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Abstract

Statistical methods in integrative genomics aim to answer important biology questions by jointly 

analyzing multiple types of genomic data (vertical integration) or aggregating the same type of 

data across multiple studies (horizontal integration). In this article, we introduce different types of 

genomic data and data resources, and then review statistical methods of integrative genomics, with 

emphasis on the motivation and rationale of these methods. We conclude with some summary 

points and future research directions.
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 1. INTRODUCTION

It is an exciting time to work on statistical methods for genomic problems. The rapid 

development of high-throughput techniques allows researchers to collect large amounts of 

genomic data, which can answer more biological questions and enable the development of 

more effective therapeutic strategies for human diseases. Since multiple types of genomic 

data are often available within and across studies, the integrated analysis of genomic data 

has becomes popular. One may integrate the same type of genomic data across multiple 

studies (horizontal integration), or integrate different types of genomic data in the same set 

of samples (vertical integration). We will review both horizontal and vertical integration 

studies, while putting more emphasis on the latter. Before discussing statistical methods, we 

will give a brief review of different types of genomic data as well as resources on where to 
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obtain genomic data and its related annotations. Many of our discussions and analytical 

rationales are cancer-focused although most of the discipline applies to general diseases.

 1.1. Different Types of Genomic Data

 1.1.1. DNA—A common genomic analysis is to study DNA features from germline 

(normal) tissue and tumor tissue separately, as they often have very different characteristics. 

DNA variants from germline tissue include single nucleotide polymorphisms (SNPs), indels 

(short insertion or deletion), copy number variation (CNV), and other structural changes 

such as translocations. SNP arrays can provide high confidence genotype estimates because 

the underlying genotypes belong to one of three classes: AA, AB, and BB, where A and B 

indicate the two alleles of a SNP. Most SNP arrays are designed to target common variants 

(e.g. those DNA variants that occur in more than 1% of individuals in a population). Both 

Array CGH and SNP array can measure CNVs. While array CGH can only measure total 

copy number, SNP arrays can measure the copy number in each of two homologous 

chromosomes, i.e., allele-specific copy number (Wang et al. 2007; Sun et al. 2009). 

Recently, high-throughput sequencing, including whole genome sequencing or exome 

sequencing (exome-seq) has been used to study DNA variants. With sufficient read-depth, 

sequencing data can provide more accurate estimates of SNP genotypes and copy number 

calls. In addition, sequencing data can detect rare mutations (i.e., the mutations with low 

population frequencies) that are usually not captured by arrays (Nielsen et al. 2011; Mills et 

al. 2011).

In cancer studies, we are often interested in somatic DNA mutations that occur in tumor 

tissues but not found in the germline. Somatic point mutations, including single nucleotide 

changes and indels, are often rare. It is likely that two cancer patients share few or no 

somatic point mutations across the whole exonic regions. In this sense, cancer may be better 

considered as a collection of rare diseases rather than one disease. Due to such rareness, 

somatic point mutations are usually detected by sequencing. A somatic copy number 

aberration (SCNA) often occupies a relatively long genomic region (e.g., one-third of a 

chromosome may be deleted or amplified), and can be relatively common. SCNAs can be 

studied by either array CGH, SNP array, or by high throughput sequencing. Studying 

somatic DNA mutations (either point mutations or SCNAs) is challenging because tumor 

samples are often composed of a mixture of tumor and normal cells (e.g., the normal cells 

from connective tissues or blood vessels) and tumor cells may have more than or less than 2 

copies of DNA on average. These two issues are known as purity and ploidy issues. 

Unknown purity and ploidy affect each other and should be estimated together (Van Loo et 

al. 2010; Carter et al. 2012). In addition, recent sequencing studies have revealed that tumor 

cell populations may be composed of several subclones. Some somatic mutations may 

only occur in one or some of the subclones, and thus have low allele frequencies. It is 

challenging to distinguish such mutations from sequencing errors (Ding et al. 2014).

 1.1.2. Epigenetic Marks—Normal cells within the human body share almost identical 

DNA, with sporadic somatic mutations contributing a small amount of variation between 

cells. Despite this similarity, different types of cells are observed to have dramatically 

different sizes, shapes, and/or functions. Such cell-type-specific traits are often maintained 
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by epigenetic marks, which are modifications on DNA molecules or proteins that can be 

passed to daughter cells during mitosis. The term “epi” means “over, outside of, around” in 

Greek. Although epigenetic marks do not change the DNA sequence itself, they may also be 

inheritable, and their role in the etiology of human diseases are increasingly recognized 

(Jiang, Bressler & Beaudet 2004). We will introduce three types of epigenetic marks: open 

chromatin regions, histone modifications, and DNA methylation.

Within a cell nucleus, DNA is packed around multiple proteins called histones. This 

complex of DNA and proteins is referred to as chromatin. Chromatin usually takes a 

condensed form so that the packed DNA sequence is not accessible by other proteins, such 

as regulatory transcription factors. Open chromatin regions, where previously packed DNA 

sequence is loosened and exposed, often harbor active regulatory elements bound to DNA. 

Open chromatin regions can be detected by DNase I hypersensitive sites (DHSs) 

sequencing (DNase-seq), where DNA sequences on DHSs are captured and then located by 

high-throughput sequencing techniques (Figure 1) (Song & Crawford 2010).

Histone modifications include different types of chemical modifications (e.g., methylation, 

acetylation, or phosphorylation) on different amino acids of histone proteins. Chromatin 

immunopreciptation (ChIP) followed by microarray (ChIP-chip) or sequencing (ChIP-

seq) are popular choices to capture DNA sequence associated with modified histones 

(Figure 1). The ChIP step enriches for such DNA sequences, and the following microarray 

or sequencing step determines their likely genomic location. Each type of histone 

modification may occur on short/long genomic regions, and is associated certain biological 

features e.g., active promoters or genes with suppressed expression (ENCODE Consortium 

2012; Rashid, Sun & Ibrahim 2014).

DNA methylation usually refers to the addition of a methyl group to cytosine residues within 

CpG dinucleotides. In the human genome, there are approximately 28 million CpG sites, 

which are not uniformly distributed. Clusters of CpG sites (a.k.a. CpG islands) tend to occur 

on gene promotors (Stirzaker et al. 2014). DNA methylation on promoter regions usually 

represses gene expression; in contrast, DNA methylation in genic or exonic regions is often 

positively associated with gene expression. Popular techniques to measure DNA methylation 

including array-based methods (e.g., Infinium HumanMethylation450 Bead-Chip (HM450)), 

whole genome bisulfite sequencing (WGBS), and reduced representation bisulfite 

sequencing (RRBS) (Figure 1). From the HM450 array, two measurements are obtained for 

a CpG locus, reflecting methylation (M) and unmethylation (U) signals, respectively. A 

commonly used measurement of methylation is referred to as beta-value, which equals to 

M/(M + U) (See Figure 1 for examples). Using WGBS, one can count the number of 

sequence reads with methylated or unmethylated CpG’s, where methylated CpG’s are 

marked by bisulfite transformation. Although RRBS covers less than 5% of CpG’s genome-

wide (~ 1 million of the 28 million CpG sites), its coverage is enriched for CpG’s at 

promotor regions (~ 0.5 million of 2 million CpG sites on promoters) (Stirzaker et al. 2014).

 1.1.3. RNA—Three types of RNA molecules are commonly encountered in genomic 

data: messenger RNA (mRNA) which encode proteins, and two non-coding RNAs with 

regulatory roles: microRNA (miRNA) and long non-coding RNA (lncRNA). In fact, the field 
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has also gradually recognized miRNA as one epigenetic machinery (Malumbres 2013). 

Expression (of any type of RNA) has traditionally been studied by different types of 

microarrays, where the expression of one gene/RNA may be measured by one or more 

microarray probes. In recent years, RNA-seq has been replacing microarrays to become 

the major platform of transcriptomic studies. Compared with microarrays, RNA-seq 

provides more accurate estimates of gene expression, allows de novo discovery of 

transcripts, and delivers new information such as allele-specific expression and RNA 

isoform-specific expression. Recent studies have systematically evaluated different RNA-seq 

protocols and paved the way for future large scale RNA-seq studies (Kratz & Carninci 

2014). Using RNA-seq data, the expression of one gene could be quantified by the number 

of RNA-seq fragments mapped to this gene, after correcting for read-depth and gene length.

 1.1.4. Protein—Proteins perform many fundamental functions within living organisms 

and understanding their abundance or activity is biologically important. The protein 

expression is, however, often less studied, mostly because amino acids do not form double 

helix structure as in nucleotides and the amplification and hybridization techniques used in 

microarray and sequencing for DNA and RNA are not conveniently applicable to proteins.. 

