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Abstract

Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I 

and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx 

(phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and 

disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X 

receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-

activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements 

(XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important 

roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid 

metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, 

CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, 

and phase II conjugation of hydrophilic functional groups (with/without phase I modification) 

facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like 

UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-

mediated regulation of DME and transporter expression, as well as effects of single nucleotide 

polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, 

microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III 

mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic 

regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial 
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outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine 

requires understanding of a drug’s impact on DME and transporter activity and their NR-regulated 

expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug 

screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which 

mimic the physiology of a multicellular environment, will likely replace the current cell-based 

workflow.
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1 Introduction

Drug metabolism, which occurs primarily in the liver and intestine, refers to the enzymatic 

modification and subsequent disposal of medicinally active compounds, originating either 

endogenously (as steroids, neurotransmitters, metabolic products like bile acids) or 

exogenously (as natural products or synthetic/semi-synthetic chemicals). Upon conversion to 

hydrophilic metabolites, drugs are eliminated from the body following biliary excretion and 

renal clearance by glomerular filtration and tubular secretion. Drug metabolism is also 

integral to the biotransformation of pro-drugs to pharmaco-active agents. Drug metabolism 

and disposition is coordinated by an array of liver- and intestine-expressed drug-

metabolizing enzymes (DMEs) and drug-transporting proteins whose tissue abundance is 

transcriptionally regulated by specific nuclear receptors (NRs), which are ligand-activated 

transcription factors [1].

Of the 48 distinct receptors comprising the NR superfamily in humans, pregnane X receptor 

(PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are primary 

transcriptional regulators of the genes involved in the metabolism and elimination of drugs/

drug metabolites [4, 2, 3]. PXR and CAR are generically referred as xenobiotic NRs, since 

structurally diverse drugs and environmental xenobiotics activate these two NRs. PXR and 

CAR are also activated by a number of endobiotics (steroids, sterols, retinoids, thyroid 

hormones, bile acids). In addition, PXR and CAR activation can result from receptor 

phosphorylation by various kinases that are activated in response to drug-mediated induction 

of specific intracellular signal cascades; in this case, drugs may not directly interact with the 

xenobiotic NRs [5]. Vitamin D receptor (VDR, NR1I1), beyond its classic role in calcium 

and phosphate homeostasis, has the ability to transcriptionally induce drug transporters and 

DMEs, especially in the enterocytes of intestinal tissue [6, 7]. In certain contexts, additional 

NRs, such as the bile acid-activated farnesoid X receptor (FXR, NR1H4); oxysterol-

activated liver X receptor (LXR-α, NR1H3); fatty acid/eicosanoid-activated peroxisome 

proliferator activated receptor (PPAR-α, NR1C1), and retinoid-related orphan receptors 

(ROR-α, ROR-γ) regulate genes linked to drug absorption, distribution, metabolism and 

excretion (ADME) [8]. Hepatocyte nuclear factor (HNF4-α, NR2A1), a member of the NR 

superfamily, plays a synergizing role in the PXR- and CAR-mediated transactivation of 

DME- and transporter-encoding genes [11, 9, 10] .
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Altered activities of polymorphic variants of NRs and ADME-related gene products account 

for variable response to prescription medicine between individuals. Amino acid changes due 

to nucleotide polymorphisms in the coding region can influence protein stability or activity, 

while polymorphism at upstream, downstream or intragenic regulatory loci can alter NR-

mediated ADME gene transactivation. Epigenetic, transcriptional and posttranslational 

regulation of xenobiotic NRs can further impact drug metabolism and clearance. Evaluation 

of drug-drug interactions (DDI), which result from changes in the level or activity of DMEs 

and/or transporters due to a second drug, is an essential component of drug development 

workflow.

In this review, we describe various classes of DMEs and transporters, present an overview of 

the molecular underpinnings for NR-mediated genetic and epigenetic regulation of ADME 

genes and consider roles for various NRs (especially PXR/CAR/VDR) and their target genes 

in differential drug response. Illustrative examples highlighting critical roles of xenosensing 

NRs, DMEs and transporters in DDI are also examined. Finally, we discuss current drug-

screening platforms and their potential future improvements.

2 Drug Metabolizing Enzymes (DMEs) and Drug Transporters

The four phases of drug metabolism entail cellular uptake of therapeutic molecules (phase 

0); their enzymatic oxidation (phase I) and conjugation (phase II), and efflux of drug 

metabolites for clearance (phase III). PXR and CAR activate genes involved in all four 

phases. General steps in drug metabolism and elimination are shown in Figure 1.2.

2.1 Phase 0 uptake proteins

Basolaterally located uptake proteins guide cellular entry of drugs from circulation; drug 

influx can be a rate-limiting step for drug metabolism and clearance [15, 12]. All uptake 

proteins are members of the solute carrier (SLC) protein family of which there are more than 

300 members grouped under 52 subfamilies. Liver, intestine and kidneys are major sites of 

SLC expression. Most SLC proteins localize to cell membrane, although some may localize 

to mitochondria and other organelles. Proteins from nineteen SLC gene subfamilies have 

drug uptake activity. Most significant gene families of uptake transporters are SLC15 
(oligopeptide transporter), SLC22 (organic anion/cation/zwitterion transporter), SLCO 
(organic anion transporting polypeptide) and SLC47 (organic cation transporter) [13, 14]. 

For example, OCT1 is a SLC22A1 encoded organic cation uniporter involved in the influx 

of the antiviral agent acyclovir, ganciclovir and the anti-diabetic drug metformin. Drug 

substrates for proteins encoded by SLC15, SLC22, SLCO, and SLC47 families have been 

described [13, 14, 15]. SLCs either serve as channels (uniporter) to guide drug diffusion 

down an electrochemical gradient, or drive drug transport against a diffusion gradient that is 

coupled to the symport or antiport of small inorganic or organic ions.

2.2 Phase I DMEs

Heme-containing cytochrome P450s (CYPs), flavin-containing monooxygenases, 

monoamine oxidases and xanthine oxidase/aldehyde oxidases are examples of phase I 

DMEs, which generally localize to the endoplasmic reticulum of cells. CYP enzymes play 
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the most prominent role in phase I metabolism. Liver is the first pass and primary site of 

phase I metabolism, along with the gastrointestinal tract, kidneys, skin, and lung serving as 

additional sites; most tissues, however, express phase I DMEs. Addition or exposure of polar 

functional groups (e.g., −OH, hydroxyl; −COOH, carboxyl; −NH2, amine; −SH, sulfhydryl) 

to drug substrates enhances their bioavailability and solubility and promotes pro-drug 

biotransformation. Polar groups also arise by reduction of a ketone or aldehyde group to an 

alcohol; oxidation of an alcohol to an acidic group; hydrolysis of esters and amides; 

reduction of azo and nitro groups; oxidative dealkylation of N-alkyl, O-alkyl, and S-alkyl 

groups. When sufficiently polar, phase I metabolites can be pumped out of cells without 

additional modification.

CYPs are products of a multigene family, which for humans include 57 CYP genes [16]. 

Individual CYP is specified by the family (with an Arabic numeral), then the subfamily 

(with a letter) followed by the isozyme within the subfamily (with another Arabic numeral) 

and the allele number (with a preceding asterisk) of an individual gene within the subfamily. 

As an example, for CYP2D6*1, the *1 allele is wild type CYP2D6 with normal activity. 

Additional alleles of CYP2D6, marked with higher numbers preceded by *, exhibit aberrant 

functions [17]. CYPs are expressed in practically all tissues, with liver exhibiting the highest 

abundance and expressing largest number of individual CYPs. Enzymes of the CYP-1, -2, 

and -3 families metabolize majority of drugs and nondrug xenobiotics. The fraction of 

clinical drugs that are substrates for individual CYPs is schematically presented as Figure 

2.2. CYP3A4, the most abundant CYP enzyme in human liver, acts on the greatest number 

of drugs and other xenobiotics. CYP2D6, although present at lower abundance, metabolizes 

numerous drugs. Substrate specificity is narrower for other members of the CYP family that 

are expressed in hepatic and extrahepatic tissues. They target endogenous substrates like 

sterols, fatty acids, eicosanoids and vitamins. A comprehensive list of drug substrates for 

CYPs has been reported ([18]; http://www.pharmacologyweekly.com/cytochrome-cyp-p450-

enzyme-medication-herbs-substrates, updated May, 2015).

