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Abstract

Web-delivered clinical trials generate big complex data. To help untangle the heterogeneity of 

treatment effects, unsupervised learning methods have been widely applied. However, identifying 

valid patterns is a priority but challenging issue for these methods. This paper, built upon our 

previous research on multiple imputation (MI)-based fuzzy clustering and validation, proposes a 

new MI-based Visualization-aided validation index (MIVOOS) to determine the optimal number 

of clusters for big incomplete longitudinal Web-trial data with inflated zeros. Different from a 

recently developed fuzzy clustering validation index, MIVOOS uses a more suitable overlap and 

separation measures for Web-trial data but does not depend on the choice of fuzzifiers as the 

widely used Xie and Beni (XB) index. Through optimizing the view angles of 3-D projections 

using Sammon mapping, the optimal 2-D projection-guided MIVOOS is obtained to better 

visualize and verify the patterns in conjunction with trajectory patterns. Compared with XB and 

VOS, our newly proposed MIVOOS shows its robustness in validating big Web-trial data under 

different missing data mechanisms using real and simulated Web-trial data.

INDEX TERMS

Multiple imputation; clustering validation; pattern recognition; visualization; longitudinal web 
trial data

 I. INTRODUCTION

The big data have been massively generated from web-delivered clinical trials [1]–[4]. These 

complex data provide valuable information for disentangling the heterogeneity of treatment 

effect (HTE). HTE refers to the fact that patients exposed to a common influence (such as 

tobacco exposure or randomization to a treatment) often experience very different outcomes 

[5]–[7]. HTE is common in translational research, especially in complex, multi-component 

interventions, such as Phase III trials designed to move evidence-based guidelines into 

practice. Even in a randomized controlled trial (RCT), outcomes differ among patients 
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within treated and control groups. Methods that can extract the full information implicit in 

HTE hold great promise for delivering patient-centered care [8]–[12].

In 2011, the NIH Comparative Effectiveness Research Key Function Committee and Patient-

Centered Outcome Research Institute (PCORI) specifically called for methods to address 

HTE for improving the design, conduct, and analyses of patient-oriented research [13]. A 

“holistic” approach to HTE considers the full domain of HTE demographics, pre-treatment 

risks (e.g., psychological, physiological, genotype, environmental), experience of side 

effects, differential responses to treatment, and health utility preferences as well as its 

relationship with outcomes. Implementing such an approach has been described as “the next 

great task of clinical research in the 21st century” [14].

Standard approaches to HTE use either a simple “exposed” or “non-exposed” grouping to 

describe a complex treatment procedure for detecting binary effects (yes/no), or subgroups 

based on arbitrarily determined cut-scores (e.g., quintiles or percentages), generating 

possibly spurious false-positive findings [15]. Going beyond standard approaches, 

unsupervised learning methods have been applied to HTE studies. Among them, our MI-

Fuzzy model has been developed [12], [16]–[20]. It uses all collected big trial data and 

actual values of patients’ responses to characterize variations and changes in treatment over 

time. This method can reduce the uncertainty of imputation and the uncertainty of the 

clustering accuracy compared to non- or single-imputed methods commonly used in 

unsupervised learning [17] and generate salient patterns from real-world data that are 

longitudinal, non-normal, high dimensional and contain missing values. These salient 

patterns represent different treatment “doses” patients received, which increase the 

predictive power and facilitate detecting “gradient effects,” that is, varying degrees of 

patients’ responses to treatment (“treatment uptake”) will lead to differences in outcomes 

(e.g., severe, normal, mild).

However, in this line of research, a key problem is to determine the number of patterns or 

clusters in these big complex data. Under the framework of fuzzy clustering, Xie & Beni 

(XB) index is widely used, but its performance depends on the choice of the fuzzifiers, 

therefore sensitive to some data types [21], [22]. Another recently developed overlap and 

separation index (VOS) [23] is also designed for fuzzy clustering and independent of the 

choice of fuzzifiers. However, it has the worst performance for the longitudinal web trial 

data where the inflated zeros and missing values are common as shown in our numerical 

analyses in this paper. Additionally, no matter how robust a validation index is, it might not 

perform well for all data types. Since comparing different indexes may not always result in 

consistent findings based on our empirical research, visualization may help verify, tease out 

trivial clusters and determine the optimal number of patterns in addition to the validation 

indices [19]. Using visualization technique is intuitively reasonable because of the way the 

human brain processes data. How to design a visualization-aided validation, thus, becomes 

an intriguing and challenging task.