The activity of a protein may depend on a specific set of post-translational modifications 

(PTM). There are over 200 types of PTMs that may occur in multiple positions of a protein, 

and thus the combinations of such PTMs lead to an enormous number of protein states that 

cannot be handled by any current technology. A particular form of PTM, 

phosphorylation, has been better studied because phosphorylated proteins 

(phosphoproteins) play important roles in signaling pathways and assays are available to 

measure phosphoprotein abundance in large scale (Terfve et al. 2012). Existing techniques 

for proteomics study can be classified into two classes. One is antibody-based array and the 

other is mass spectrometry (MS). The Cancer Genome Atlas (TCGA) project has 

measured expression more than 100 proteins or phosphoproteins across thousands of cancer 

patients using an antibody-based array named reverse phase protein array (RPPA). 

Traditional gene expression array measures genome-wide expression of one sample on an 

array. In contrast, each spot in a RPPA corresponds to a sample, and a RPPA measures the 

expression of one protein or phosphoprotein across all the samples spotted on this array. 

Therefore the output of RPPA is comparable for one protein across all the samples, but in 

general not comparable for multiple proteins of one sample. Proteomics is a fast-growing 

field. Several large scale proteomics projects are ongoing, e.g., The Clinical Proteomic 

Tumor Analysis Consortium (Ellis et al. 2013).

 1.2. Genomic Data Resources

There are huge amount of publicly available genomic data deposited in different databases 

(Table 1). The results of Genome-Wide Association Studies (GWAS), including DNA 

genotype and phenotype data, are often deposited at dbGAP, which is hosted by National 

Center for Biotechnology Information (NCBI). Since genotyping information can 

theoretically trace to patient identity, one needs to complete a secure access application 

through dbGAP to protect privacy of patients. Gene expression and epigenetic data are often 

deposited at NCBI GEO (Gene Expression Omnibus) or ArrayExpress. The NCBI SRA 
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(Sequence Read Archive) is a central location for storing sequencing data. The SRA Toolkit 

provides convenient solutions for downloading large files of sequencing data.

There are also grsowing data resources from large consortium projects. A widely cited 

example is The Cancer Genome Atlas (TCGA). The TCGA data portal allows users to 

directly download open access data, which includes de-identified data of clinical and 

demographic features, mRNA or microRNA expression, copy number alterations, DNA 

methylation, and protein or phosphoprotein abundance (Figure 2). The primary sequence 

data and genotype data belong to controlled access data, which can be downloaded from 

CGHub (Cancer Genomics Hub). The International Cancer Genome Consortium (ICGC) is 

another large consortium that also collects genomic data from different types of cancers. A 

few other notable genomic data resources include the Roadmap Epigenomics Project, which 

focuses on genome-wide epigenetic marks; Genotype-Tissue Expression project (GTEx), 

which produces RNA-seq data from different human tissues, and ENCODE (Encyclopedia 

Of DNA Elements) project, which aims to study all functional elements in the human 

genome sequence.

Although lots of datasets are freely available for academic use, effort is needed to become 

familiar with different data resources and make correct use of them. Many datasets are 

publicly available but are not well-annotated, making them difficult to use. Databases with 

standardized uploading protocols are typically easier to use. For example, GEO adopts the 

MIAME standard and has volunteer personnel to constantly check data quality when new 

datasets are uploaded. Furthermore, sequencing or genotyping data of human samples often 

involve issues regarding privacy and legal consent, and thus their datasets need protection 

through protocols such as dbGAP. The administrative burden to access such data is usually 

not negligible and should be considered when using these datasets.

 1.3. Genomic Annotation Databases

Genomic annotations, such as locations and functions of genomic features, are valuable 

knowledge to assist analysis of any genomic study. Due to limitations of space, we only 

provide a brief review of selected annotation databases (Table 2). Arguably, the most 

important annotation for most genomic studies is the reference genome. The most recent 

release of human reference genome is GRCh38.p2 (released on December 8, 2014 by 

Genome Reference Consortium), which is the second patch release for the GRCh38 

reference assembly. Reference genomes can be accessed online at Ensembl or the UCSC 

Genome Browser, among other online locations. At the DNA level, NCBI dbSNP provides a 

comprehensive annotation of known SNPs, taken from various sequencing/genotyping 

projects such as the 1000 Genomes Project. Current version of dbSNP (Human build 

142) has a total of 112 million reference SNPs (refSNPs). Gene structure annotation 

includes the location of a gene and its exons, as well as its transcripts (i.e., RNA isoforms). 

Ensembl’s Genebuild pipeline automatically annotates genes based on existing evidence of 

mRNA and proteins in public scientific databases (Curwen et al. 2004). The GENCODE 

annotation combines the automatic annotation from Ensembl and manual annotation from 

the HAVANA (Human and Vertebrate Analysis and Annotation) team (Harrow et al. 2012). 

The functional annotation of each gene is incorporated by many gene-centered databases 
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such as NCBI Entrez Gene database. Gene Ontology (GO) database provide standardized 

ontology terms for gene functions in three categories: biological process, molecular 

function, and cellular component (Ashburner et al. 2000). There are also many databases for 

pathway annotations such as KEGG and NCI Pathway Interaction Database. Pathway 

Commons provide a centralized location to store pathway information from multiple 

databases. Many annotation databases can be conveniently found in the “Annotation” 

category of Bioconductor, a comprehensive collection of bioinformatics tools on the R 

language platform. There are also numerous useful databases to systematically catalog 

existing biological findings such as GWAS Catalog (disease association findings), COSMIC 

(mutations and gene translocation), miRanda (miRNA target genes), Genomics of Drug 

Sensitivity in Cancer (GDSC, for drug response in cancer), MIPS (protein-protein 

interactions), and Transfac (transcription factor binding motifs), just to name a few.

 2. Horizontal Data Integration

With rapidly accumulated GWAS, gene expression and methylation studies, and often 

limited sample size in each study, applications and development of meta-analysis methods to 

increase statistical power and achieve a consensus conclusion have significantly grown and 

evolved in the past decade. The ultimate goal is usually to improve detection of differentially 

expressed genes, disease associated SNPs or differentially methylated sites. Due to the large-

p-small-n nature of omics datasets (also partly because Microsoft Excel could only 

accommodate at most 256 columns in the 90’s), samples are usually arranged on the 

columns and gene features (SNPs, gene symbols or methylation sites) are on the rows, a 

reversed convention than general statistical practices. As a result, when multiple GWAS or 

transcriptomic studies are combined for meta-analysis, the datasets are laid out horizontally 

with gene features matched on the rows. As a result, such multi-study data integration is 

often called “horizontal genomic meta-analysis” and is the focus of this section. In contrast, 

when multiple omics datasets of the same cohort of samples are combined, the datasets are 

aligned vertically with samples matched on the columns. The data integration is called 

“vertical genomic integrative analysis” (Section 3). For horizontal meta-analysis, interested 

readers may refer to the following publications for details: GWAS meta-analysis review 

papers (Thompson, Attia & Minelli 2011; Begum et al. 2012; Evangelou & Ioannidis 2013), 

microarray meta-analysis review papers (Ramasamy et al. 2008; Tseng, Ghosh & Feingold 

2012) and relevant comparative studies (Wang et al. 2013; Chang et al. 2013). Below we 

mainly focus on GWAS and transcriptomic meta-analysis to illustrate the basic principles 

and common issues, as well as discussing related challenges and opportunities.

 2.1. Data collection and preprocessing

Researchers first determine a systematic search and inclusion/exclusion criteria to identify, 

extract, annotate and prepare datasets for meta-analysis. This process may involve special 

data management consideration and tedious preprocessing protocol. In GWAS meta-

analysis, for example, raw genotyping data are usually not allowed to share without patient 

consent. The GWAS meta-analysis consortium usually needs to develop a rigorous data 

exchange protocol to determine sharing of clinical information and summary statistics (e.g. 

effect size and its standard deviation) for millions of SNPs for meta-analysis. For 
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transcriptomic meta-analysis, determining whether studies have similar underlying 

biological comparison suitable for meta-analysis is critical. After data preparation, methods 

may be applied to ensure quality control for meta-analysis (Kang et al. 2012).

 2.2. Statistical methods for meta-analysis

Many traditional meta-analysis methods have been applied to genomic applications. These 

include two major categories: combine p-values and combine effect sizes. In the first 

category, Fisher’s method and Stouffer’s method are probably the most popular. Methods 

taking the minimum and maximum p-values have been used. In the second category, fixed, 

random or mixed effects models are popular. In transcriptomic meta-analysis, non-

parametric methods based on ranks have also been developed (Hong et al. 2006).

