traffick Therapeutics/AmorChem/NuChem Therapeutics Correctors (NU001 and NU002) that are synergistic with VX-809 or VX‐661 and 
VX-770

Vertex Pharmaceuticals Next-generation correctors VX-152 or VX-440 that will be combined with 
corrector VX-661 and potentiator VX-770

*
These compounds do not target F508del and therefore do not overlap with the therapeutic action of the lumacaftor-ivacaftor drug.
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