In this paper, building upon our multiple imputation (MI) based validation framework [17], 

[24], we propose a MI-based visualization-aided validation index (called MIVOOS) to 

determine the optimal number of clusters or trajectory patterns for big incomplete 
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longitudinal web trial data. The validation index is defined as the weighted sum of overlap 

and separation measures. By optimizing the viewing angles for the 3D Sammon-projections 

and linking with MIVOOS, we obtain the optimal number of clusters. The proposed 

algorithm is evaluated using real and simulated big incomplete longitudinal web trial data. 

The major contributions of this paper are threefold. First, a new multiple-imputation based 

overlap over separation index (MIVOOS) is proposed to identify patterns in zero-inflated 

longitudinal web trial data with missing values. The proposed MIVOOS index outperforms 

the existing VOS validation index in real and simulated data and unlike XB, it does not 

depend on the choice of fuzzifiers. Second, a visualization aided MI based validation 

framework and algorithm is generated to verify and determine the optimal number of 

patterns. Third, a joint zero-inflated Poisson and autoregressive mixture model (JZARM) is 

built up to simulate the mixtures of zero-inflated longitudinal web trial data.

Table 1 shows the symbols and notations used in this paper. The rest of this paper is 

organized as follows: Section II discusses the proposed MI-based VOOS validation and its 

algorithm. Section III illustrates the visualization aided validation framework; Section IV 

presents numerical results from real and simulated big web trial data under three missing 

mechanisms; and Section V concludes the paper.

 II. VALIDATION INDEX FOR WEB TRIAL ENGAGEMENT PATTERNS

The key problem in pattern recognition is to decide the optimal number of patterns. Unlike 

the data structure studied in text, human brain or various networks, longitudinal behavioral 

trial data, although fluctuating and complex with missing values, typically follow (non-) 

linear trends. Based on our research, probability or statistical model-based (e.g., Gaussian 

mixture or Bayesian), hierarchical or neural network-related clustering did not work well or 

failed for this type of non-normal data, although they are popular in other study domains 

[25]. Our previous research on fuzzy clustering also shows Xie and Beni (XB) index 

performs consistently well in validating clusters of behavioral trial data, while the Partition 

Coefficient with decreasing monotonicity (smaller is better), and Partition Entropy with 

increasing monotonicity (larger is better) do not. Nevertheless, XB is dependent on the 

choice of fuzzifiers and needs evaluation before selecting the optimal number of clusters 

[21]. XB is widely used in fuzzy clustering validation, and expressed as,

(1)

in which uij ∈ U is the fuzzy degree of membership, xi is a vector of the observations of the 

i-th case, and vk is the mean trajectory of the k-th cluster. However, our empirical results 

indicate that web trial data are likely to be zero-inflated count data, in other words, it is 

likely to find a pattern where patients are not or rarely engaged in trial components over 

time. In this case, especially with the increase of the number of clusters k, the denominator 

of XB will become zeros, leading to the infinity of XB values. Therefore, it is possible that 

XB cannot point to an optimal number of clusters for zero-inflated data.
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Another recently-designed validation index in fuzzy clustering is called overlap and 

separation index (VOS) [23], Using VOS on the simulated zero-inflated longitudinal web 

trial data, we found no matter how the parameters and the actual number of clusters are, 

VOS always pointed to three clusters. This finding indicates that the VOS may not be 

suitable for zero-inflated longitudinal web trial data. Due to the disadvantages of these two 

indexes, we proposed a new validation index, overlap over separation index (OOS) to find 

the optimal number of clusters using MIFuzzy for such trial data. When no missing values 

exist in the data, OOS can be expressed as

(2)

Definition 1: If a dataset is clustered to k clusters with a membership matrix U, let Zki and 
Zkj be two fuzzy sets, the relative degree of sharing of Zki and Zkj at xi is defined as [23],

(3)

the overlap measure is defined as [23],

(4)

in which , UZj (xi), UZki (xi) and UZkj (xi) denote the fuzzy 
membership degree where xi belongs to clusters Zki and Zkj, respectively.