2.3 Phase II DMEs

Broad-specificity phase II transferases catalyze conjugative reactions. Common phase II 

modifications are glucuronidation by UDP-glucuronyltransferase (UGT), sulfonation by 

sulfotransferase (SULT), glutathionylation by glutathione S-transferase (GST), acetylation 

by N-acetyl transferase (NAT) and methylation by methyltransferase (MT). For any given 

transferase family, individual family members show predilection for a distinct set of 

substrates. Cofactors of phase II transferases react with functional groups that are either part 

of the parent drug or generated by phase I modification. In contrast to the enhanced potency 

of many phase I metabolites, phase II modified drug metabolites normally exhibit 

diminished function. PXR- and CAR-mediated gene regulation for a number of phase II 

transferases has been studied [9, 19].

2.4 Phase III efflux proteins

Members of the ATP binding cassette (ABC) superfamily, encoded by the ABCB, ABCC, 

and ABCG gene subfamilies, are broad-specificity exporters that pump drugs out of cells 

using energy from ATP hydrolysis. In hepatocytes, efflux proteins reside either in 
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canalicular/apical membranes or in blood-facing basolateral/sinusoidal membranes, guiding 

drugs, endobiotics and their metabolites for biliary excretion and efflux into systemic 

circulation. Multidrug-resistance associated proteins MRP2 (ABCC2), the bile salt export 

pump BSEP (ABCB11), the breast cancer resistance protein BCRP (ABCG2) are examples 

of ABC cassette family transporters which mediate apical efflux of drugs, steroids, bile acids 

and their conjugates. P-glycoprotein (MDR1, ABCB1) is an apical membrane transporter in 

hepatocytes [13]. Basolateral efflux of unconjugated and phase II-conjugated drugs, steroids, 

prostaglandin and bile acids from hepatocytes into sinusoidal blood is assisted by ABC 

transporters such as the multi-drug resistance associated proteins MRP3, MRP4, MRP5 and, 

also, by the ATP-independent OSTα/OSTβ complex that functions as an organic solute and 

steroid transporter. OST α contains seven transmembrane domains and OST β has a single 

transmembrane domain [20]; neither is part of the ABC transporter superfamily. MATE 

(multidrug and toxin extrusion) efflux transporters are H+-coupled antiporters, which 

transport structurally unrelated organic cations out of cells. They are members of the solute 

carrier subfamily SLC47, expressed primarily in the liver and kidney, and they localize at 

apical membranes of renal tubular epithelia and bile canaliculi. MATE1 (product of 

SLC47A1) mediates extrusion of organic cations into urine and bile. In the human kidney, 

the uptake transporter OCT2 (organic cation transporter, SLC22A2 encoded) promotes the 

import of cationic drugs (such as metformin, cisplatin, imatinib) from the blood at the 

basolateral membrane of the proximal tubule epithelial cells. MATE-1 and the isoform 

MATE-2K mediate secretion of cationic drugs across the brush-border membrane into the 

proximal tubule lumen [21].

3 Nuclear Receptors (NRs), Response Elements, Gene Regulation by 

PXR/CAR/VDR

NRs, upon association with DNA response elements, induce a cascade of protein-protein 

interactions that lead to the assembly of multiple classes of regulatory proteins (coactivators, 

corepressors, histone modifiers, chromatin remodeling complex) at the NR-bound chromatin 

region. Signal transmission from the coregulator assembly to the basal transcription 

machinery via a multi-protein mediator complex culminates in altered RNA polymerase II 

activity and transcriptional response of NR-regulated genes.

The NR superfamily of ligand-activated transcription factors in humans is defined by 48 

receptors grouped into four classes (Type I–IV) based on the nature of activating ligands, 

preferred sequence organization of NR-binding DNA response elements in target genes and 

dimerization partner of the activated NR [22, 23]. Type I NRs reside in the cytoplasm in an 

inactive state in association with chaperone proteins. They are activated upon binding 

cognate steroid hormone ligands, translocated to the nuclear compartment and bind target 

gene response elements as homodimers to mediate gene regulation. Type II receptors, such 

as the vitamin D receptor (VDR), are activated by nonsteroid endocrine ligands (1α,25-

dihydroxy vitamin D3 (1,25-D3 , in short) for VDR; retinoic acid-all trans, for RAR-α/-β/-γ; 

thyroid hormone for TR-α/-β). Several Type II receptors are activated by intracrine ligands 

(e.g. bile acids activating FXR-α; oxysterols activating LXR-α/-β; fatty acids/eicosanoids 

activating PPAR- α/-γ/-δ). Type II NRs in an inactive state remain tethered to corepressors 
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as heterodimers with the obligate partner retinoid X receptor (RXR). Exchange of 

corepressors for coactivators initiates activation of ligand-bound Type II NRs. PXR and 

CAR, comprising the Type III subgroup, are transported from cytoplasm to the nucleus upon 

activation by chemical inducers. Nuclear PXR and CAR bind to DNA response elements as 

dimers with RXR to set the stage for subsequent regulation of target gene transcription. 

Activation of CAR in most cases entails a ligand-binding independent mechanism, as 

reported for phenobarbital-like chemicals, which induce dephosphorylation of CAR at 

threonine-38, thereby activating CAR and promoting its nuclear translocation. Direct ligand 

binding and activation of CAR has also been reported for some xenobiotic compounds [24, 

25]. Type IV NRs (e.g., LRH1, NGF1-B/NUR77, RORs) bind to DNA elements as a 

monomer, homodimer, or even as a heterodimer, partnering with RXR or another member of 

the same subfamily [26]. Although PXR, CAR and, to a significant extent VDR, are primary 

regulators of drug metabolism and disposition, NRs from all four classes are known to 

influence drug/xenobiotic response, as discussed under Section 3.3.

For all NRs, the primary structure specifies a common generalized organization based on 

functional domains [23, 2]. The highly variable amino-terminal A/B domain harbors 

constitutively active transactivation function (AF-1) and multiple autonomous 

transactivation domains. This is followed by a DNA-binding domain (DBD, C domain), 

through which an activated NR binds to a DNA response element. The ligand-binding 

domain (LBD, E domain) at the carboxyl end encompasses the activation function-2 region 

(AF-2). A less conserved flexible hinge domain (D) connects DBD and LBD. The hinge 

region contains a nuclear localization signal (NLS) sequence, which extends to the 3’ end of 

DBD. A variable F domain follows the LBD E domain in some but not all NRs. X-ray 

crystallography, cryo electron microscopy and solution structure determination by various 

methods including small-angle X-ray scattering and hydrogen-deuterium exchange, revealed 

DBD and LBD structures of several NRs, such as the first and second zinc finger modules 

and DNA-binding specificity motif of DBD; receptor dimerization motif; twelve α-helices 

of LBD and ligand-induced helix-12 repositioning that creates an interaction surface for 

coactivator or corepressor recruitment [29, 28, 27].

DNA elements cognate to Type I-III NRs constitute repeats of the half-site consensus 

sequence RG(G/T)TCA (R: purine), configured as a direct repeat (DR), inverted repeat (IR), 

or everted repeat (ER) and separated by a varying number of nucleotides. Type I NRs 

recognize IR3-type palindromic elements; Type II and III NRs recognize specific repeat 

motifs of the consensus half site. Type IV NRs bind to a single hexamer consensus RG(G/

T)TCA, which may contain a short preferred sequence 5’ to the hexameric site [26].

Preferred response elements for PXR, CAR and VDR are 3- or 4- nucleotide spaced direct 

repeats (DR3, DR4), as concluded from in vitro DNA-binding studies and response element-

induced promoter activity in transfected cells. Numerous PXR/CAR/VDR target genes are 

also found to contain ER or IR motifs as response elements. Nevertheless, genome-wide 

chromatin immunoprecipitation (ChIP) and deep sequencing of immunoprecipitated DNAs 

(ChIP-Seq) identified DR4 as the most frequent PXR- associated recruitment sites in mouse 

liver [30]. DR4 in the human genome is a preferred DNA-binding site for the CAR/RXR 

heterodimer as well, as recently observed in a modified yeast one- hybrid assay [31]. DR3 is 
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the prevalent VDR-binding site at genomic regions that contain primary VDR target genes. 

These genomic regions are induced for chromatin opening in response to 1,25-D3 signaling 

[32].

3.1 Regulation of PXR, CAR, VDR expression

PXR and CAR are the primary mediators of transcription regulation of ADME relevant 

genes. Pathological conditions negatively impact drug metabolism due to reduction of PXR 

and CAR activity. As an example, CYP3A4 expression is suppressed by inflammation in 

part due to interference of inflammation-activated NF-κB with PXR’s transactivation 

function, since the p65 subunit of NF-κB was found to disrupt DNA binding of the PXR/

RXRα complex in the CYP3A4 gene [33]. Reduced PXR and CAR activity impairs drug 

metabolism under conditions of hepatic steatosis as well, since SREBP-1 (sterol regulatory 

element binding protein-1), activated in hepatocytes by lipogenesis- stimulated LXR-α, 

prevented p160 coactivator interaction with CAR or PXR, which curtailed phenobarbital-

induced, PXR/CAR-mediated CYP3A4/CYP2B6 gene transactivation [34].