 2.3. Targeted biological objectives and underlying hypothesis setting

An important prerequisite decision behind genomic meta-analysis is to determine the 

targeted biological objective and the corresponding hypothesis setting. Tseng, Ghosh & 

Feingold (2012) demonstrated two hypothesis settings (HSA and HSB) to detect biomarkers 

differentially expressed (or SNPs associated to disease) in “all studies” or “one or more 

studies”, respectively. Although HSA is more often the desired biological objective, HSB can 

be considered when study heterogeneity is expected and of research interest (e.g. when 

studies utilize different tissues; see next paragraph). These two hypothesis settings are 

closely related to traditional union-intersection test (UIT) and intersection-union test (IUT), 

and choosing a hypothesis setting affects the selection of a suitable meta-analysis method. 

For example, Fisher’s method combines p-values by summation of log-transformed p-

values. One sufficiently small p-value is enough to generate statistical significance and thus, 

the method is for HSB (IUT). Chang et al. (2013) conducted a comprehensive comparative 

study to compare different methods for transcriptomic meta-analysis according to different 

hypothesis settings. Song & Tseng (2014) discussed a robust hypothesis setting to relax HSA 

from the stringent requirement of differential expression in “all studies” to “most studies” 

and proposed a solution by order statistics.

 2.4. Cross-study heterogeneity

Genomic studies often contain heterogeneity across studies due to different cohorts, 

experimental protocols, platforms or tissues used to generate the data. Although the main 

purpose of meta-analysis is to combine consensus information to improve statistical power, 

the heterogeneities across studies are also often of importance. For example, if different 

tissues are applied in different studies, tissue-specific biomarkers are expected and of 

concern. In the HSB (IUT) hypothesis setting described above, adaptively weighted concept 

(a.k.a. subset-based approach) and meta-lasso approach have recently been developed to 

identify gene-specific subset of studies that contain differential expression (Li 2011; Li et al. 

2014) or disease association information (Bhattacharjee et al. 2012; Han & Eskin 2012). The 

result characterizes both homogeneous and heterogeneous signals across studies.
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 2.5. Horizontal meta-analysis for purposes other than biomarker detection

The discussion so far focuses on meta-analysis of multiple genomic datasets to improve 

biomarker detection. Beyond biomarker detection, the concept of horizontal meta-analysis 

can be extended to virtually any statistical learning area that has been developed and applied 

to a single high-throughput experimental dataset. In transcriptomic analysis, for example, 

gene set analysis (a.k.a. pathway analysis) is a popular and powerful tool to characterize 

biological pathways associated with the disease or condition contrast (Khatri, Sirota & Butte 

2012; Newton & Wang 2015). The methods can be extended towards a meta-analytic setting 

to improve statistical power and to reach a more consensus conclusion (Shen & Tseng 

2010). Other statistical learning areas such as dimension reduction, clustering, classification 

and network analysis may also take advantage of combining information from multiple 

studies to improve performance and leave many open and challenging opportunities in the 

field.

 3. Vertical Data Integration

With vertical integration, we are concerned with multiple data types on the same set of 
samples. Following the fundamental principle of systems biology that biological 

mechanisms are built upon multiple molecular phenomena acting at different levels, we aim 

to gain understanding of complex phenotypic traits by jointly analyzing different layers of 

genomic information. Vertical integration tasks are directly linked to the type of biological 

questions that are posed, and the methods used are correspondingly and extremely varied. 

Main distinguishing characteristics are whether the biological question is focused on 

predictive, regressive (supervised) or exploratory (unsupervised) aims, and how prior 

biological information is utilized within the statistical analysis. Most approaches to vertical 

integration are model-based and we shall focus our review on these. None model-based 

approaches will be briefly discussed when we describe examples of analysis strategies aimed 

at answering specific biological questions (see Section 3.4).

 3.1. Integrative clustering

Many diseases exhibit substantial heterogeneity with respect to biological characteristics and 

clinical outcomes. Motivated by the known influence of genetic aberrations (germline and 

somatic) and the accessibility of tumor samples, early work focused almost exclusively on 

cancer and on using simple hierarchical clustering of gene expression profiles to uncover 

cancer subtypes. The landmark papers by Golub et al. (1999) on leukemia and by Perou et 

al. (2000) on breast cancer were followed by numerous studies endeavoring to describe 

molecular subtypes for a large variety of cancers, with only a few studies related to non-

cancer pathologies, such as myopathies (Greenberg et al. 2002) or auto-immune diseases 

(Lee et al. 2011). Cancer genomes exhibit considerable heterogeneity with abnormalities 

occurring in different genes among different individuals, posing a great challenge to identify 

those genes with functional importance and therapeutic implications. Hence, to go beyond a 

straightforward catalog and to provide deeper biological insight and clinical significance, it 

became apparent that additional biological information should be incorporated into the 

clustering process; and new robust clustering strategies that would integrate simultaneously 
diverse genomic characteristics were warranted.
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 3.1.1. iCluster—An important step in this direction was made by Shen, Olshen & 

Ladanyi (2009) who proposed iCluster, an integrative clustering approach to infer latent 

subtypes based on multiple genomic data types measured on the same samples. They 

achieve this by specifying a latent model for each data type Xj (where each dataset is row 

centered):

(1)

where Z = (z1, …, zN−1) are the latent subtypes common to the m data types and Wj are the 

coefficient the latent subspaces. The independent error terms (ε1, …, εm), with diagonal 

covariance matrix, represent the residual variance in each dataset after accounting for the 

correlation between data types. In order to derive a computationally efficient procedure for 

evaluating the likelihood in (1), a Gaussian latent variable model representation, based on a 

continuous parametrization Z* of Z, is used. An EM iterative algorithm is employed to 

derive the reduced representation Ê (Z*|X). Additional lasso-type penalties are imposed on 

the factor scores W to obtain a sparse solution and pinpoint important features contributing 

to the clustering. Finally, the class indicators Z are recovered using a K-means procedure on 

Ê(Z*|X) to derive N clusters. Model choice for the lasso penalty and the number of clusters 

is based on an empirical separability criterion.

This approach, preceded by a number of filtering steps, was used in the high profile 

METABRIC paper (Curtis et al. 2012) to derive a novel classification of breast cancer 

patients into clinically meaningful subgroups. Information from inherited variants (CNVs 

and SNPs) and acquired somatic copy number aberration (SCNAs) was integrated to define 

these subgroups. While iCluster was originally formulated for clustering continuous data 

types, iCluster+ (Mo et al. 2013) extends the framework to cope with both discrete and 

continuous data, replacing the linear formulation in (1) by a generalized linear one.

 3.1.2. Bayesian integrative clustering approaches—The METABRIC paper and 

its potential importance for clinical management of breast cancer opened the door to 

numerous studies of tumor heterogeneity. It also stimulated the development of alternative 

clustering approaches, aiming to exploit the power of Bayesian mixture models to increase 

the flexibility of integrative clustering. Besides being able to use different types of data 

(discrete and continuous) and to include a natural assessment of uncertainty provided by the 

use of Bayesian Dirichlet multinomial models as underlying structure, it was also considered 

important to allow for the possibility of not assuming the same clustering on all data types. 

Instead, the Bayesian formulations aim to find related clustering structures across the data 

types. Two main approaches have been taken to model cluster dependence, consisting in 

either relating clusters or in uncovering common and specific cluster patterns between the 

data types.

Building on the work of Savage et al. (2010) and Yuan, Savage & Markowetz (2011) for 

integrative clustering of two data types, Kirk et al. (2012) proposed MDI (Multi Dataset 

Integration). Denoting the observed data for gene i in data type k by Xik, where i = 1, …, n 
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and k = 1, …, K. A Dirichlet-Multinomial allocation model (DMA) for each data type is 

specified:

• each gene i is classified into one of N components (N fixed, same for each 

dataset, components may be empty) with allocation probabilities given by 

P(zik = j) = πjk for j = 1, …, N;

• in each dataset k, a mixture model is specified using appropriate 

parametric densities, fk, involving parameters Θk;

• association parameters ϕkm ≥ 0 are introduced to control the strength of 

association between pairs (k, m) of datasets:

where πzikk is the allocation probability of gene i to the component zik in data type k.

Estimation proceeds by stochastic simulation using Gibbs sampling, exploiting natural 

conjugacy in the model formulation. As clusters are allowed to be empty, N should be 

sufficiently large, with N = n/2 a practical recommended choice. If ϕkm is large, then groups 

of co-clustering genes in dataset k will be encouraged to have the same ‘label’ in dataset m. 

Interpretation of these parameters and the associated posterior probabilities for a sample i to 

be ‘fused’ across the datasets, i.e., to have the same label in a subset of data types, allow a 

rich interpretation of the posterior output.