Definition 2: If a dataset is clustered to k clusters with a membership matrix U, let Zki and 
Zkj be two fuzzy sets, the separation measure is defined as

(5)

The number of clusters in the data can be inferred by minimizing the OOS index,

(6)

Although both VOS and our OOS use the concepts of overlap and separation, the differences 

between the two indices are: 1) The overlap and separation measures used in OOS are not 

normalized, while VOS uses normalized overlap and separation measures; 2) Unlike VOS, 

OOS index uses a different separation measure with the number of clusters k as a factor.
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The real-world longitudinal web trial studies, such as QuitPrimo [26], [27], often have 

incomplete data [24], which make it impossible to directly apply the OOS and other existing 

validation indexes such as XB. Built upon on our MI-based validation framework [17], [24], 

[28], we propose a MI-based OOS validation index (MIVOOS) to find the optimal number 

of clusters for longitudinal web trial data with missing values. Briefly, multiple imputation is 

conducted for an incomplete dataset and MI-based clustering is implemented for each 

imputed complete data set. Specifically for MIVOOS, the MIFuzzy procedure is conducted 

to obtain the fuzzy degree of cluster membership U for each k = 2, 3, …, K, then the 

MIVOOS is calculated as

(7)

in which M is the number of imputations, Um is the matrix of fuzzy degree of membership 

of the m-th imputed data. OOSm(k, Um) shows the OOS validation for clustering the m-th 

imputed dataset into k groups. The optimal number of cluster is decided when MIVOOS 

reaches its minimal value,

(8)

 III. VISUALIZATION AIDED MI-VALIDATION FOR BIG INCOMPLETE WEB 

TRIAL DATA

Big data visualization, although challenging, can help us better understand the structure 

(patterns) of the dataset, through a direct presentation of the trends, gaps, overlaps, or 

outliers of data [29]–[35]. In this section, we designed a visualization aided algorithm to 

implement the newly-proposed MIVOOS in order to decide the optimal number of clusters 

in the zero-inflated longitudinal web trial data with missing values. The algorithm works as 

follows: 1) Conduct MIFUZZY to obtain fuzzy membership for k = 2, 3, …, K; 2) apply the 

visualization aided MIVOOS to determine the optimal number of clusters k̂; 3) output the 

optimal 2-dimensional projection when k = k̂. The procedure of the proposed visualization 

aided MIVOOS validation is demonstrated in Figure 1.

In this algorithm, the optimal number of clusters k̂ is first calculated by finding the minimal 

MIVOOS values, then the optimal 2-dimensional projection for k̂. The linkage of MIVOOS 

and our newly-improved Sammon-mapping-based visualization algorithm [19], [36], [37], 

called projection-overlap measure (PO) can be calculated as

(9)
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in which γ = 0.2 is a constant value. If PO(k̂) is larger than a predefined threshold, the 

optimal number of cluster decreases by 1 and the optimal 2-dimensional projections need to 

be updated. The threshold of projection-overlap measure is set to be 0.1 in this work based 

on our empirical evaluation and simulation studies. The algorithm of visualization aided 

validation is shown in Algorithm 1.

Algorithm 1

Visualization of Identified Patterns

Require: MIVOOS

Ensure: k̂ and optimized 2D projections Xα,β

  1: Determine the number of clusters k̂ by finding the location of the minimal MIVOOS value,

  2: Get optimized 2D projections Yα,β for k ̂ clusters,

  3: Calculate the PO measure for k clusters POk̂,

  4: if POk̂ is bigger than a predefined threshold then

  5:    k̂ = k̂ − 1,

  6:    Go to step 2,

  7: end if

  8: Output number of clusters and optimized 2D projections.

To detect the optimal 2D projection, the viewing angles of 3D Sammon’s projections need to 

be optimized because even if the validation index points to a minimal value, the 2D visual 

graphs may not well present the number of clusters. In addition, the visualization can help 

verify and determine the number of clusters because any validation index does not always 

show consistent results no matter how robust it is. The Sammon’s stress can be calculated by 

[36], [38]

(10)

in which  and Dij are the Euclidean distance between cases i and j in the original high-

dimensional space and the projected low-dimensional space, respectively. By Sammon’s 

mapping algorithm, a high-dimensional data can be projected onto a lower dimensional 

space, such as 2-dimensional (2D) plane and 3-dimensional (3D) Space. 3D scatters show 

better visualization results because it has one more dimension (i.e., with more information) 

than 2D scatters. However, the 3D scatters have different patterns if viewed from different 

angles. Therefore, to obtain the best view of the 3D scatters and the corresponding best 2-D 

view, we need to optimize the angles from which we view the scatters. There are two 

parameters for the viewing angles, α and β, indicating the degrees of the horizontal rotation 

and the elevation of view-point, respectively.
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To optimize the viewing angles, α and β, of the 3D scatters, we first transform the 3D 

scatters to 2D projections using orthographic transformation with parameters α and β, and 

then we minimize the sum of squared error (SSE), which is calculated by,

(11)

in which x ∈ ck represents all cases in the k-th cluster,  is the mean trajectory of the 

projected k-th cluster. The optimal viewing angles are obtained by minimizing the SSE for 

each pair of α and β,

(12)

in which α ∈ [0, 2π) and β ∈ [−π, π), Xα,β is a 2D projection of the 3D Sammon scatters 

viewed from the α and β,

(13)

in which

(14)