PXR and CAR gene expression is regulated by many transcription factors including various 

NRs [35, 25, 36]. Cholic acid-activated FXR robustly induced the mouse Pxr gene in the 

liver via four FXR-binding elements in the Pxr promoter [37]. HNF4α regulates xenobiotic 

response in mice during fetal liver development through Pxr gene activation [38]. GR 

regulated rat Pxr promoter in transfected primary hepatocytes and in hepatoma cells [39]. 

Human PXR expression in liver is transcriptionally regulated by PPARα [35] and HNF4-α 
[40]. Expression of CAR is induced by agonist ligands for GR, PPARα and functional 

binding sites for these NRs as well as a binding site for HNF4α were identified in the 

upstream sequence of the CAR promoter [25, 41]. Furthermore, in animal studies, CAR 

mRNA expression was induced by fasting and calorie restriction [41]. Additional 

mechanisms entailing genetic polymorphism, changes in the epigenetic landscape, post-

transcriptional regulation by micro RNAs, and functional modulation through 

posttranslational modification (PTM) can have major impacts on the expression and activity 

of PXR and CAR. These examples are discussed under Sections 4.1 and 4.2.

VDR, upon activation by cognate ligands (i.e., 1,25-D3 and lithocholic acid, LCA), can also 

induce ADME relevant genes, especially in the intestine. Examples for VDR-mediated 

induction of DMEs and drug transporters in 1,25-D3 - or LCA-treated cells include 

CYP3A4, CYP2B6, CYP2C9 [6, 42], SULT2A1 [43], OATP1A2 [44], ABCA1 [45], and 

MRP3, MRP2 [46]. Crystal structures of VDR bound to LCA- and 3-ketoLCA have been 

determined [47]. Seasonal differences in intestinal CYP3A4 levels are attributed to season-

related fluctuations in sunlight exposure that lead to variations in serum levels of 25-

hydroxy-D3 and 1,25-D3 [48].

Transcription of the VDR gene is under auto-regulation; 1,25-D3 can increase VDR gene 

expression. Various endocrine factors including parathyroid hormone, retinoic acid, and 

glucocorticoids also regulate VDR expression [49]. Like PXR/CAR, VDR expression/

activity is influenced by gene polymorphism, micro RNAs and by post-translational 

modification, as discussed in Section 4.
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3.2 Xenobiotic response element (XRE)

At the chromatin level, XREs serve as sensors of xenobiotic (or endobiotic) signals by 

recruiting activated PXR/RXR and CAR/RXR to target genes. XRE activation is 

demonstrated by its activity in cis to induce promoter-directed reporter gene expression in 

transfected cells. Screening for XRE activation by synthetic or semi-synthetic chemicals is 

an integral part of the workflow for drug development. XREs also help identify other 

regulatory factors, which modulate PXR- and CAR-mediated expression of phase 0-III 

mediators. XREs in the phase II DME genes UGT1A1 (for the glucuronidating enzyme 

UDP glucuronosyltransferase, isoform A1, subfamily-1) and SULT2A1 (for the 

sulfotransferase enzyme, isoform A1, subfamily-2) are briefly described.

The phenobarbital responsive enhancer module (PBREM) in the human UGT1A1 includes 

three CAR-responsive XREs that are required for the optimal induction of UGT1A1 by 

phenobarbital (PB) [51, 50]. Protein-DNA interaction, analyzed by electrophoretic gel 

mobility shift assay (EMSA), revealed that CAR binds as a monomer to one of the 

functional XREs in the UGT1A1 PBREM, and similar to the CAR/RXR dimer, the DNA-

bound CAR monomer can interact with coactivators and corepressors. Furthermore, binding 

of the monomeric CAR or CAR/RXR dimer to XRE is most favored when the hexamer 

repeat of the response element is preceded at the 5’ end by the dinucleotide AG. Arginine 

residues at positions 90 and 91, located within the carboxy-terminal extension of CAR’s 

DBD, mediate the dinucleotide-dependent binding preference [50].

XRE-dependent and PXR- and CAR-mediated induction of human SULT2A1 was 

investigated in our laboratory [9]. Preferred substrates for SULT2A1 are bile acids and 

dehydroepiandrosterone (DHEA) – the latter is the steroid precursor for testosterone and 

dihydrotestosterone. A major role for SULT2A1 in the enterohepatic tissue is to promote 

bile acid clearance as the sulfate conjugate. Notably, the prostate cancer drug Zytiga 

(abiraterone acetate) is hydrolyzed in vivo to the therapeutic metabolite abiraterone, which is 

cleared from the body after conversion by SUL2A1 to the inactive abiraterone sulfate, and 

by CYP3A4 to the inactive N-oxide abiraterone, which is then converted to a sulfated 

derivative (PubChem database, CID 132971). SULT2A1 expression is induced by VDR and 

the bile acid receptor FXR as well, which is in keeping with its role in bile acid homeostasis 

[52, 43]. A PXR/CAR- responsive composite XRE in the human SULT2A1 promoter and a 

synergizing role of HNF4-α in XRE- induced SULT2A1 expression is described below and 

is summarized schematically in Figure 3.2.

3.2.1 A composite XRE and HNF4-α-responsive DR1 element in the human 
SULT2A1 promoter—Induction of the SULT2A1 promoter by ligand-activated PXR and 

CAR in transfected liver and intestinal cells was shown to be mediated by an upstream 

xenobiotic-responsive composite element (XRE). Specific interaction of XRE with PXR/

RXRα and CAR/RXRα was demonstrated by DNAse1 footprinting and EMSA. The XRE 

from −190 to −131 positions, was defined by an inverted repeat and a direct repeat of the 

AG(G/T)TCA element, which are configured as IR2 (−190AACGCAAGCTCA-
GATGACCCCTAA−167) and DR4 (−55GATAAGTTCATGATTGCTCAACATC−131) [9]. 

XRE-mediated stimulation required both IR2 and DR4 elements; neither by itself was 
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sufficient to cause robust SULT2A1 promoter induction. Thus XRE is a composite element. 

The composite XRE spanning −190 to −131 positions stimulated a heterologous promoter. 

Point mutations in the XRE prevented its interaction with PXR and CAR and abrogated 

induction of the SULT2A1 and the heterologous thymidine kinase promoter.

HNF4-α plays a modifying role in the PXR- and CAR-mediated target gene transcription, 

since HNF4-α potentiated PXR- and CAR-mediated transactivation of the SULT2A1 
promoter. A DR1 element (−63GTGACATGCTGGGACAAGGTTAAAGATCG−35) in the 

SULT2A1 gene promoter, located upstream of −30 nucleotide position, serves as an HNF4-

α-binding element. A schema on the regulation of SULT2A1 by PXR and CAR via the 

composite XRE, and the synergizing influence of DR1-bound HNF4-α on xenobiotic-

induced SULT2A1 expression is presented as schema in Figure 3.2.

3.2.2 Sult2A1 induction by FXR via an IR0 element—Apart from xenobiotic 

chemicals, bile acid overload induces SULT2A1 expression. For example, Sult2A1 mRNAs 

were induced in the mouse liver when animals were fed a cholic acid containing diet (Figure 

4.3.2), and bile acid activated FXR robustly induced the Sult2A1 promoter through an FXR-

bound IR0 element [52]. However, IR1 is the most abundantly encountered FXR-responsive 

element. An IR1 element drives FXR-mediated transactivation of ABCB11, the gene for the 

human bile salt export pump [53]. A number of other repeat motifs of the half site RG(G/

T)TCA including DR1, ER6, ER8 are known to be FXR-responsive functional elements in 

FXR target genes. Assessment of genome-wide FXR binding in the mouse hepatic 

chromatin showed an IR1-type sequence as the preferred chromatin occupancy site for FXR 

in vivo [54]. FXR-occupied IR1 sites are frequently juxtaposed to a hexameric half-site 

consensus sequence, which binds a monomeric NR such as LRH-1 (liver receptor 

homolog-1). Positive interplay between FXR and LRH-1 for the gene encoding the small 

heterodimer partner (SHP), which is an atypical NR devoid of a DBD, as well as several 

other FXR target genes has been demonstrated [55]. The FXR/LRH-1/SHP axis plays a key 

role in bile acid homeostasis, as discussed in the next section.

In summary, above examples of XREs demonstrate that PXR, CAR, FXR bind a variety of 

repeat motifs of the consensus half site RG(G/T)TCA to induce genes involved in drug 

metabolism and disposition.