Lock & Dunson (2013) propose BCC (Bayesian Consensus Clustering) which aims to 

simultaneously uncover source-specific clusters for each data type and a common clustering 

pattern for all data types. Such a decomposition, in line with a tradition of hierarchical 

modeling of several data sources in epidemiology into common and specific patterns (see for 

example Knorr-Held & Best (2001) or Ancelet et al. (2012)), makes stronger structural 

assumptions than MDI. As in MDI, BCC uses a fixed number N of clusters for each data 

type. BCC considers an overall ‘consensus clustering’ C, with corresponding latent 

allocation zi and links the cluster labels zik in the different data types to the consensus 

clustering C through a dependence function ν:

where αk ∈ [1/N, 1] controls the level of ‘adherence’ of data type k to overall clustering and 

the function ν aligns the cluster labels in the different data types. Similar to MDI, estimation 

of BCC is implemented through Gibbs sampling. By using a formulation and 

parametrisation that increases linearly with the number of clusters rather than in a quadratic 

fashion as for MDI, the BCC algorithm is more scalable to a large number of data sources 

and samples. On the other hand, the appropriateness of the basic assumption of the existence 

of a consensus clustering has to be evaluated for each case study. Both MDI and BCC use 
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datasets from The Cancer Genome Atlas (TCGA) to illustrate performance and 

interpretability of the clustering patterns uncovered, integrating up to four TGCA data 

sources.

It is clear that flexible clustering approaches, which exploit jointly several genomics levels, 

plays an important role in integrative genomics. A natural extension of such approaches 

would be to incorporate additional outcome data, i.e., to use a joint model of features and 

response in a semi-supervised manner, rather than proceed sequentially with clustering first, 

then by linking clusters with survival outcome as presented in the METABRIC paper. In the 

genetic epidemiology context, Papathomas et al. (2012) used a joint clustering of genes and 

lung cancer outcomes to explore potential for gene-gene interactions. They adopt a non-

parametric Bayesian approach referred to as profile regression (Molitor et al. 2010), which 

also allows the selection of the important features that drive the clustering. Integration of 

additional structure in the data, i.e., spatial organization, into the formulation of integrative 

clustering models, would also be of great interest, as it may provide additional 

interpretability of the clusters (see Pettit et al. (2014)). Such extension would be particularly 

relevant in view of the recent developments of single-cell technologies.

 3.2. Integrative regression

Integrative clustering addresses vertical integration for unsupervised tasks. For supervised 

problems, regression approaches are ubiquitously employed. When regression tasks involve 

many more features than samples, the so-called large p small n paradigm, additional 

structure or constraints are needed in order to derive useful solutions. A large body of work 

has been developed along the lines of penalized regressions, which produce shrinkage 

estimates of the regression coefficients, the most common being ℓ2 or ℓ1 penalties 

corresponding to ridge or lasso regressions, respectively. Penalized regression approaches 

for high dimensional data and their numerous extensions have been thoroughly reviewed in 

the article by Bühlmann, Kalisch & Meier (2014) in ARSIA Volume 1. In this section, we 

will cover in more details Bayesian approaches, which combine variable selection for high 

dimensional problems with integrative genomics tasks, than their penalised regression 

counterparts.

 3.2.1. Including prior information into variable selection—Given a set of p 
covariates, {Xj, j = 1, …, p}, let us consider the regression model of outcome y on the set of 

covariates:

(2)

where y = (y1, …, yn)T, Xn × p is the covariate matrix, n the number of samples with p ≫ n, 

and β = (β1, …, βp)T is the vector of regression coefficients (response and covariates are 

assumed centered).

Bayesian variable selection methods typically include binary variable selection indicators γj 

indicating if variable Xj is included or not (γj = 1 if βj ≠ 0 and γj = 0 if βj = 0) and aim to 

explore the vast set of 2p possible models corresponding to γ = (γ1, …, γp). Alternatively, 
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spike and slab priors for the regression coefficients have also been considered (Ishwaran & 

Rao 2005). Focussing for now on conditional formulations,(2) reduces to:

(3)

where βγ is the vector of non-zero coefficients, Xγ is the n × pγ reduced design matrix with 

columns corresponding to γj = 1 and pγ is the overall number of non zero coefficients.

Full Bayesian inference require prior specification for the regression coefficients. In order to 

explore the vast model space efficiently, conjugate priors for the regression coefficients βγ 

are commonly adopted, so that the regression coefficients can be integrated out. Both 

independent priors (Hans, Dobra & West 2007) and Zellner g-prior structure with a hyper-

prior on g have been used (Bottolo & Richardson 2010). A range of efficient stochastic 

algorithms to explore the vast model space have been proposed, e.g. the Stochastic Shotgun 

(SSS) sampler (Hans, Dobra & West 2007), some inspired from population Monte Carlo, 

e.g. the Evolutionary Stochastic Search (ESS) sampler (Bottolo & Richardson 2010; Bottolo 

et al. 2011a).

The prior model of the binary indicators has direct influence on the sparsity of the model 

space. Under an exchangeability assumption, it can be tuned to encompass prior 

assumptions on the mean and variability of the overall expected number of selected 

covariates (Bottolo & Richardson 2010). On the other hand, specific external information Wj 

might be available on each of the covariates Xj, information that could make the selection of 

Xj more or less likely. Such a situation arises, for example, in genetic association studies 

where additional functional characterizations of the SNPs in terms of genomic regions or 

functional annotation might be relevant. To integrate such information in a flexible manner, 

a natural extension of (3) is to specify a hierarchical model for {γj} and use a probit link for 

linking the underlying probabilities to the external information:

(4)

If α1 ≃ 0 then the model (4) is equivalent to a standard exchangeable prior on the selection 

indicators. Estimating (α0, α1) together with (3) allows quantifying the influence of the 

external information. Quintana & Conti (2013) propose such an extension and illustrate its 

benefits in a genetic association study of smoking cessation involving 121 SNPs. For each 

SNP, they integrate external information on gene regions and on a quantitative association 

with a nicotine metabolite ratio. Integrative regression can also be used when building 

directed networks, as discussed in Section 3.3.

Besides quantitative information, structural and distributional information can also be 

integrated in a variable selection framework to improve inference. For example, Stingo et al. 

(2011) include prior information on gene networks to better select discriminatory variables. 

They model the joint distribution of the binary selection indicators {γj} as a Markov 

Random Field (MRF):
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where Nj is the set of direct neighbors of variable j is a preset graph, e.g., extracted from 

KEGG database; d controls the sparsity of the model and f controls the strength of ‘spatial’ 

structure, with both d and f fixed.

The Bayesian approaches discussed above for integrating information into the variable 

selection have analog in the penalized regression context. Group lasso (Yuan & Lin 2006) 

allows groups or network of genes to be viewed as additional information to tailor the 

penalization. These ideas were refined in the genomic context by Pan, Xie & Shen (2010) 

who used a group penalty based on KEGG pathway information to predict survival of 

glioblastoma patients. To incorporate external information provided by additional sources of 

data, Bergersen, Glad & Lyng (2011) propose a weighted lasso approach, where the weights 

are inversely proportional to a quantitative function linking external information, response 

and covariates. An additional tuning parameter controlling the relative strength of all the 

weights is calibrated through cross validation. This exible approach allow a variety of 

external information to be straightforwardly incorporated into the analysis, e.g. copy number 

alterations when looking for prognostic gene expression signatures, and was shown to 

improve predictive ability.

 3.2.2. Multiple response model—Faced with a set of correlated responses or related 

phenotypes, performing joint regression analysis of these responses is another way of 

borrowing information to increase sensitivity. Multiple response models extend the single 

outcome regression (3) to multidimensional responses Y (n × ℓ) where ℓ is the number of 

responses, by considering the residual variance-covariance between the responses Σ (ℓ × ℓ). 

The likelihood (2) becomes:

(5)

where as before Xγ(n × pγ) and Bγ(pγ × ℓ) now represents the matrix of regression 

coefficients for the selected variables. In (5), it is assumed that the predictors have an effect 

(possibly different) on multiple outcomes at once and the borrowing of information is 

effected through the correlation between the responses. The 2p model search task remains as 

previously and Bayesian algorithms can be extended straightforwardly to multiple response 

models.

This approach was used by Bottolo et al. (2013) to analyze groups of correlated lipid 

phenotypes. Inspired by the known structure of HDL and LDL cholesterol pathways, 

different combinations of lipid biomarkers (Trigyceride, HDL and LDL cholesterol, APOA1 

and APOB) were analyzed following (5) and regressed on a genome wide set of 273,675 

SNPs derived from Affymetrix Genome-Wide Human SNP arrays 6.0 (tagged r2 > 0.8) To 

cope with the challenging computational task of performing model exploration on this large 
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set of SNPs, observed on 3175 individuals, a GPU (Graphics Processing Units) version of 

the ESS algorithm (GUESS) was developed. Synthetic measures of evidence such as a list of 

“top models”, together with estimate of their posterior probability and Bayes factors (BF) 

against the null model, as well as marginal posterior probability of inclusion for each SNP 

(using model averaging) rescaled to be comparable across different combination, were 

derived. The results provided new insight into the genetic control of lipid pathways, refining 

some of the previous GWAS results (Bottolo et al. 2013).