By optimizing the view angles, we can obtain the best 2D projections of the 3D Scatters X3 

using Sammon’s mapping. Additionally, the trajectory visualization is further used to verify 

these longitudinal web trial data patterns. A smooth function, such as the Shape-Preserving 

Piecewise Cubic Interpolation (pchip) [39], [40] can be used to display the mean trajectory 

pattern which represents the trend of each cluster.

The performance of pchip is shown in Figure 2. The circled red line stands for the mean 

trajectory of the first cluster in QP, smoothed by the pchip method. Compared to the spline 

function, pchip is more robust, because the spline method showed negative values which are 

not true for the non-negative web data as highlighted in the squares.

 IV. PERFORMANCE ANALYSIS OF VISUALIZATION-AID MIVOOS 

VALIDATION

This section evaluates the proposed visualization-aided MIVOOS on real and simulated 

zero-inflated longitudinal web trial data under three missing data mechanisms, missing 

completely at at random (MCAR), missing at random (MAR) and missing not at random 

(MNAR) [17].
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 A. BIG WEB TRIAL DATA

The real big data (N = 1320; d = 18) was collected from is a two-arm longitudinal web trial 

study designed to assist in the smoking cessation of a general smoker population. The 

intervention arm was engaged with three extra components which the control arm cannot 

see, My Mail (MM), Online Community (OC), and Our Advice (OA). The first intervention 

component, MM, describes how often smokers communicate with a tobacco treatment 

specialist in a secure form. The second component, OC, measures how often the smokers are 

engaged or encouraged by experts. The third main component, OA, describes how many 

times smokers view messages and dialogue from peers and ex-smokers through a resource 

website. As shown in Figure 3, both MI-based XB (fuzzifier = 1.1) and MIVOOS (not 

depending on fuzzifier) indicate four clusters while VOS (not depending on fuzzifier) points 

to two clusters. Although the optimal number of clusters k̂ could be four based on MI-XB 

and MIVOOS, the visualization could help validate this result as illustrated above.

The 2D and 3D projection of QP data were further implemented according to Equation 10–

15. Figure 4(a) shows the scatters of the identified four clusters with the optimal viewing 

angles, and Figure 4(b) shows its corresponding 2D projection. Figure 5(a) and 5(b) display 

the 3D scatters with random viewing angles and the corresponding 2D projections, 

respectively. Clearly, a random 3D projection and resulting 2D plot will mislead the 

clustering results even with both MIVOOS and MI-XB pointing to 4 clusters.

To verify the optimal number of clusters, the 2D five clusters from the best view angle was 

further examined for the QP data. As shown in Figure 6, Cluster 5 is likely a trivial pattern, 

as it contains very few cases and is likely parsed out from Cluster 4. Figure 7 further exhibits 

clear trajectory patterns (smoothed mean trajectory against individuals) representing distinct 

web engagement patterns of each cluster.

 B. SIMULATION RESULTS

A joint zero inflated Poisson and Autoregressive mixture model (JZARM) is proposed to 

simulate the longitudinal web trial data with missing values, given the hidden patterns, zero 

inflation and time correlation in such data.

(15)

where , h is a parameter of zero-inflated Poisson model 

(ZIP) and h ≥ 1, λ is the expected Poisson count, π is the probability of extra zeros. k = 1, 

…, K denotes the number of clusters, i = 1, 2, …, nk, and nk denotes the number of cases in 

the k-th cluster, μkit is a vector of intercepts associated with i-th case for cluster k, Φkit is the 

time matrix for the k-th cluster, εkit represents white noises.

Let X be longitudinal web trial data, which consists of observed data Xobs and missing 

values Xmiss, X = Xobs∪Xmiss and ϕ denotes unknown parameters. Under three missing 

mechanisms, missing complete at random (MCAR), missing at random (MAR), and missing 
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not at random (MNAR), we simulated incomplete web trial data using the parameters learnt 

from QuitPrimo data (see Table 2 and Table 4):

1. MCAR: Simulate data assuming Xmiss does not depend on observed or 

unobserved Xobs or Xmiss,

(16)

2. MAR: Simulate data assuming the missing values depend on the observed 

data Xobs,

(17)

3. MNAR: Simulate data assuming missing observations relate to Xmiss or 

unobserved attributes, ie., MAR assumption is violated.