3.3 NR, a drug target for diseases from disrupted bile acid/cholesterol homeostasis

Bile acid synthesis is the primary pathway for cholesterol catabolism in liver, accounting for 

~50% of daily cholesterol turnover. Cholesterol overload, the underlying cause for 

cholesterol stone, results from insufficient bile acid synthesis when bile acid saturation with 

cholesterol leads to the formation of cholesterol stone. On the other hand, bile acid 

accumulation leads to cholestasis due to reduction or stoppage of bile flow. Oral bile acid 

therapy is given to patients with cholesterol stones, and ursodeoxycholic acid is used to treat 

cholestasis of pregnancy and primary biliary cirrhosis (PBC), the autoimmune disease 

causing bile duct destruction. FXR and other NRs, such as LRH-1, HNF4-α, LXR-α, SHP, 

PXR, and VDR maintain bile acid/cholesterol homeostasis [56, 55].
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CYP7A1 (cholesterol 7 α hydroxylase) is the rate-limiting enzyme for bile acid production 

from the catabolic breakdown of cholesterol. HNF4-α and LRH-1 are positive regulators of 

CYP7A1 expression. Some aspects of CYP7A1 regulation are, however, species-specific—a 

prominent example being the positive regulation of the basal expression of CYP7A1 by 

oxysterol-activated LXR-α in the rodent liver but not in human liver, since the LXR-binding 

site in the human promoter is mutated [57]. Toxic accumulation of bile acids, on the other 

hand, is prevented by FXR-imposed negative feedback regulation of CYP7A1. In this case, 

bile acid activated FXR induces SHP [58], and interference from SHP due to protein-protein 

interaction inhibits positive regulation of the CYP7A1 promoter by LRH-1 (an NR activated 

by phospholipids) [56]. SHP also interferes with the stimulatory interaction between HNF4- 

α and the coactivator PGC1- α (peroxisome proliferator activated receptor γ coactivator 1-

α) on the CYP7A1 promoter [55]. In the ileum part of intestine, SHP plays a role in the 

CYP7A1 repression by the fibroblast growth factor-19 which, like SHP, is induced by FXR 

[56]. PXR blocks CYP7A1 expression by disrupting the PGC1α → HNF4 stimulatory axis 

[59]. Thus, like FXR, PXR also regulates bile acid homeostasis upon activation by drugs and 

certain bile acids. Drugs targeting FXR, SHP, LRH-1, PXR and HNF4-α have therapeutic 

potential against liver and biliary disorders. Small molecules that augment SHP activity may 

robustly reduce CYP7A1 expression to prevent bile acid overload. Small molecules, which 

elevate LRH-1 activity or increase PGC1-α ↔ HNF4-α interaction, would be useful in 

enhancing CYP7A1 expression, which then would promote cholesterol breakdown and 

reduce cholesterol build up.

Apart from FXR, TGR5, a transmembrane G protein coupled receptor, mediates bile acid 

signaling. TGR5 is located in intestinal epithelium, Kupffer cells, sinusoidal endothelium 

and bile duct cells. Both TGR5 and FXR are hotly pursued drug targets for diseases of errant 

bile acid and cholesterol metabolism [55]. The athero-protective effect of LXR-α arises in 

part from the LXR-α-mediated induction of efflux transporters in resident macrophages of 

the arterial wall, and this in turn promotes cholesterol efflux and reverse cholesterol 

transport to the liver and intestinal tissue and subsequent removal of cholesterol as part of 

excreta. Therefore, small molecule activators of LXR-α may normalize cholesterol 

homeostasis. Finally, VDR can regulate bile acid and cholesterol homeostasis, since agonist-

activated VDR promotes cholesterol catabolism by repressing SHP and increasing CYP7A1 

expression [60].

4 Genetics, Epigenetics and Interindividual Differences in Drug Response

4.1 Gene polymorphism and NR-regulated variable DME/drug transporter activity

Single nucleotide polymorphism (SNP) at regulatory loci of ADME related genes, or non 

synonymous SNPs in the coding region of NR itself, alter NR-mediated DME/transporter 

expression. A non-coding SNP at an HNF4-α binding site in the CYP2B6 promoter 

contributes to the interindividual variations in CYP2B6 expression [61], and a common 

African haplotype for an SNP at a PXR-binding enhancer in GSTA (encoding glutathione S-

transferase A) causes hypersensitivity for GSTA induction by the human PXR ligand 

rifampin [62]. CYP2D6, which metabolizes a large number of drugs including 

antidepressants and β blockers, shows wide interindividual differences in expression and 
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activity. An HNF4-α variant having reduced binding to the CYP2D6 promoter and causing 

decreased CYP2D6 expression has been identified. The variant HNF4-α arises from a non 

synonymous SNP, which yields glycine → aspartic acid substitution at the position 60 

(G60D). Compared to this variant, the wild-type HNF4α genotype is associated with higher 

CYP2D6 activity in the human liver [63, 10]. The G60D HNF4-α appears at low frequency 

in Asian populations; it has not been detected in Africans or Caucasians [63]. Variable 

CYP2D6 expression also results from gene amplification that ranges from 3 to 13 gene 

copies. CYP2D6 deficiency is an autosomal recessive trait in ~7% Caucasians and ~1% 

Orientals, making these individuals poor metabolizers of CYP2D6 drug substrates [64]. 

Pharmacogenomic tests for CYP2D6 variants are common practice for assessing the 

appropriateness and efficacy of a CYP2D6 drug substrate. Interindividual differences in drug 

response are managed by dosage adjustment based on the patient’s pharmacogenetic profile.

The basal level of CYP3A4 in the liver varies up to 60-fold between individuals, although 

SNPs in coding sequences and regulatory loci of CYP3A4 do not explain this variability 

[65]. Association analysis suggests that nonsynonymous SNPs of PXR and FOXA2 (aka 

HNF3-β, a liver-enriched transcription factor) contribute to CYP3A4 variation in the human 

liver, since the mRNA expression level for CYP3A4 in the human liver significantly relates 

to SNPs of PXR and FOXA2, and PXR expression itself is regulated by FOXA2. Binding 

sites for FOXA2 and PXR in the human CYP3A4 distal promoter were identified [66]. VDR 

polymorphism accounts for disparate intestinal CYP3A4 levels and variable first pass 

intestinal absorption and metabolism of CYP3A4-targeted drugs [48].

FXR, which regulates the expression of many uptake and efflux transporters, shows a 

common non-coding -1G>T polymorphism, where T replaces G at the -1 position of the 

translation start site causing reduced FXR expression. The FXR-1G>T SNP is associated 

with increased efficacy of the statin drug rosuvastatin in lowering hepatic cholesterol 

biosynthesis, thus affording greater LDL-cholesterol response [67]. Rosuvastain remains un-

metabolized in hepatocytes and ABCG2 (BCRP), an apical ABC cassette efflux transporter, 

plays a major role in the biliary clearance of rosuvastatin. ABCC2 (MRP2) and possibly 

ABCC11 (BSEP) also contribute to rosuvastatin disposition from human liver. 

Mechanistically, low expression of the variant FXR accounts for reduced expression of the 

transporters ABCG2, ABCC2, ABCC11, which leads to a blockade in the biliary clearance 

of rosuvastatin and longer residency of the drug in hepatocytes – hence a more potent effect 

of this statin on hypercholesterolemic patients who carry the FXR-1G>T SNP [67].

A large number of SNPs for PXR (NR1I2)- and CAR (NR1I3)- encoding genes are known, 

several of which are associated with altered expression and/or function of these receptors 

[69, 68]. For the NR1I2 SNP 63396C>T, located in a putative transcription factor binding 

site, the 63396T variant associates with elevated PXR expression, increased CYP3A4 
expression and decreased plasma levels of the CYP3A4 substrate atazanavir (an anti-

retroviral drug). Natural PXR variants, which harbor single amino acid changes, confer 

altered transactivation response of the CYP3A4 promoter [65]. Among the 22 naturally 

occurring splice variants of CAR, some are nonfunctional due to nonsense mutations. For 

the CAR (NR1I3) SNP rs2307424C>T, the T allele is associated with a low plasma level of 

the anti-retroviral drug efavirenz, which is a CYP2B6 and CYP3A4 substrate [70]. Extensive 
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VDR gene polymorphism has been reported [71], and it has been reported that intestinal 

CYP3A4 expression levels are functions of VDR polymorphisms [48].