 3.2.3. Joint regression of two -omics datasets and eQTL models—Many 

biological questions can be expressed under the generic framework of performing the joint 

regression analysis of two or more different types of genomics datasets. In this section, we 

focus on analyses where a large number of responses is regressed on a very large number of 

predictors. Multiple response models described in Section 3.2.2, which assume that a set of 

predictors affect all the responses at once, are not adapted to analyses involving a large 

number of responses. A canonical example of genomic studies involving a large number of 

responses are the so-called eQTL studies, which investigate the genetic control of expression 

by regressing expression profiles on DNA variants (Figure 3). Other examples are mQTL 

studies, which link DNA variations to metabolite synthesis (Marttinen et al. 2014) or studies 

investigating the influence of SCNAs on tumor gene expression. Flexible ways of borrowing 

information between the high dimensional phenotypes are required to increase power. In 

other words, rather than testing the association between each pair (marker × expression) 

separately and subsequently face a huge multiplicity adjustment, the high dimensional set of 

responses, e.g. gene expression, is treated as related outcomes. The statistical aims are thus 

expanded to not only uncover the multivariate association of each (expression) response with 

a large number of features, e.g., genetic markers, but to also highlight the features that are 

associated with many responses. Finding key control points associated with the the 

expression of many genes, sometimes called ‘hot spots’, is an important step towards a 

better understanding of biological pathways.

Different approaches have been proposed for discovering regression links between a large 

number q of responses (yk, 1 ≤ k ≤ q) and a large set of predictors X in a way that exploits 

the relatedness of the responses. Penalized approaches use structured regularization to 

account for the correlation of the responses. For example, Peng et al. (2008) propose a 

combination of ℓ1 and ℓ2 penalties to encourage the detection of master regulators, while 

Kim (2012) use a tree-guided lasso to account for the relationship between the genes. An 

early Bayesian approach is the Mixture Over Markers (MOM) method (Kendziorski et al. 

2006), which associates each response with any of the p predictors (or none of them) via a 

mixture model, so each response is associated with at most one marker, a workable but 

restrictive assumption. Stochastic partition approaches where the responses are partitioned 

into disjoint subsets that have a similar dependence on a subset of covariates, have also been 

implemented in eQTL analyses, making strong assumptions on the commonality of effects 

within the blocks (Monni 2009); see also Zhang et al. (2010) for an application of Bayesian 

partitioning to find pleiotropic and epistatic eQTL modules.

Richardson et al. Page 14

Annu Rev Stat Appl. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bayesian approaches combining high dimensional variable selection for each response with 

a hierarchical structure on the selection indicators have the benefit of being fully multivariate 

while retaining scalability. The key quantities that are involved in such models are:

• the latent binary vectors γk = (γk1, …, γkj, …, γkp)T for each regression of 

yk on X, where each indicator has a Bernoulli prior 

• Γ = (γkj,1 ≤ k ≤ q, 1 ≤ j ≤ p), the (q × p) matrix of selection indicators

• a hierarchical structure for the matrix of prior probabilities for Γ

that facilitates sparsity control in each regression as well as the borrowing of information 

across responses to highlight important predictors common to several responses.

Different prior structures for ωkj have been proposed. Bottolo et al. (2011b) introduce a 

multiplicative parametrization: ωkj = ωk × ρj with ωk ~ Beta (aωk, bωk), ρj ~ Gam (cρj, dρj), 

subject to the constraint: 0 ≤ ωkj ≤ 1. In this choice of parametrization, ρj captures the 

‘propensity’ for predictor j to influence several outcomes at the same time, while ωk controls 

the sparsity of each regression. Scott-Boyer et al. (2011) propose a mixture model for ωkj 

with an atom at zero to reduce the false discovery rate, a Beta distribution for the second 

mixture component, and a SNP specific mixture weight: ωkj = pj δ0 (ωkj) + (1 − pj) Beta(aj, 

bj)(ωkj). Both approaches are implemented by MCMC. The choice of a g prior structure for 

the regression coefficients in Bottolo et al. (2011b) allows the latter to be fully integrated out 

and to use a hierarchical extension of their ESS sampler to traverse the model space, while 

the prior structure defined by Scott-Boyer and implemented in their algorithm iBMQ 

(Imholte et al. 2013) requires joint updating of the variable selection and regression 

coefficients. Despite efficient MCMC implementation, fully Bayesian joint eQTL analysis 

strategy are nevertheless quite demanding in terms of computational time and would 

typically need to be run in parallel on each chromosome on a few thousands genes only. 

Ultra fast implementation of a linear model, which tests the association of each SNP with 

each transcript, as implemented in Shabalin (2012) could be used as a pre-selection step.

Both Bottolo et al. (2011b) and Scott-Boyer et al. (2011) make the simplifying assumption 

of no residual dependence between the responses conditional on the selected model. Adding 

a model of the residual structure to the previous set-up, in a framework akin to Seemingly 

Unrelated Regressions, has been proposed by Bhadra & Mallick (2013). The additional 

computational complexity is severe and such approaches will not easily scale up for large q. 

To encompass additional nuisance correlation in a computationally feasible manner, Stegle 

et al. (2010) and Fusi, Stegle & Lawrence (2012) propose a variational Bayesian approach 
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which accounts for additional known and hidden sources of variation using an 

computationally tractable latent factor approach. The factors can be used as covariates in 

standard eQTL mapping, or can be interpreted as corresponding to transcription factor 

activations if additional biological information is provided to the model. The efficient 

software PEER (Stegle et al. 2012), which is designed to uncover such hidden factors, has 

been used to re-analyze several eQTL studies where an increase of power for eQTL 

detection is shown. In the same spirit, Bayesian reduced rank regression has been used by 

Marttinen et al. (2014) to analyze gene-metabolome associations, account for known factors 

and combine information over multiple SNPs and phenotypes.

 3.3. Graphical model

Graphical models or biological networks are powerful tools to describe the relationships of 

different biological entities. Commonly used biological networks include protein-

protein interaction networks, co-expression networks, transcription 

regulation networks, signaling pathway, and etc. (Figure 4). Many statistical 

methods have been developed to construct or to exploit the knowledge from such networks 

to analyze genomic data. We will focus on three approaches in the subsection. First, we use 

gene expression quantitative trait loci (eQTLs) to construct a Directed Acyclic Graph (DAG) 

for gene expression. Second, we integrate miRNA expression, gene expression data, 

annotation data to infer the miRNA-gene regulations. Third, we will review graphical model 

approaches for pathway activity estimation.

 3.3.1. eQTL-guided DAG construction—A co-expression network is usually an 

undirected graph. However, there are many situations where a directed graph is desirable, for 

example, to infer the consequence of a perturbation by a drug. DAG models have been used 

to construct directed graphs using gene expression data (Neto et al. 2008, 2010; Hageman et 

al. 2011; Bühlmann, Kalisch & Meier 2014). In such a DAG, each vertex represents a gene 

and each edge represents a direct causal relation between two genes. For example, an edge 

g1 → g2 implies that perturbation of g1 alters g2 while changes on g2 leaves g1 unaffected. It 

is well known that interventions or perturbations are needed to infer causal relations. 

However, a huge number of interventions on gene expression (e.g., gene knock out) are 

needed to infer causal relations of thousands of genes, which are not feasible yet. The 

eQTLs of gene expression provide natural perturbations to the expression of a large number 

of genes. It can be considered as a randomized experiments on DNA genotype (i.e., 

Mendelian Randomization (Smith 2007; Sheehan et al. 2008)), and the design of experiment 

(i.e., interventions on DNA genotype rather than gene expression) is also consistent with our 

intuition that DNA genotype affects gene expression rather than vice versa (Chen et al. 

2007). The genetic variants of eQTL studies may be genotype, copy number variations, or 

other DNA variants. Without loss of generality, we assume such genetic variants is DNA 

genotype in the following.

