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Abstract

The tumor microenvironment plays an essential role in various stages of cancer development. This 

environment, composed of the extracellular matrix, fibroblasts, endothelial cells, and cells of the 

immune system regulates the behavior of and co-evolve with tumor cells. Many of the 

components, including the innate and adaptive immune cells, play multifaceted roles during cancer 

progression and can promote or inhibit tumor development, depending on local and systemic 

conditions. Interestingly, a strategy by which tumor cells gain drug resistance is by modifying the 

tumor microenvironment. Together, understanding the mechanisms by which the tumor 

microenvironment functions should greatly facilitate the development of new therapeutic 

interventions by targeting the tumor niche.
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The stroma consists of the extracellular matrix (ECM), which is composed of proteoglycans, 

hyaluronic acid, and fibrous proteins such as collagen, fibronectin, and laminin; growth 

factors, chemokines, cytokines, antibodies, and metabolites; and mesenchymal supporting 

cells (e.g., fibroblasts and adipocytes), cells of the vascular system, and cells of the immune 

system (Fig. 1). As tumors develop, the stroma also evolves.1–6

 COMPOSITION OF THE STROMA

Cancer cells produce factors that activate and recruit carcinoma-associated fibroblasts, 

which are an activated fibroblast subtype (myofibroblasts).7 Carcinoma-associated 

fibroblasts resemble mesenchymal progenitors or embryonic fibroblasts8 and are able to 

stimulate cancer cell growth and invasion as well as inflammation and angiogenesis.7,9,10 In 

some systems, they may also be tumor inhibiting.7,11 Carcinoma-associated fibroblasts 

activated by the tumor microenvironment are largely responsible for tumor-associated 

changes in the ECM including increased ECM synthesis and remodeling of ECM proteins 
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by proteinases, for example, matrix metalloproteinases (MMPs).12,13 The altered ECM then 

influences tumor progression by architectural and signaling interactions.14

Several ECM proteins such as tenascin C and an alternatively spliced version of fibronectin 

expressed embryonically during organ development are re-expressed during tumor 

progression.15 Fibrillar type I collagen also increases in tumors.16 Fragments of type I 

collagen or laminin 332 produced as a result of MMP cleavage may be tumor promoting by 

stimulating cellular migration and survival.17,18 The biophysical characteristics of tissues, 

such as stiffness, may affect cellular function. Mammary epithelial cells cultured in 

compliant collagen matrices form polarized acini, whereas in rigid matrices, they lose 

polarity and become proliferative and invasive.4,19

Inflammatory responses are associated with many cancers and may facilitate tumor 

progression.20 Both adaptive and innate immune cells infiltrate into tissues and are critical 

players.21–25 Whereas the innate immune compartment is primarily tumor promoting, the 

adaptive immune compartment (B and T cells) can be tumor suppressing.

The adaptive immune compartment (B and T cells) carries out immune surveillance, keeping 

initiated cancer cells in check.22,26 Indeed, patients with a suppressed adaptive immune 

system have an increased risk of developing cancers.27 CD4+ T cells are key regulators of 

the immune system and differentiate into various T-helper cell lineages: interferon γ–

producing TH1 cells that promote cell-mediated immunity and interleukin 4 (IL-4)–

producing T helper 2 (TH2) cells that support humoral immune responses.28 Both TH1 and 

TH2 cells can enhance antitumor immunity by expanding the cytotoxic CD8+ T-cell (CTC) 

population. In contrast, regulatory T (Tregs) cells suppress antitumor immunity by inhibiting 

cytotoxic T cells. TH17 cells secrete IL-17. Whereas TH1 cells are primarily antitumor, TH2 

cells promote tumors through their cytokines, which polarize tumor-associated macrophages 

(TAMs) to promote cancer progression.21 CD4+ Tregs are immune suppressive, directly 

suppressing antitumor immunity of CD8+ cytotoxic T cells via secretion of IL-10 and 

transforming growth factor β. Depletion of Tregs enhances tumor growth.28 CD4+ TH17 

cells play roles in inflammation and tumor immunity.29 TH17 cells develop from naive CD4+ 

T cells in the presence of transforming growth factor β, IL-6, and IL-1β. Whether TH17 cells 

adopt a protumorigenic or anti-tumorigenic role depends on the stimuli encountered by the 

cells.

Myeloid-derived innate cells (e.g., macrophages, neutrophils, and mast cells) are largely 

responsible for inflammatory reactions (Fig. 2). Monocytes are polarized to M1 

macrophages by cytokines secreted from TH1 cells such as interferon γ, tumor necrosis 

factor α, and granulocyte-monocyte colony-stimulating factor; produce reactive oxygen and 

nitrogen intermediates and inflammatory cytokines; and are antitumor.30,31 In contrast, 

monocytes exposed to cytokines secreted from TH2 cells such as IL-4 and IL-13 become 

polarized toward the M2 macrophage phenotype. However, this classification does not 

accurately define the differentiated state of macrophages exposed to the complex in vivo 

environments. Tumor-associated macrophages mostly resemble M2 macrophages. 