4.2 Epigenetic machinery and drug response

Roles for DNA methylation, histone modification and microRNAs in the regulation of a 

large number of mediators of phase 0-III processes and their NR regulators (PXR, VDR, 

HNF4-α) have been reported [73, 72]. Epigenetic factors confer heritable changes in 

chromatin structure and function, caused by mechanisms other than DNA sequence 

alteration at the coding or non-coding region of a gene. An integral role of epigenetics in 

health and disease is revealed by the tragic history of the synthetic estrogen diethyl 

stilbesterol (DES) as a birth control pill. In utero DES exposure caused vaginal tumors and 

breast cancer in adult females. In mice, DES altered gene-specific DNA methylation, 

expression of epigenetic enzymes (DNMT3A, MBD2, HDAC2, EZH2), and the abundance 

of HOTAIR, a lncRNA [74]. Epigenetic systems are briefly discussed and current 

information on their roles in drug metabolism and drug response is presented.

4.2.1 DNA methylation, ADME gene activity, interindividual differences—DNA 

methylation at the 5’ cytosine of the CpG sequence (5mC) is an epigenetic mark for gene 

activity [75]. Gene repression is linked to hypermethylated promoters when 5mC 

methylation occurs within long stretches of CpG repeats (CpG island) at proximal 

promoters, although 5C-methylation at low CpG density (CpG shores) or even at single CpG 

sites can mark reduced gene expression. Of 3 major DNA methyltransferases (DNMTs) in 

mammals, DNMT1 is the maintenance methyltransferase; DNMT-3a and -3b are de novo 
enzymes, essential for the genome-wide methylation of DNA following embryo 

implantation. Gene repression by DNA hypermethylation is aided by the interaction of 

DNMTs with the polycomb repressor complex (PRC2), especially with EZH2 (Enhancer of 

Zeste homolog 2), the histone methyltransferase component of PRC2 [75]. Cancer 

development is associated with genome-wide DNA hypomethylation, which activates proto-

oncogenes. For many tumor suppressors, site-specific hypermethylation contributes to gene 

silencing [75]. 5-hydroxymethylcytosine (5hmc) modification of DNA, on the other hand, is 

an activation mark, linked to active gene transcription [76]. Notably, the paternal sperm 

DNA methylation pattern has been linked to autism risks in an autism-dense cohort [77]. 

Extensive interindividual differences in the genome-wide DNA methylation pattern have 

been reported [78].

Acquired drug resistance has been linked to altered DNA methylation of NRs and NR-

regulated ADME genes, as observed in i) drug-induced demethylation of MDR1 and BCRP, 

which leads to their overexpression causing multidrug resistance (MDR) of cancer cells [79, 

80]; ii) drug-induced methylation of the estrogen receptor (ER-α) encoding ESR1 gene 

promoter, causing reduced ER-α expression and tamoxifen resistance in breast cancer [81]; 

and iii) resistance to progesterone therapy in endometrial cancer due to reduced expression 

caused by enhanced methylation of the gene encoding progesterone receptor isoform A (PR-

A) [82]. Methylation of the PXR gene promoter attenuated PXR expression and reduced 

CYP3A4 expression in colon cancer cells [83]. In colon and endometrial cancers, the VDR 
gene is aberrantly methylated [83]; differential methylation of PXR and FXR at CpG 
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promoter sites has been reported in cholestatic pregnancy versus normal healthy pregnancy 

[84].

A role for DNA methylation in the expression of a number of DMEs and drug transporters 

has been reviewed [73, 85]. A few representative examples are discussed here. 1) 

CYP3A4/5/7 expression is dependent upon the methylation status of these genes, since their 

expression was altered when human hepatoma cells were treated with 5-aza-2′-

deoxycytidine (a DNA demethylating agent). CYP3A4 induction is associated with reduced 

5mC at CpG-rich regions located at or near the binding sites for PXR, CAR, and VDR, 

which are well-known regulators of CYP3A4 [73]. 2) Altered CYP1A1 expression in 

response to cigarette smoking is associated with changes in the methylation status of 

CYP1A1. 3) Development stage-dependent CYP2E1 expression is influenced by the 

methylation status of this gene. 4) Phase II genes including UGT1A1, GSTP1, SULT1A1 
and genes for efflux transporters like MDR1, BCRP and members of the OATP family of 

uptake transporters are epigenetically regulated due to DNA methylation [86, 87, 89, 88].

4.2.2 Histone marks; impact on NR-regulated ADME genes—Post-translational 

modification (PTM) of histones (methylation, acetylation, phosphorylation, ubiquitinylation, 

sumoylation, ADP- ribophosphorylation and several other modifications), especially 

acetylation and methylation at the amino-terminal histone tails for histone H3 and H4, are 

well-characterized epigenetic signatures that influence gene activity. PTMs are also known 

for histone H2A and H2B and the linker histone H1. More than 10 different PTMs at ~80 

sites on histone tails, histone core domains and on the H1 linker histone have been identified 

[90]. Gene-activating histone marks include H4 lysine-16 acetylation (H4K16ac); H3 

trimethylation at lysine-4 (H3K4me3) and lysine 36 (H3K36me3), and H3 phosphorylation 

at serine-10. Among repression marks, trimethylated histone H3 at lysine-9, lysine-27 and 

lysine-20 are most well characterized [91]. Histone deacetylases (HDACs, subgrouped as 

class I to IV), histone acetyltransferases (HATs), histone methyltransferases (HMTs) and 

histone demethylases (HDMs) are important drug targets. Numerous lysine-specific HMTs 

(SET7/9, MLL, EZ2H2) and lysine-specific HDMs (LSD1/KDM-1, JMJD2A/KDM4A, 

JARID1A/KDM5A) have been characterized. Arginine methylation of histones mediated by 

protein arginine methyltransferases (PRMTs) also regulates gene activity, as seen for histone 

H3 Arg-17, H4 Arg-3. Histone marks are the “codes” that are “read” by chromatin 

remodelers (such as SWI/SNF containing complexes) and histone- modifying enzyme 

complexes (such as PRC2) in order to prepare chromatin for positive or negative 

transcriptional response. Enzymes that mark histones through PTM are “writers”; those 

involved in removing histone marks are “erasers”; and protein/enzyme complexes, which 

recognize histone codes, are “readers”. Crosstalk of HMTs with DNMT1 influences 

epigenetic regulation [75].

Among the ADMEs whose genes are known to be regulated by histone modification include 

the phase I DMEs CYP3A4, CYP2E1, phase II DMEs SULT2B1, UGT1A1, the efflux 

transporters MDR1, BCRP, the OATP family of uptake transporters and the SLC5A5 
encoded iodine uptake transporter sodium/iodide symporter [86, 73]. Histone modification 

can have long- lasting effects on ADME genes. For example, the CAR target genes Cyp2b10 
and Cyp2c37, when neonatally exposed to the CAR ligand TCPOBOP, remained induced in 
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adult mouse livers; as a result, adult mice were much less sensitive to the Cyp2b10 substrate 

zoxazolamine [92]. H3K4 methylation and H3K9 demethylation at CAR-responsive 

elements in the Cyp genes, detected in the neonatal liver, persisted in the adult mouse liver. 

It was concluded that the early-life methylation status of histone H3 played a role in the Cyp 
gene induction in the adult liver, since hepatocytes isolated from the livers of mice receiving 

neonatal CAR activation were significantly more sensitive to low TCPOBOP concentrations 

for Cyp gene induction than hepatocytes from control mice lacking neonatal exposure to this 

inducer [92]. Also, the possibility remains that the long-lasting stability and biological 

potency of TCPOBOP in vivo, with activity persisting in mouse liver for 6 months or more 

[93], contributed to the hepatic Cyp induction in adult mice when receiving a single dose of 

TCPOBOP as neonates. PXR-mediated CYP3A4 induction was regulated by PRMT1, which 

methylated histone H4 at arginine-3 that is located within a PXR-responsive chromatin 

region in the CYP3A4 gene [94]. In a rat model of chronic kidney disease, reduced Cyp2C 
and Cyp3A expression, and associated reduction in PXR and HNF4-α binding to cognate 

sites in the Cyp2C11 and Cyp3A2 promoters, was accompanied by reduced histone H4 

acetylation at the Cyp3A2 promoter regulatory region and reduced histone H3 acetylation at 

the PXR- and HNF4-α-bound regulatory loci of Cyp2C11 and Cyp3A2 promoters [95].

Given the reversible nature of chromatin modifications by DNA methylation and histone 

PTM, drugs targeting epigenetic enzymes (“epi drugs”), especially DNMT, HAT, HDAC, 

HMT and HDM, are being developed. 5-azacytidine (Azacitidine) and 5-aza-2’-

deoxycytidine (Decitabine) are nucleoside analogs and DNA demethylating agents that are 

clinically used against myelodysplastic syndromes, chronic myelomonocytic leukaemia and 

acute myeloid leukaemia. Second-generation DNA de-methylating agents (SGI-110, 

CP-4200) are under development [96].