The example in Figure 5(A) illustrates a situation where eQTLs can help to estimate edge 

directions in a DAG. Consider genes g2 and g3, which are co-expressed, and thus there is an 

undirected edge g2 − g3 in the graph. Without external data, we cannot distinguish g2 → g3 

and g2 ← g3 because two DAGs encode the same dependence assumption and have the same 
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likelihood: L(g2 → g3) = f(g3|g2)f(g2) = f(g2, g3) = f(g2 |g3)f(g3) = L(g3 → g2). If we know 

that g2 has an eQTL, denoted by c2. Then the partially directed graph is c2 → g2 − g3, and 

the possible DAG is c2 → g2 → g3 or c2 → g2 ← g3. These two graphs can be distinguished 

because they encode different conditional independence assumptions. c2 → g2 → g3 implies 

c2 ⊥ g3|g2 and c2 → g2 ← g3 implies c2 ~ g3|g2, and thus have different likelihoods. To 

understand the reason that c2 ~ g3|g2, one may consider an example “rain → wet grass ← 

sprinkler”, where given the event that grass being wet, the two parent vertices rain and 

sprinkler are dependent.

To use eQTLs to derive causal gene expression network, we also need to separate direct and 

indirect eQTL effects. Using the example in the previous paragraph and assuming the causal 

relation is c2 → g2 → g3, then c2 may appear to be an eQTL for both g2 and g3. We need to 

know that c2 directly affects g2, but indirectly affects g3 for the purpose of DAG estimation. 

Such information can be obtained by separating cis-eQTL and trans-eQTL using RNA-seq 

data (Sun 2012; Sun & Hu 2013). All of the cis-eQTLs directly influence their target genes 

and a trans-eQTL may be inuencing its target’s expression directly or indirectly. Therefore, 

it is desirable to use only cis-eQTLs for DAG construction.

Neto et al. (2008) developed the QTL Directed Dependency Graph (QDG) method and 

implemented in the R package qtlnet. The QDG method was originally designed to study the 

relations of multiple phenotypes given their QTLs, though it can be applied for eQTL 

studies as well. The QDG method assumes “multiple QTLs associated with these traits had 

previously been determined”. It has the following steps. (1) Construct a DAG skeleton 

from the PC algorithm, which is a popular algorithm for DAG skeleton construction (Spirtes, 

Glymour & Scheines 2000). (2) Distinguish QTLs with direct and indirect effect. (3) Orient 

each edge by LOD score, which is the log10 likelihood ratio for the edge Yi → Yj versus Yj 

→ Yi given all the vertices (either phenotype or DNA genotype) connected to Yi or Yj. (4) 

Randomly choosing an order of all the edges, and then following this order, sequentially 

update the directions of the edges using the LOD score conditioning on the vertices that are 

parents of Yi or Yj. (5) Repeat step (4) for 1000 times and choose the graph with the highest 

score, which could be a likelihood-based measure of goodness of fit.

In a later paper, Neto et al. (2010) developed a new method named QTLnet, which jointly 

estimates the graphical structure of the phenotypes and the underlying genetic architecture. 

This method would be computationally too demanding to study genome-wide eQTL data 

with tens of thousands genes and millions of SNPs. In addition, the genetic architecture of 

human gene expression is relatively simple, with the vast majority of the eQTLs being local 

eQTLs. Therefore it may be a reasonable approximation to assume the genetic architecture 

only involves local eQTLs and then estimate eQTLs before DAG estimation. In contrast to 

QDG, which reports the most likely graph, the QTLnet approach reports graph structure 

based on Bayesian model averaging. In other words, the posterior probability of edge Yi → 

Yj is the summation of the posterior probabilities of the graphs that have the edge Yi → Yj.

Another type of approach for graphical model estimation is structural equation models 

(SEM) that permit both cyclic and acyclic graphs. Li et al. (2006) employed a score-based 

model selection method. Logsdon & Mezey (2010) estimated network skeleton by applying 
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an adaptive lasso regression for each gene expression trait, and then transformed the skeleton 

into a DAG or a Directed Cyclic Graph (DCG) based on eQTL perturbations. Cai, Bazerque 

& Giannakis (2013) extended the work of Logsdon & Mezey (2010) by providing the 

adaptive lasso a set of initial parameter estimates from penalized regressions using the 

LASSO penalty.

 3.3.2. Construction of miRNA regulation network—Recent studies have shown 

that microRNA (miRNA), a class of short non-coding RNA molecule (21–24 nucleotides), 

may play an important role in transcriptional and post-transcriptional regulation of gene 

expression (Pasquinelli 2012). The human genome may encode over 1,000 miRNAs, which 

may target more than half of human transcripts. One miRNA’s sequence may match the 

complementary sequences of one or more mRNAs, and thus this miRNA can bind these 

base-paired mRNAs, which leads to mRNA degradation or represses the translational 

process. Therefore, over-expression of a miRNAs usually reduces the expression of its 

targets. In plants, a miRNA is often perfectly or almost perfectly matched with its targets. 

However, animal miRNAs typically exhibit only partial complementarity to their mRNA 

targets. A “seed region” of about 6–8 nucleotides in length at the 5’ end of an animal 

miRNA is thought to be an important determinant of target specificity (Pasquinelli 2012). 

Many computational approaches have been developed to predict miRNA targets based on 

sequencing similarity. However, these methods have limited accuracy due to the relatively 

low target specificity based on sequence data alone. Motivated by this problem, several 

methods have been developed to integrate gene expression, miRNA expression as well as 

miRNA target annotation based on sequence similarity to infer the miRNA regulatory 

network (Muniategui et al. 2013). Here we briefly review a Bayesian graphical model 

approach (Stingo et al. 2010).

Denote the expression of G genes by Y = (Y1, …, YG), and the expression of M miRNAs by 

X = (X1, …, XM). Stingo et al. (2010) construct a DAG for these G + M variables where the 

only allowable edges are those of the form of Xi → Yk where i = 1, …, M and j = 1, …, G. 

In other words, they assume that Xi ⊥ Xj for any i, j = 1, …, M and i ≠ j, and Yk ⊥ Yl|X for 

any k, l = 1, …, G and k ≠ l (Figure 5(B)). Since the marginal distribution of X does not 

affect the estimation of regulatory relations, the assumption Xi ⊥ Xj is a reasonable choice 

to simplify the computation. When sample size is large enough, one may further relax the 

assumption Yk ⊥ Yl|X, though imposing this assumption may be the best one can do given a 

limited sample size and/or computational power. An additional assumption is that all the 

edges must point from Xi to Yj, which is justifiable by the regulatory role of miRNA. Give 

such an underlying DAG, the problem reduces to G regression problems where the g-th 

problem aims to select those miRNAs that regulate the g-th gene.

Stingo et al. (2010) assumes a linear model with Gaussian errors such as

(6)
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where εg ’s are i.i.d. (0, σg), and the negative sign in front of the term 

indicates that miRNAs repress gene expression. The prior distribution for the regression 

coefficients βgm ’s are

(7)

where Gam() indicates a gamma distribution, I(βgm =0) is an indicator function, rgm = 1 if the 

m-th miRNA regulates the g-th gene and rgm = 0 otherwise. Then the key part of the method, 

which is to incorporate the annotation based on sequencing similarity, is implemented as the 

prior distribution for rgm:

(8)

where  is a score describing the degree of confidence of that the m-th miRNA regulates 

the g-th gene. The regression coefficients τu ’s are additional set of parameters with at hyper 

prior set as a gamma distribution Gam(aτ, bτ). Then Stingo et al. (2010) designed an MCMC 

approach to sample all the parameters, among them rgm ’s are of primary interest because 

they indicate whether the m-th miRNA regulate the g-th gene.

 3.3.3. Inference of each gene’s contribution to the activity of a pathway—
Most human diseases are complex diseases (e.g., diabetes or cancer) that are associated with 

mutations or perturbations of multiple genes. Such complex diseases may be better 

described at the pathway level. For example, two patients may have different sets of 

mutations but each may modify the activity of the same pathway. Therefore, to study the 

importance of a gene that belongs to a known pathway, one may quantify the change of 

pathway activity by turning on or off this gene. As shown in Figure 4 (C) and (D), the 

contribution of a gene to a pathway (e.g., a transcriptional regulation pathway or a signaling 

pathway) should be measured by its protein activity, which could be the abundance of an 

active form, e.g., a specific phosphoprotein, conditioning on the states of other proteins 

within the pathway. These quantities are often latent variables that cannot be directly 

measured in genome-scale using current techniques. PARADIGM (PAthway Recognition 

Algorithm using Data Integration on Genomic Models) is popular computational method 

that addresses this challenge by integrating different types of genomic data and pathway 

annotation.

In the PARADIGM model, Vaske et al. (2010) assume the pathway information is known. 