Under each missing mechanism, we varied the number of cases N, dimensions d, and the 

missing rate r to test our proposed algorithm. The simulation conditions are shown in Table 

5. Overall, as demonstrated in Table 3, the MIVOOS always points to the correct number of 

clusters, while the MI-VOS shows an incorrect number of clusters, three, under all 

conditions. These results demonstrated the feasibility and robustness of the proposed 

MIVOOS in zero-inflated longitudinal web trial data with missing values.

 V. CONCLUSION

Big complex data are generated from web-delivered trials. Unsupervised learning methods 

are helpful in disentangling heterogeneity of treatment effects for such trials. However, 

identifying valid patterns is a priority but challenging issue for these methods. This paper, 

built upon our previous research on MI-based fuzzy clustering and validation, proposes a 

new MI-based Visualization-aided validation index (MIVOOS) in comparison to widely-

used fuzzy clustering validation indexes, XB and VOS, to determine the optimal number of 

clusters from big incomplete longitudinal web trial data with inflated zeros. Different from 

XB, this index does not rely on fuzzifiers. Similar in the concepts, MIVOOS are different in 

the form of computing the overlap and separation measures. Through optimizing the view 

angles of 3D projections using Sammon’s mapping, the optimal 2D projection is obtained to 

better visualize and can further verify the patterns identified by the MIVOOS in conjunction 

with trajectory pattern visualization. Although XB identifies the same number of clusters as 

MIVOOS, it needs to adjust the fuzzifiers and its formula shows the possible failure for such 

zero-inflated data, although not happening on our included data. However, VOS cannot 

identify the correct number of patterns for this type of web trial data in real and simulated 

conditions. The findings from this project suggest that our newly-proposed MIVOOS seems 

to be robust in validating big web trial data under different missing data mechanisms. Our 

simulation model, called joint Zero-inflated Poisson Autoregressive Mixture (JZARM) 

model, can be further utilized to simulate big web trial data to evaluate different validation 

algorithms. Our future work will focus on increasing the computational efficiency of 

MIFuzzy clustering and validation for big data.
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FIGURE 1. 
The proposed MI-based visualization aided validation framework.
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FIGURE 2. 
Smoothed mean trajectory of cluster 1 in QP.
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FIGURE 3. 
Comparing MI based validation on QP. (a) MI-based XB. (b) MI-based VOS. (c) MI-based 

OOS.
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FIGURE 4. 
Projections of QP with the optimal view angles. (a) 3D scatters with the optimal viewing 

angles. (b) 2D projections.
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FIGURE 5. 
Projections of QP with random view angles. (a) 3D scatters with random viewing angles. (b) 

2D projections.
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FIGURE 6. 
Best 2D projections for 5 clusters of QP data.
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FIGURE 7. 
Identified trajectory patterns and estimated mean and trend areas in QuitPrimo. (a) Cluster 1. 

(b) Cluster 2. (c) Cluster 3. (d) Cluster 4.
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TABLE 1

Notations.

Symbols Definitions

X Longitudinal web trial data

Xobs Observations of X

Xmiss Missing values of X

N Number of observations

M Number of imputations

U Fuzzy degree of cluster membership

Zki, Zkj Two fuzzy sets

d Number of dimension

Miss Missing mechanisms

r Missing rate

k Number of clusters

k̂ Optimal number of clusters

Dij Distance between projected data

Distance between raw data

α Horizontal rotation

β Elevation of viewpoint

S Samson’s stress

μkt a vector of intercepts of cluster k at time t

Φkt Time variate matrix

εkt Serially uncorrelated innovations

λ A parameter in ZIP model

xi A vector of the observations of the i-th case

υk Centroid vector of k-th cluster

Centroid vector of projected k-th cluster

ϕ Unknown parameters of JZARM Model
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TABLE 3

Comparing new MIVOOS to MI-VOS validation under MCAR, MAR and MNAR.
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TABLE 5

Simulation conditions.

Variables Ranges

Missing mechanism (Miss) MCAR; MAR; MNAR

Number of cases (N) 1000; 2000

Number of dimensions (d) 20; 30; 40

Missing rate (r) 0.05; 0.1; 0.2; 0.4
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