Valproic acid, a class I HDAC inhibitor and an anticonvulsant, activates CAR and PXR to 

induce CYP3A4, CYP2B6 and MDR1 expression [97, 99, 98]. Valproic acid also enhances 

tissue sensitivity to estrogen and progesterone by potentiating estrogen receptor (ER) and 

progesterone receptor (PR) activity due to HDAC1 inhibition [100]. Vorinostat (a 

hydroxamate) and romidepsine (a depsipeptide) are orally administered pan-HDAC 

inhibitors, which are used in combination therapy with chemotherapeutics like paclitaxel, 

doxorubicin. Vorinostat resistance is thought to develop from increased expression of efflux 

transporters, since MDR1, BCRP, and MRPs were detected at elevated levels in vorinostat-

treated cells [73]. Inhibition of ABC transporters in this case may improve vorinostat’s 

therapeutic efficacy. Epi drugs, which target histone methylation, are at various stages of 

development [101].

4.2.3 Non-coding RNA-mediated regulation of PXR, CAR, VDR and ADME gene 
expression—Non-coding RNAs (ncRNAs), best characterized for micro RNAs, are 

integrally linked to epigenetic machinery. Transcripts of more than 90% of the human 

genome represent ncRNAs, many of which regulate gene expression at transcriptional and 

posttranscriptional levels. Short (<30 nucleotides) ncRNAs, best characterized for micro 

RNAs (miRNAs), and long ncRNAs (lnc RNAs) with >200-nucleotide lengths are two major 

categories of ncRNAs. The list for micro RNAs, which influence ADME gene expression, is 

steadily growing [83, 103, 102].
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The miRbase lists as many as 2555 unique mature human miRNAs (database version 20; 
June 2013 release). Base pairing of the miRNA nucleotide sequence with a cognate 

sequence in the 3’ untranslated region (3’-UTR) of a target messenger RNA (mRNA) within 

the RNA-induced silencing complex leads to either mRNA degradation (in the case of a 

perfectly complemented base pairing), or translational suppression of the target mRNA 

when base pairing is not 100% complementary. A single miRNA can target 3’UTRs of 

multiple messenger RNAs.

Studies in cell culture show that the messenger RNAs for ADME related genes are targeted 

directly or, via upstream regulatory NR and other transcription factors, by one or more 

miRNAs. Regulation of CYP1B1 and CYP3A4 mRNAs by miR-27b; CYP2E1 mRNA by 

miR-378; the MDR1 transporter by miR-451; and the BCRP transporter by miR-328, 

miR-519C, miR-520h underscores the impact that miRNAs may have on drug metabolism 

and disposition, provided these miRNA-dependent regulations are upheld in vivo. While 

miR-27b directly regulates CYP3A4 expression, the VDR level is regulated by this micro 

RNA as well, so that miR-27b can both directly and indirectly influence CYP3A4 

expression. PXR expression is regulated also by miR-148a. The miRNA-dependent 

regulation of several epigenetic enzymes including DNMTs, HDACs, EZH2, and epigenetic 

enzymes that regulate miRNA-specifying genes (which produce miRNA precursor 

transcripts) have been reported [104, 105]. Such cross talks provide a miRNA-dependent 

additional regulatory cascades that may alter DME/transporter expression. The abundance of 

specific miRNAs may predict drug response, since miR-21 levels in pancreatic cancer 

biopsies correlated with gemcitabine responsiveness, and ectopic miR-21 expression caused 

gemcitabine resistance in pancreatic cancer cells [106].

A lncRNA known as AIR is indirectly involved in the inactivation of the mouse organic 

cation transporter (OCT) genes Slc22a2 and Slc22a3, since AIR plays a role in silencing the 

Igf2R gene cluster and Slc22a2 and Slc22a3 are located within this cluster [107]. LncLSTR, 

a recently reported liver-enriched lncRNA, is a regulator of Cyp8b1, which is involved in 

bile acid biosynthesis [108]. The lncRNAs PCA3 and PCGEM1 are elevated in human 

prostate cancer. PCGEM1 coactivates activities of the androgen receptor and cMYC 

oncoprotein. [109]. Whether lncRNAs directly regulate ADME-relevant genes remains to be 

determined.

5 Drug Interactions: A Role for Xenosensing NRs

5.1 Drug-drug, drug-food, drug-herb interaction

Drug-drug interaction (DDI) reflects changes in target drug pharmacokinetics or 

bioavailability in the presence of a co-administered drug. By activating PXR and CAR, the 

interfering drug renders changes in one or more components of the drug metabolizing and 

disposition machinery. DDI is assessed quantitatively by the pharmacokinetic parameters 

Cmax, which refers to the peak plasma drug concentration at post-dosing; and AUC (area 

under the time-plasma drug concentration curve), which defines total serum drug levels over 

time. DDI has three possible outcomes: i) overdosing and potential toxicity due to increased 

half-life of a target drug caused by one or more of the following – excessive pro-drug 

bioactivation; attenuated DME activity; increased uptake activity and reduced efflux activity 

Prakash et al. Page 15

Nucl Receptor Res. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of transporters; ii) underdosing resulting in low drug efficacy, which is due to reduced drug 

uptake and/or reduced bioactivation; enhanced metabolism and/or accelerated drug efflux; 

iii) a boost in medicinal potency. CYP-mediated DDI led to the withdrawal of numerous 

drugs from clinical use, such as terfenadine (the antihistamine Seldane) and cerivastatin (a 

cholesterol-lowering statin). Dietary ingredients (e.g., furanocoumarins in grapefruit juice) 

or phytochemicals in medicinal herbs (e.g., hyperforin in St John’s Wort) can modulate a 

drug’s efficacy and engender potentially fatal drug-food and drug-herb interactions. 

CYP3A4/3A5 and CYP2D6 are most frequent participants in DDI [18, 110].

Desirable outcomes may also result from drug interactions, as seen in the hepato-protective 

effect of ginger extracts against diverse drugs including high-dose acetaminophen [111]. 

DDI is not a concern for peptide or antibody based therapeutics, since they do not activate 

PXR and CAR. Recently approved PCSK9 inhibitors are antibody-based drugs, which aid in 

LDL-cholesterol clearance from circulation by preventing PCSK9-mediated degradation of 

the LDL receptor [112].

5.2 Linking xenobiotic NRs to drug interactions

Association of the xenobiotic NR activity with clinical DDI has been reported [1, 113, 114]. 

Orally delivered drugs, which are CYP3A4 and/or MDR1 transporter substrates, can exhibit 

markedly altered pharmacokinetics in response to rifampicin co-administration. For 

example, increased enterohepatic expression of CYP3A4, triggered by the long-term 

treatment with the human PXR agonist rifampicin caused a 96% decrease in the oral 

bioavailability of the CYP3A4 substrate (S)-verapamil and loss of the anti-hypertensive 

effect of this drug in patients [115]. Cyp2C9 induction by rifampicin-activated PXR reduced 

plasma concentrations of CYP2C9 substrates such as warfarin (anticoagulant) and 

sulfonylurea (antidiabetic) [116]. Binding and activation of PXR by hyperforin, a bioactive 

component of St. John’s Wort, leads to the transcriptional induction of CYP3A4 and widely 

prevalent clinical DDI due to increased metabolism and hence decreased efficacy of 

numerous drugs including oral contraceptives, the immune suppressant drug cyclosporine 

and the anti-HIV protease inhibitor indinavir [117].

Apart from acting as direct ligands, certain drugs induce phosphorylation of PXR and CAR 

by activating signal pathways that lead to activation of kinases such as PKA, PKC, CDK2, 

CDK5, and p70S6K [5]. One such PXR activator is forskolin, a diterpene constituent of the 

Indian plant C. forskohlii, which is used for the treatment of glaucoma, asthma and various 

other diseases. Forskolin induces PXR phosphorylation through PKA activation, and 

enhances PXR-coactivator interaction upon its direct binding to the PXR LBD [118]. 

Additionally, forskolin is a constituent of an herbal mixture marketed over-the-counter for 

weight loss. DDI/drug-herb interaction may interfere with forskolin’s therapeutic value.

In the case of CAR, metformin induces phosphorylation of this xenosensing NR at 

threonine-38, mediated by activated AMPK and the MAP kinase ERK1/2. Thr-38 

phosphorylation restricts nuclear translocation of CAR and disruption of coactivator-CAR 

interaction, thereby preventing CAR-mediated induction of target genes such as CYP2B6 
[25]. As a result, co-administration of metformin is known to cause altered pharmacokinetics 

for CYP2B6 drug substrates [119]. Reciprocally, reduced CYP2B6 and CAR activity may 

Prakash et al. Page 16

Nucl Receptor Res. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



render a negative impact on the renal clearance of metformin as a result of reduced 

expression of the renal OCT2/MATE transporter system. Pronounced DDI may be expected 

as a result of such negative interplays.