Accumulation of TAMs is associated with poor prognosis.32,33
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Neutrophils can inhibit or promote cancer development.24,34 With increased tumor burden, 

activated neutrophils accumulate in bone marrow, spleen, and peripheral blood and, at the 

invasive tumor front,24,35,36 promote cancer metastasis by inhibiting cytotoxic T cells and 

promoting angiogenesis. Mast cells can also drive tumor progression.37,38

Recruiting vasculature is a critical step in tumor development. Tumor-infiltrating myeloid-

derived cells are major sources of proangiogenic factors.39,40 These myeloid cells also 

regulate the resistance of tumors to antiangiogenic therapy.41

 TUMOR-REGULATING MICROENVIRONMENTS

Tumors have specialized niches, or microenvironments regulate functions of the cancer cells. 

Genes involved in regulation of stem cell niches also play a role in cancer.42,43 Like stem 

cell–like niches that require Wnt signaling for self-renewal of intestinal stem cells, activation 

of the Wnt pathway by inactivating mutations in the APC gene results in colorectal 

cancers.44 Alteration of the microenvironment through genetic mutation in SMAD4 in the 

stroma also results in gastrointestinal epithelial cancer.45

How the microenvironment directs tumor development is just beginning to be elucidated. 

One clue is that the percentage of cancer cells that express stem cell or basal markers 

increases when the cells are grown on type I collagen.46,47 Moreover, invasive cells are often 

associated with fibrillar collagen in vivo,47 and cancer stem-like cells may be enriched at the 

invasive front where the highest levels of type I collagen are found.48

Certain microenvironments can restrict tumor progression. In the presence of a basement 

membrane–like matrix, breast tumor cells behave more like normal epithelial cells.14 

Antibodies to β1 integrins that increase in malignant cells can normalize the malignant 

phenotype of cancer cells both in culture and in vivo.49 In essence, ECM molecules that 

maintain normal tissue architecture and cancer cells quiescence may be tumor suppressors 

(Fig. 3).

The organ specificity of metastasis correlates with specific gene expression of the 

disseminating cancer cells.50 This raises the question of whether the specific organ 

microenvironments are matched to specific needs of cancer cells. Moreover, primary tumors 

alter the distant microenvironmental niches through secreted factors and exosomes, making 

them more amenable for colonization.24,51,52 Because exosomes and other microvesicles 

may be taken up in a cell-specific manner, they may be involved in selecting specific 

metastatic sites.53

 THE TUMOR MICROENVIRONMENT AND RESPONSE TO 

CHEMOTHERAPY

The tumor microenvironment is critical in the response chemotherapy.54 Cancer cells may 

be more distant from blood vessels, impairing drug penetration. Tumors may have 

incompetent blood vessels and decreased lymphatics, resulting in increased interstitial fluid 

pressure, which inhibits diffusion of drugs into the tumor. The properties of the 
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microenvironment including ECM composition and hypoxia may alter the phenotype of the 

tumor cells, resulting in decreased drug uptake. This raises the question of whether 

chemoresistance may be overcome by targeting the microenvironment. Altering vascular 

permeability by affecting MMPs may increase drug delivery.55,56 Blocking fibroblast 

activating protein, which is made by carcinoma-associated fibroblasts, results in reduced 

type I collagen and improved drug delivery.57

 PERSPECTIVES

Components of the tumor microenvironment contribute to both the establishment of primary 

tumors as well as to the initiation, establishment, and growth of metastases. However, there 

may be different requirements for the primary tumor compared with the distant environment. 

In many ways, the tumor microenvironment resembles the microenvironments used in 

development and tissue repair. The tumor-associated stromal cells (e.g., macrophages and 

fibroblasts) are different from their counterparts in the normal tissue.58 They may be newly 

recruited from the bone marrow and have more embryonic character, but they are also 

misregulated. Altering the tumor microenvironment therapeutically has promise for 

improving the cancer therapy on a wide-spread basis.
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FIGURE 1. 
Composition of the tumor stromal microenvironment. The stroma consists of ECM, 

including proteoglycans, hyaluronic acid, and fibrous proteins such as collagen, fibronectin, 

and laminin, and stromal cells (e.g., fibroblasts and adipocytes); cells of the vascular system; 

and cells of the immune system.
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FIGURE 2. 
Multifaceted roles of innate and adaptive immunity in cancer development. Whereas 

adaptive immunity, including T and B cells, is essential for inhibiting cancer development, 

innate immunity, including neutrophils, macrophages, and mast cells, may promote or 

inhibit cancer development depending on the local and systemic contexts. For example, 

macrophages can be polarized and activated by cytokines secreted by TH1 cells and produce 

reactive oxygen and nitrogen intermediates and inflammatory cytokines. These 

proinflammatory M1 macrophages can inhibit tumorigenesis; by contrast, TAMs (or M2 

anti-inflammatory) polarized by cytokines secreted from TH2 cells are associated with poor 

prognosis. Regulatory T cells can inhibit cytotoxic T-cell function and thus promote 

tumorigenesis.
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FIGURE 3. 
Targeting stroma in cancer therapeutics. Changes in the stromal microenvironment are an 

important aspect of cancer evolution. Tumor stroma undergoes concurrent changes with 

cancer cells and plays a causative role during initiation, progression, and metastasis of 

cancer development (1). In addition to promoting cancer development, tumor stroma is a 

major barrier to cancer drugs and plays a role in drug resistance. Importantly, forceful 

reversion of cancer stroma to the normal state restores normal behavior to cancer cells (2). 

As such, tumor stroma is a promising therapeutic target for cancer treatment.
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