Considering a pathway as a graph, a vertex of this graph can be a protein-coding gene, a 

protein complex, a gene family, an abstract processes (e.g., apoptosis), or other 

biological entities. Each vertex has three states: activated, nominal, or deactivated relative to 

a control level and is encoded as 1, 0 or −1, respectively. Therefore the graph is a factor 

graph, and such a simplified assumption of three states greatly reduces the difficulty of 

model estimation. Each edge of this graph has a sign, indicating whether the parent vertex 

Richardson et al. Page 19

Annu Rev Stat Appl. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



has a positive or negative influence on the child vertex. PARADIGM includes four entities 

for the j-th protein-coding gene: DNA copy number (cj), mRNA expression (gj), protein 

abundance (pj), and protein activity (aj), see Figure 6A for an example of three protein 

coding genes. Directed edges with positive signs are introduced as cj → gj → pj → aj. The 

relation between protein coding genes are introduced based on pathway annotation. For 

example, if activated protein 1 induces the activity of protein 2, a directed edge a1 → a2 with 

positive sign is added. If activated protein 2 represses the expression of gene 3, a directed 

edge a2 → g3 with negative sign is added (Figure 6A).

The graph allows one to compute the expected state of the i-th vertex, denoted by μi, given 

its parents. Assuming the parents contribute additively, μi = sign(Σj∈Pai μj βji), where Pai 

denotes the parent set of the i-th vertex, and βji = 1 or −1 is the sign of the edge j ℩ i. 
PARADIGM also allows the contribution from all the parents to be summarized by an 

“AND” or “OR” operation (Figure 6B). We use Xi to denote the underlying state of the i-th 

vertex. If Xi is unobserved, it follows a categorical distribution across the three classes such 

that P(Xi = a) = 1 − ε if a = μi and P(Xi = a) = ε/2 otherwise, where ε is a small value, e.g., ε 

= 0.001. For some of the vertices, the values of Xi ’s are observed (assuming no 

measurement error) and the purpose of PARADIGM method is to infer the state of 

unobserved Xi ’s. They employ an EM algorithm to infer such hidden states. Finally, an IPA 

(Integrated Pathway Activity) is estimated for each biological entity. Note that the name IPA 

may be misleading. It does not estimate pathway activity per se. Instead, it calculates how 

much each entity contributes to the pathway activity. Specifically, let ℓ(i, a) = log[P(D|Xi = 

a)/P(D|Xi ≠ a)], which is the log likelihood ratio comparing the situation Xi = a versus. Xi ≠ 

a. Then

In other words, IPA(i) is the signed log-likelihood ratio if the most likely state is 1 or −1, and 

IPA(i) is 0 otherwise. Vaske et al. (2010) further demonstrated that clustering IPAs may 

reveal meaningful clusters that cannot be identified by clustering each type of genomic data 

directly.

 3.4. Other methods for integrative genomics

In the previous sections, we have highlighted some recent work for integrative genomics. 

Since integrative genomics is a very active research area with huge amount of literature, we 

cannot give an exhaustive review of all work in this area. In the following, we summarize 

some methods that aim to answer some specific biological questions.

 3.4.1. Phenotype association/prediction—Xiong et al. (2012) proposed a method 

named Gene Set Association Analysis (GSAA) to identify disease-associated gene sets. 

They first assessed the association between a phenotype and the expression and genotype of 

a gene separately. Then they combined the z-statistics of differential expression and 

genotype association using Fisher’s method for each gene, and used the combined gene-
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specific test statistic for gene set enrichment analysis (Newton & Wang 2015). Instead of 

analyzing each type of data separately, Tyekucheva et al. (2011) first summarized each type 

of genomic data at the gene level, and then studied the association between a gene and a 

phenotype using one regression model. In this approach, the phenotype was used as the 

response variable and different types of genomic data were used as covariates. They scored 

this gene using a test statistic for the null hypothesis that the regression coefficients for all 

the genomic data are 0’s. Then this test statistic was used for gene set enrichment analysis.

Another question that is often of interest is whether one type of genomic data mediates the 

effect of the other type of genomic data on phenotype. For example, whether gene 

expression mediate the effect of DNA genotype on disease outcomes. Huang, VanderWeele 

& Lin (2014) used mediation analysis to address this question, and provided quantification 

of SNP genotype’s direct effect and indirect effect (mediated by gene expression) on disease 

outcomes.

In addition to association testing, genomic data can be used for the prediction of phenotypes. 

It is not an unusual situation that many genomic features may have relatively small effects 

on the phenotype, so that there is not enough power to identify such genomic features by 

association testing. However, one may still be able to perform predictions without selecting 

phenotype-associated genomic features. An example is OmicKriging (Wheeler et al. 2014). 

Kriging is a well-known geo-statistical method for prediction of spatially measured 

outcomes, by making prediction using observations from nearby locations (Cressie 1993). In 

OmicKriging, Wheeler et al. (2014) assumes the similarity matrix of phenotype data across 

all samples is . where Sj is the similarity matrix for the j-th 

type of genomic data and I is an identify matrix to capture variance due to environmental 

factors. Given such phenotype similarity derived from genomic data, one can easily make 

predictions on phenotypes. For example, the phenotype of a testing sample could be a 

weighted average of the phenotypes of training samples, where the weights are the 

similarities between this testing sample and all the training samples. Wheeler et al. (2014) 

showed that their method could provide good prediction of several phenotypes after 

combining multiple types of genomic data.

 3.4.2. Gene expression regulation modules—Several integrative genomic methods 

have been developed to identify gene expression regulation modules. Sun, Yu & Li (2007) 

developed a method to detect modules where a local eQTL modifiles the expression of a 

gene, which modifiles the activity of a transcription factor (TF), and the TF in turn regulates 

the expression of a group of genes. They integrated TF binding site data and gene expression 

data to infer latent TF activities and then used genotype data, gene expression and estimated 

TF activity to build regulation modules. Akavia et al. (2010) proposed a method named 

CONEXIC (copy number and expression in cancer) to detect modules where copy number 

affects the expression of a driver gene, which in turn regulates the expression of a group of 

genes.

 3.4.3. Study functional consequence of somatic mutations by integrating 
somatic mutation data and gene-gene interaction annotations—Because somatic 
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point mutations tend to be rare, it is difficult to assess their effects directly. Several methods 

have been developed to borrow information of known gene-gene interactions (e.g., protein-

protein interactions or regulation relations) to study the functional consequence of somatic 

point mutations. The method of DriverNet (Bashashati et al. 2012) seeks to study the 

consequence of somatic mutations on gene expression by connecting genes A and B such 

that A has a somatic mutation, B has extreme gene expression, and A and B are connected 

by known gene-gene interaction(s).

Driver mutations that increase the survival advantages of tumor cells often occur together 

with a number of passenger mutations in cancer patients. Many methods have been 

developed to find such drivers by identifying recurrently mutated genes. Several recent 

works have shown that exploiting a “mutual exclusive pattern of somatic mutations” may 

help to identify a set of driver mutations. MEMo (Ciriello et al. 2012) selects a group of 

recurrently mutated genes that are close in the gene-gene interaction graph and having 

mutually exclusive mutations. The focus on genes that are close in the gene-gene interaction 

graph is partly due to the high computational cost of exhaustive search. However, recently 

Leiserson et al. (2013) developed a computationally efficient approach to select multiple 

groups of genes such that the genes within groups have mutually exclusive mutations and 

good coverage (i.e., most patients have mutations in at least one gene), while without relying 

on gene-gene interaction information.

HotNet (Vandin, Upfal & Raphael 2011) identifiles significantly altered subnetworks in an 

interaction network by a network diffusion approach, which can be understood as a random 

walk on a gene-gene interaction graph. In other words, a somatic mutation in gene A may 

also affect gene A’s neighbors in the interaction graph. After network diffusion, HotNet 

evaluates the frequency that a subnetwork being altered across a number of patients and find 

those subnetworks that are recurrently altered. Network diffusion provides a network-

smoothed version of the consequence of somatic mutations. Hofree et al. (2013) propose to 

cluster the network-smoothed mutation profiles by non-negative matrix factorization. 

TieDIE (Paull et al. 2013) use network diffusion to identify pathways linking somatic 

mutations and transcriptional regulation pathways.
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 Glossary

Array CGH
comparative genomic hybridization (CGH) on DNA microarray to compare the copy number 

of two DNA samples.

Read depth
the (average) number of times a nucleotide is covered by sequencing process.

Somatic mutation
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a DNA mutation that is not inherited from a parent and not passed to offspring. In contrast, a 

germline mutation is an inheritable DNA mutation occurred in the germ cells (i.e., sperm 

and eggs).

Tumor purity
the percentage of tumor cells within a tumor sample.

Ploidy
the number of sets of chromosomes within a cell. A normal human cell is diploid, i.e., with 2 

sets of chromosomes.

Tumor subclone
All the tumor cells within one subclone are descended from the same cell and have the same 

set of somatic mutations.

Histone modification
methylation, acetylation, and phosphorylation of certain amino acids of histone proteins.