Additional examples below underscore how PXR and CAR may play roles in clinical DDI 

events. Several reviews on NR-regulated drug interactions provide further elaborations on 

this subject [120, 121, 15, 114].

5.3. Drug-drug interaction

5.3.1 Statin-induced myopathy, DDI: a likely role for NRs—Uptake transporters of 

the OATP family are predominantly involved in the hepatic import of statins [15], and 

common variants in SLCO1B1, which encodes OATP1B1, are strongly linked to an 

increased risk for statin-induced myopathy [122]. As an example of adverse DDI, 

cyclosporine A, which competitively inhibits OATP-mediated hepatic statin uptake, caused 

skeletal muscle statin overload and muscle damage upon co-administration with pitavastatin 

or rosuvastatin. Extreme statin overload is linked to the fatal condition of rhabdomyolysis 

[123].

Various statins, however, differ significantly in pharmacokinetic characteristics due to 

differences in ADME. It is, therefore, conceivable that additional to altered uptake activity, 

the PXR-/CAR-regulated expression of uptake transporters may influence the hepatic uptake 

of some form of statins. Indeed, long-term treatment of rifampin reduced atorvastatin 

bioavailability due to induced expression of CYP3A4 and efflux transporters by rifampin-

activated PXR [124], whereas short-term rifampicin administration caused inhibition of 

OATP-mediated hepatic uptake of atorvastatin and caused elevated AUC for this statin [125]. 

PXR- and CAR-responsive functional XREs are present in genes for many drug transporters 

including OATPs and various efflux transporters [126].

5.3.2 Prostate cancer, ZYTIGA®, DDI with rifampicin—Zytiga (abiraterone acetate), 

the anti-androgen drug against recurrent metastatic prostate cancer, is a CYP3A4 and 

SULT2A1 substrate. In a DDI trial, serum Zytiga exposure decreased by 55% in the 

presence of rifampin, indicating a need for higher dosage of this drug when a PXR activator 

is co-administered [127]. DDI is likely caused by increased CYP3A4 and SULT2A1 

expression by rifampicin-activated PXR, since inhibition of CYP3A4 activity by co-

administered ketoconazole (a strong CYP3A4 inhibitor) did not significantly alter Zytiga 

pharmacokinetics (Clinical Pharmacol 12.3; FDA Drug Safety Reporting, 2015).

5.4. Drug-food, drug-herb interactions

5.4.1 Grapefruit juice, CYP3A4, drug transporters, PXR/CAR—Grapefruit and 

several other citrus fruits contain furanocoumarins in addition to other phytochemicals. 

Furanocoumarins, which inhibit OATPBs and CYP3A4, elevate the bioavailability of 

CYP3A4/OATPB substrates including cyclosporine, midazolam, calcium channel blockers 

and certain statins [128]. Although in humans furanocoumarins predominantly inhibit 

CYP3A4 activity, Cyp 1, 2, 3 expression and activity in mice was induced by isopimpinellin 

(a furanocoumarin) in a Pxr- and Car-dependent manner [129]. To settle whether species 
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specificity explains such differences, effects of furanocoumarins on PXR and CAR activity 

should be re-assessed in humanized PXR-CAR-CYP3A4/5 mice where human counterparts 

replace rodent Pxr, Car and Cyp genes [131, 130].

5.4.2 Pomegranate juice, SULT2A1, Zytiga® activity—Punicalagin, a polyphenol 

constituent of pomegranate, impairs sulfoconjugation of drugs in the intestine [132], which 

leads to reduced clearance and thus overdosing of orally delivered Zytiga (abiraterone 

acetate) which, as a CYP3A4 and SULT2A1 substrate, is normally metabolized to 

abiraterone sulfate and N-oxide abiraterone sulfate. Inhibition of CYP2C9 by punicalagin 

has also been reported. It is not known whether this polyphenol influences PXR or CAR 

activity.

5.4.3 St. John’s Wort, PXR, CAR, CYP3A4—Hyperforin, which confers the anti-

depressant activity of St. John’s wort, is a ligand for human PXR and CAR [117, 133]. 

Hyperforin-activated PXR/CAR induces CYP3A4, other CYP genes (CYP2B6, CYP2C9, 

CYP2C19), as well as MDR1. Acute rejection of transplanted hearts in patients due to self-

medication with St. John’s Wort is an example of serious drug-herb interactions. Rejection 

was caused by a drop in plasma levels of cyclosporine, which is a CYP3A4 and MDR1 

substrate [134].

5.4.4 Garlic, CYP2C9, Warfarin—Garlic extracts suppressed CYP2C9 mRNA 

expression and activity in the human hepatocyte-derived Fa2N-4 cell line; furthermore, 

garlic extract can competitively inhibit CYP2C9 activity [135]. Increased systemic exposure 

of CYP2C9 drug substrates such as warfarin in the presence of garlic extract has been 

reported. Reduced warfarin metabolism may enhance the possibility for uncontrolled 

bleeding. Since the diallyl sulfide in garlic extracts can activate CAR [136], CYP2C9 gene 

suppression may be driven by a CAR-dependent mechanism.

5.4.5 Protection from acetaminophen toxicity by garlic extracts: a role for 
CAR-induced SULT—The hepato-protective effect of organo-sulfers in garlic extracts 

against acetaminophen-induced liver injury is due to two mechanisms: 1) reduction of 

hepatic CYP2E1 expression and inhibition of CYP2E1- mediated acetaminophen 

biotransformation to a toxic metabolite [137]; 2) increased acetaminophen clearance as a 

sulfate metabolite by SULT activity. It has been reported that CAR, activated by diallyl 

sulfide (a garlic constituent), promotes acetaminophen conversion to a sulfated metabolite by 

inducing SULT2A1 and other SULTs (SULT1A1, SULT1A3/4, SULT1E1) [139, 138]. 

Reduced build up of acetaminophen prevents GSTpi induction by acetaminophen-activated 

CAR. The net result is diminished oxidative stress from glutathione depletion and 

consequent reduction of oxidant-induced liver injury [140].

Additional NRs can potentially generate drug interactions. VDR-mediated regulation of 

DMEs and transporters and a modifier role of HNF4 in the expression of ADME-relevant 

genes have been reported [43, 9, 126, 6, 141]. Whether long-term use of vitamin D 

supplements would cause adverse drug interactions should be evaluated. Drug interaction 

from activated glucocorticoid receptor (GR) is a distinct possibility, since ligand-activated 

GR induces CAR and PXR expression; a GR-responsive element has been identified in the 
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CAR gene promoter [142]. Dexamethasone, a synthetic glucocorticoid, promotes nuclear 

translocation of CAR and PXR and induces PXR/CAR target genes [142, 143]. 

Ketoconazole, an anti-fungal agent and GR antagonist, prevented rifampin- and 

phenobarbital-mediated PXR/CAR activation and induction of their target genes [144]. 

Thus, under ketoconazole co-medication, a primary drug may respond with altered 

pharmacokinetics.

5.5 Platforms for screening drug candidates

Early assessment of drug candidates can avoid late-stage failure of clinical trials due to DDI 

and help minimize costs for developing and marketing a new drug. Candidate drugs are 

routinely screened in a cell based workflow for their impact on DME activity and PXR/

CAR-mediated transactivation of XREs. Humanized mouse models, where Pxr, Car and Cyp 
rodent genes are replaced by corresponding human genes, are better suited for drug testing 

since these models provide in vivo relevance and they approximate as human surrogates. The 

humanized PXR-CAR-CYP3A4/3A7 mouse strain is commercially available. A new hPXR-

hCAR-hCYP3A4/3A7-hCYP2C9-hCYP2D6 mouse strain, with human PXR and CAR 

genes substituted for the rodent Pxr and Car genes and the gene clusters Cyp3a, Cyp2c and 

Cyp2d replaced by counterpart human genes, has been reported [145].

In the not-to-distant future, microfluidic organs-on-chips may be adopted as a preferred 

platform for drug testing, replacing animal models. In a microfluidic device, live cells on 

chips, organized in continuously perfused chambers, mimic the complex multicellular 

environment so that bioavailability, efficacy and toxicity of test molecules could be assessed 

in a context which, in part, recapitulates human tissue and organ physiology [146, 147]. The 

future drug discovery pipeline may also include a workflow that assesses drug-induced PTM 

profiles of PXR and CAR determined through liquid chromatography-coupled-tandem mass 

spectrometry, and examines how PTM alters PXR/CAR activity using an approach similar to 

that reported recently for PXR [148].

6 Summary and Perspectives

PXR and CAR, the two nuclear receptors that are activated by drugs and other xenobiotics, 

coordinate both metabolism of orally administered drugs in the liver and intestine and 

excretion of drug metabolites by mediating transcriptional induction of genes encoding 

phase I/phase II drug-metabolizing enzymes (DMEs) and transporters which regulate drug 

influx (phase 0) and efflux (phase III) of drug metabolites. Phase 0-III mediators are also 

induced by ligand-activated VDR, especially in the enterocytes of intestine. Additional 

nuclear receptors, especially FXR, HNF4-α, LRH-1 and SHP regulate expression of the 

enzymes and transporters involved in cholesterol and bile acid homeostasis. More than 90% 

of all known drugs are metabolized by a subset of cytochrome P450s (CYPs) – 

CYP3A4/3A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, 

CYP2J2, and CYP2E1. In the human liver and intestinal epithelium, CYP3A4 and its 

functionally indistinguishable isoform CYP3A5 are the most abundant CYP enzymes and 

together, they metabolize more than half of all prescription medicines. Overdosing or 

underdosing leading to drug toxicity or reduced drug efficacy, respectively, is the 

Prakash et al. Page 19

Nucl Receptor Res. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



consequence of interference from a co-administered second drug (DDI, i.e. drug-drug 

interaction) or from a dietary or herbal agent (drug-food/drug-herb interaction). Adverse (or 

beneficial) drug interaction results from i) enhanced gene transactivation for DMEs or 

transporters due to PXR/CAR activation by the interfering drug or other agent; and/or ii) 

altered DME or transporter activity. In order to minimize late-stage failure of clinical trials, 

an essential routine at early stages of drug development is to evaluate candidate molecules 

for effects on the activities and expression of a select set of CYP isozymes; for PXR and 

CAR activation and for DDI. Humanized mouse strains, as in hPXR-hCAR-hCYP3A4-

hCYP3A7 mice (available commercially), or recently reported hPXR-hCAR-

hCYP3A4/3A7-hCYP2C9-hCYP2D6 mice, may replace a cell-based workflow for 

screening candidate drugs. A humanized mouse model provides human-like drug 

metabolism machinery and in vivo relevance. A microfluidic organ-on-a chip platform, 

which mimics human physiology at tissue and organ levels, may be used in the near future 

as a preferred alternative to animal models for screening drug candidates (Figure 5.6).

Disparate drug response among individuals results from altered activity or expression of 

DMEs/transporters due to single nucleotide polymorphisms (SNPs) in coding regions or in 

PXR-/CAR-/VDR/HNF4- α -regulated genomic loci; it can also be due to SNPs of 

PXR/CAR/VDR/HNF4-α that lead to variable expression or activity of these nuclear 

receptors. An epigenome signature is specified by DNA methylation, chromatin histone 

marks for transcription activation/repression (largely defined by lysine acetylation and 

lysine/arginine methylation of the amino-terminal tails of H3 and H4 histones), and by non-

coding regulatory RNAs (microRNAs, long non-coding RNAs). The signature can have a 

profound impact on drug metabolism and disposition due to changes in PXR/CAR/VDR 

mediated transactivation of phase 0-III genes. The epigenome landscape also contributes to 

interindividual variations in drug response, since such a landscape is shaped by endogenous 

regulatory molecules and exogenous factors that are as varied as lifestyle, food habits, 

pollution and psychological disposition.

An integrated scheme linking genetic and epigenetic factors to drug metabolism/disposition, 

and interindividual variations in drug response is presented in Figure 6.6. In the era of 

personalized medicine, all of these regulatory factors must be taken into consideration 

before deciding on a medicinal regimen that provides optimal therapeutic efficacy and 

minimal toxicity, while preventing adverse drug reactions.
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NR nuclear receptor

DBD DNA-binding domain
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LBD ligand-binding domain

XRE xenobiotic response element

PXR pregnane X receptor

CAR constitutive androstane receptor

VDR vitamin D receptor

FXR farnesoid X receptor

LXR liver X receptor

CYP cytochrome P450

DME drug-metabolizing enzyme

ADME absorption, distribution, metabolism, excretion

DDI drug-drug interaction

PTM post-translational modification

MDR multi-drug resistance

ABC ATP-binding cassette

HDAC histone deacetylase

HAT histone acetyltransferase

HMT histone methyltansferase

HMD histone demethylase

DNMT DNA methyltransferase

SNP single nucleotide polymorphism
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Figure 1. Steps involved in drug metabolism and disposition
(1) Uptake transporter mediates drug entry into the cell. (2) Drug activates xeno-sensing NR 

in the cytoplasm or nucleus. (3) NR binds to XREs in target genes that are involved in drug 

metabolism and clearance. (4) Coactivator association with the DNA-bound NR and a 

cascade of activating steps, which culminate in gene transcription for DMEs, transporters. 

(5) Expression of phase 0-III mediators. (6) Phase I enzyme adds water-soluble functional 

groups to the drug structure. (7) A phase II conjugative transferase adds hydrophilic groups 

to drug/drug metabolite. (8) Phase III efflux transporter moves to plasma membrane. (9) 

Transporter- assisted drug efflux. (10) Drug clearance through biliary and urinary excretion.
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Figure 2. Percentage of all prescription drugs metabolized in human liver by a particular CYP 
enzyme
(adapted from [16]).
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Figure 3. Induction of the human SULT2A1 promoter by PXR, CAR and a synergizing effect of 
HNF4-α
Schema showing a PXR- and CAR-binding composite XRE comprised of IR2 and DR4 

elements, and an HNF4-α-binding DR1 element located downstream of XRE. Dotted, 

upward arrows signify promoter induction. Interaction between DR1-bound HNF4-α and 

XRE-bound PXR/RXR, CAR/RXR has an synergistic effect (triple upward arrows) on 

SULT2A1 induction. (based on results described in [9]).

Prakash et al. Page 32

Nucl Receptor Res. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. SULT2A1 mRNA induction by cholic acid in mouse liver
Sult2A1 mRNAs in mouse livers were assayed by semi-quantitative RT-PCR. Cholic acid, a 

primary bile acid, was added to diet at 1% w/w. Data are for 3 individual mice (6-month-old, 

male) from the control and experimental group. Levels of β-actin mRNAs served as the 

normalization control (B. Chatterjee & CS Song, unpublished).
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Figure 5. Overview of drug-screening platforms
Candidate drugs are screened for effects on the activity and expression of a select set of 

CYPs (e.g., CYP3A4, and several other CYPs). Workflow for traditional screening (shown 

at left) relies on cell-based high throughput assay to identify and narrow down candidates 

with potential for optimal drug activity. Microfluidic organ-on-a chip constitutes an 

emerging technology that may replace cell-based screening as the primary assay platform. In 

cross screening, cells are co-administered with a test drug and a second drug or a non-drug 

xenobiotic agent (such as a medicinal herb or a foodstuff) in order to reveal drug-drug or 

drug-herb or drug-food interactions. Subsequently, drugs are tested in mice. A humanized 

mouse model (transgenic mice with human PXR, CAR and CYP genes replacing the 

counterpart rodent genes) can serve as a human surrogate for the examination of drug 

interactions in the preclinical stage of drug screening.
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Figure 6. NR-mediated regulation of drug metabolism, drug disposition: control at multiple steps
Transcriptional regulation primarily dictates NR expression and its cellular abundance (box 

at the upper right corner). Post-translational modification modulates NR stability and NR 

activity (box at upper left corner). (A) Drugs activate xenobiotic NRs (PXR, CAR), which in 

turn modulate the expression of phase 0-III mediators via induction of XREs. Ligand-

activated VDR also induces DME and transporter expression. (B) Drug-drug, drug-herb, 

drug-food interactions cause altered NR expression/activity leading to altered expression of 

DME/transporter. An interfering agent (such as a second drug or a dietary constituent) may 

also modulate DME/transporter activity via competitive or allosteric regulation. (C) Histone 

modification and DNA methylation modulate NR expression; they also modulate NR-

regulated DME/transporter expression due to epigenetic changes at or near XREs. (D) SNP 

at an XRE or at an alternate regulatory locus of phase 0-III genes leads to a change in the 

NR interaction with the response element, which alters DME and transporter expression. 

SNP in coding regions of PXR/CAR/VDR/HNF4-α, DMEs or transporters can alter the 

activity or cellular abundance of these proteins/enzymes. (E) Micro RNAs and long non-

coding RNAs (lncRNAs) regulate the cellular abundance of NRs and mediators of phase 0-

III processes. (F) Interindividual differences in drug response stem from SNP at an XRE, at 

another NR-interacting regulatory locus of the target gene, or at the coding region of NRs 

(PXR/CAR/VDR/HNF4-α) or phase 0-III mediators.
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