DNA methylation
an epigenetic mark of DNA sequence by adding a methyl group (CH3) to DNA nucleotides.

DNase I hypersensitive sites
genomic loci that are sensitive to cleavage by the DNase I enzyme. Such sensitivity implies 

the DNA sequence is loosened and exposed instead of taking a condensed form.

ChIP-chip/ChIP-seq
Chromatin immunoprecipitation (ChIP) followed by microarray (chip) or sequencing.

Bisulfite sequencing
sequencing DNA after bisulfite treatment that converts un-methylated cytosine to uracil 

while leaving methylated cytosine unaffected.

Microarray probe
a fragment of DNA sequence located in spot of a microarray.

Phosphorylation
the addition of a phosphate (PO4

3−) group to a protein other organic molecule.

Mass spectrometry
a technique that measures the amount of analytes (e.g., protein peptides) by their mass-to-

charge ratios.

Reverse phase protein array
a protein array designed to measure the expression of one protein across multiple samples.

1000 Genome Project
An international collaboration to produce an extensive public catalog of human genetic 

variation.
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Protein-protein nteraction
physical interaction of two or more proteins for various biological function, e.g. signal 

transduction.

Co-expression network
a network where two genes are connected if their expression are dependent, either with or 

without conditioning on the expression of other genes.

Transcription regulation network
a network where an edge indicates a transcriptional regulation. The regulators can be 

transcription factors, or other molecules, such as microRNAs.

Signaling pathway
a pathway for signal transduction. It starts with activation of a specific receptor by 

extracellular molecules. Then the receptor triggers a series of events, such phosphorylation 

of proteins, and these events lead to certain cell response.

cis-eQTL
A cis-eQTL is located on the same chromosome as its target gene and inuences the gene 

expression in an allele-specific manner.

trans-eQTL
A trans-eQTL of a gene can be located anywhere in the genome and it inuences the gene 

expression of both alleles to the same extent.

DAG skeleton
an undirected graph that is constructed by removing the directions of all the edges within a 

DAG.

Protein complex
a group of two or more proteins that are physically associated and its function may require 

each individual protein to be active.

Gene family
a collection of genes in which any single gene is sufficient to perform a specific function.

Apoptosis
programmed cell death.
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SUMMARY POINTS

1. All models have their explicit and implicit assumptions. Model fitting 

to the underlying data structure largely determines success of omics 

data analysis.

2. In data integration, certain biological mechanisms and prior knowledge 

are often known across different omics data. Proper modeling of such 

prior knowledge is crucial to enhance statistical power and identify 

biologically interpretable results.

3. Incorporating prior biological information using Bayesian hierarchical 

modelling is a very powerful way for data integration.

4. Integration of multiple omics data involves ultra-high dimensional 

problems. Feature selection and its related model selection problem is a 

major topic when developing a novel method.

5. Network-based methods are effective approaches to integrate multiple 

types of data and biological knowledge.
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FUTURE ISSUES

1. Intratumor heterogeneity. Cancer is a somatic evolutionary process and 

one outcome of such evolutionary process is that multiple subclones 

with distinct set of somatic mutations, together with normal cells (e.g., 

fibroblast cells or blood vessel cells) may co-exist in a tumor sample 

(Beerenwinkel et al. 2015). Most existing methods use somatic 

mutations and DNA copy number to mathematically deconvolute such 

mixed signals. Recent studies have shown that gene expression 

(Yoshihara et al. 2013) or DNA methylation (Zheng et al. 2014) might 

also be informative and thus integrative approach may be useful for 

cancer subclone studies.

2. Computation scalability. While data are getting cheaper, computation 

cost become more prominent in many applications. Permutation tests 

are increasingly popular due to their exibility, but also induce higher 

computational cost. In addition, many integrative genomic methods 

lead to non-trivial optimization problems, and techniques from other 

fields, such as operation research or machine learning, may provide 

fruitful avenues to be explored. Developing computationally efficient 

approaches for integrative genomics is of great importance.

3. Cross fertilization between the “different styles” of integrative 

approaches, and jointly considering both horizontal and vertical data 

integration will become increasingly relevant.

4. Revolutionary techniques to collect proteomic data from hundreds of 

thousands of proteins and with different combination of post-

translational modifications is likely to emerge in the near future. 

Integrative genomics methods to integrate such rich proteomic, 

transcriptome and epigenomic data may greatly improve our 

understanding of biological systems.

Richardson et al. Page 31

Annu Rev Stat Appl. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Different types of genomic data and the platforms to measure these genomic data.

Richardson et al. Page 32

Annu Rev Stat Appl. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
A screenshot of a spreadsheet shown in the TCGA data portal web page when querying 

available data from breast cancer patients. The column of this spreadsheet corresponds to a 

combination of data types and platforms. For each platform, there could be data from tiers 1 

to 3. Usually raw data belong to tier 1, and processed data belong to tier 2 or 3. One type of 

genomic data may be collected on multiple platforms. For example, gene expression are 

measured by both microarray and RNA-seq and two types of DNA methylation arrays (JHU-

USC HumanMethylation27 and JHU-USC HumanMethylation450) have been used. A 

platform name often starts with the institute that processes those tumor samples using that 

particular platform. For example, BI Genome_Wide_SNP_6 means Affymetrix 6.0 array 

from Broad Institute. Each row of this spreadsheet corresponds to a patient. The meaning of 

the patient ID can be found at https://wiki.nci.nih.gov/display/TCGA/TCGA+Barcode
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Figure 3. 
An illustration of the first genome-wide eQTL study (Brem et al. 2002) conducted in yeast 

sergeants (offsprings) from a cross of two yeast strains, denoted by RM and BY. Because 

yeast has haploid genome, the genotype data in these yeast sergeants are binary. The figure 

in the right panel illustrate the association between the expression of one gene LEU1 and the 

genotype of one SNP around gene LEU2.
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Figure 4. 
Examples of biological networks (A) Protein-protein interaction. The edges are detected 

from experiment for physical interaction. (B) Co-expression network. The edges are inferred 

from the expression data of a group of samples, as dichotomized correlation or partial 

correlation matrix. (C) Gene regulatory network. The Octagons indicate protein activity and 

the ovals indicates gene expression. The dash line between g3 and a3 indicates a3 is the 

activity of the protein that is encoded by g3. (D) Signaling pathway. EGFR (epidermal 

growth factor receptor) is a receptor located at cell surface that can be activated by epidermal 

growth factor. The symbol−P arounds a protein indicates a phosphorylation of the 

corresponding protein.
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Figure 5. 
Statistical approaches to use graphical model for integrative genomics. (A) To infer directed 

co-expression network with the aid of DNA variation information. (B) To infer the 

regulatory relation between miRNA and gene expression.
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Figure 6. 
The PARADIGM method of integrative genomics (Vaske et al. 2010). (A) The graphical 

model of underlying states. a1 → a2 indicates activated protein 1 regulates the activity of 

protein 2. a2 → g3 indicates activated protein 2 regulates the expression of g3. (B) Examples 

of “AND” and “OR” relations. (C) Adding observed data into the graph. Here observed data, 

like the underlying state, has three values, −1, 0, or 1. Having observed data in certain 

vertices mean that the underlying states of those vertices are known.

Richardson et al. Page 37

Annu Rev Stat Appl. Author manuscript; available in PMC 2017 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Richardson et al. Page 38

Table 1

Genomic data resources

Resource URL Description

dbGAP www.ncbi.nlm.nih.gov/gap DNA genotype and phenotype data

ArrayExpress www.ebi.ac.uk/arrayexpress Gene expression and epigenetic marks

GEO www.ncbi.nlm.nih.gov/geo Gene expression and epigenetic marks

SRA www.ncbi.nlm.nih.gov/sra Sequencing data

TCGA tcga-data.nci.nih.gov/tcga Multiple types of open access genomic data

CGHub cghub.ucsc.edu Multiple types of controlled-access genomic data

ICGC dcc.icgc.org Multiple types of genomic data

Roadmap www.roadmapepigenomics.org Epigenomics data

GTEx www.gtexportal.org/home RNA-seq from different tissues

ENCODE www.encodeproject.org Epigenetic and gene expression data
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Table 2

Annotation databases

Category Database URL

Genome browser Ensembl www.ensembl.org/index.html

UCSC genome browser genome.ucsc.edu

SNP/indels dbSNP www.ncbi.nlm.nih.gov/SNP

Gene structure GENCODE www.gencodegenes.org

Ensembl’s Genebuild www.ensembl.org/index.html

Functional annotation Pathway Commons www.pathwaycommons.org

Pathway Interaction Database pid.nci.nih.gov

KEGG www.genome.jp/kegg

Gene Ontology (GO) geneontology.org
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