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Abstract

Metabolomics enables the profiling of large numbers of small molecules in cells, tissues and 

biological fluids. These molecules, which include amino acids, carbohydrates, lipids, nucleotides 

and their metabolites, can be detected quantitatively. Metabolomic methods, often focused on the 

information-rich analytical techniques of NMR spectroscopy and mass spectrometry, have 

potential for early diagnosis, monitoring therapy and defining disease pathogenesis in many 

therapeutic areas, including rheumatic diseases. By performing global metabolite profiling, also 

known as untargeted metabolomics, new discoveries linking cellular pathways to biological 

mechanisms are being revealed and are shaping our understanding of cell biology, physiology and 

medicine. These pathways can potentially be targeted to diagnose and treat patients with immune-

mediated diseases.

Endogenous and exogenous low-molecular-weight molecules (<1–1.5 kDa) in a biological 

sample are generally referred to as metabolites. For decades, the identification and 

quantification of metabolites was primarily determined by analytical chemists and 

biochemists using targeted analysis of specific subsets of compounds1–3. This metabolic 

profiling, or metabolite target analysis (BOX 1), revealed the chemical nature of important 

compounds including vitamins, cofactors and amino acids. With the advent of systems 

biology and the ‘omics’ revolution, metabolomics4,5 has enabled the rapid, simultaneous 

measurement of thousands of metabolites from minimal amounts of sample. Metabolic 

datasets obtained using both metabolomics and stable-isotope-assisted metabolomics6–9 

have been used to feed into different mathematical modelling approaches, including 

metabolic flux analysis (see Supplementary information S1 (figure)).
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Genes are subject to epigenetic regulation, and proteins to post-translational modification, 

but metabolites are direct signatures of biochemical activity, and might be easier to correlate 

with phenotypes. The response of a biological system to disease status or therapeutic 

intervention can be reflected in specific patterns of metabolites. To ensure the inclusion of 

all relevant molecules, metabolomic approaches should ideally be untargeted, hypothesis-

free, comprehensive analyses of metabolites followed by advanced data processing5. 

However, owing to the computational complexity of untargeted analyses, targeted studies are 

also conducted.

The metabolome is the complete set of metabolites within a biological sample. Metabolic 

pathways can interact and overlap (FIG. 1 and the Metabolic pathways — reference 

pathway). In samples from the human body, ~3,000–5,000 metabolites have been detected, 

and many have already been identified. The metabolomes of biofluid and tissue samples are 

affected not only by genetics, but also by lifestyle factors including diet, drugs, exercise, gut 

microbiota, health-to-disease status, hormonal homeostasis and age. Metabolites can be 

endogenous, including lipids, small peptides, amino acids, organic acids, vitamins, 

carbohydrates, thiols and nucleic acids (see Supplementary information S2 (table)) or 

exogenous, such as drugs, environmental contaminants, food additives, toxins and other 

xenobiotics. Lipids, amino acids and carbohydrates are the most abundant metabolites in 

plasma10.

 Abundant endogenous metabolites

 Lipids

Lipid metabolism, including uptake, transport, synthesis and degradation, is a complex 

process regulated by a number of signalling pathways. Lipids have important biological 

functions in energy storage, as structural components of cell membranes and as signalling 

molecules. The lipid components of biological membranes were originally considered to be 

merely structural, but considerable evidence now exists demonstrating the importance of 

lipid signalling via a variety of receptors11 (TABLE 1). Alteration of lipid metabolism leads 

to changes in membrane composition and permeability, gene expression and protein 

distribution and function, as well as in cellular functions such as cell growth, proliferation, 

differentiation, survival, apoptosis, inflammation and motility, causing the development and 

progression of many diseases.

 Carbohydrates

Carbohydrates have crucial roles in metabolism and signalling (TABLE 1). The 

monosaccharide glucose is an important energy source, and increases in glucose uptake and 

glycolysis have been associated with increased cellular proliferation by generating ATP and 

providing substrates for the synthesis of proteins, nucleic acids and lipids. Carbon 

compounds produced during glycolysis can also be diverted into either the oxidative or the 

nonoxidative branches of the pentose-phosphate pathway (PPP) for nucleotide and cofactor 

biosynthesis and redox balance. Indeed, NADPH, the main reducing cofactor in the 

cytoplasm, is required to quench reactive oxygen species during cellular proliferation.
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 Amino acids

Amino acids are nutrients and substrates for macromolecular synthesis. For example, 

glutamine, although not an essential amino acid, is well studied and highly abundant (~0.5 

mM in blood). During cellular proliferation, glutamine provides nitrogen and carbon for the 

de novo synthesis of amino acids and synthesis of nucleotides through the hexosamine 

pathway, and can (particularly in hypoxic conditions associated with cancer) contribute to 

the generation of cytosolic acetyl coenzyme A, an intermediate in lipid biosynthesis12 

(Metabolic pathways — reference pathway).

 Bioactivity and metabolite crosstalk

Metabolites can participate in intercellular communication13 (TABLE 1). Metabolite 

exchange between stromal and parenchymal cells is common and essential for the function 

of numerous tissues. In both cancer and inflammation, metabolism and cellular 

communication are altered. Lactate from tumour cells, for instance, promotes tumour 

angiogenesis via activation of the hypoxia-inducible transcription factor HIF-1α14. 

Metabolic enzymes can also affect post-translational modification15.

Metabolites also have signalling roles in immune cells, such as the induction of IL-1β 

expression by succinate via activation of HIF-1α16. Succinate and other metabolites such as 

acetyl coenzyme A are also involved in alteration of the epigenome17,18. Amino acids have 

been shown to affect cell signalling19, recruitment20 and proliferation of immune cells,21 

and members of several different categories of lipids have been identified as signalling 

molecules and cellular messengers11.

Soluble inositol polyphosphates and membrane polyphosphoinositide lipids22, have 

numerous functions. Phosphatidylinositol (3,4,5)-trisphosphate, for example, modulates cell 

growth, proliferation and motility11. Ceramides and sphingosines have proapoptotic and 

antiproliferative actions23, but phosphorylation of sphingosine converts it to sphingosine-1-

phosphate, which promotes cell growth and proliferation24. Eicosanoids25 and 

lysophosphatidic acid11 also have autocrine and paracrine actions through binding to a 

family of G-protein-coupled receptors.

 Metabolomics databases

Metabolomes vary considerably between tissues and biofluids, and databases have been 

developed for the large amounts of information generated in studies of different systems26. 

One of the most highly utilized is the Human Metabolome Database or HMDB27, an open-

access resource containing detailed information on >40,000 metabolites. Other resources 

with information relating to compounds or spectroscopy are the Kyoto Encyclopedia of 

Genes and Genomes (KEGG)28, LipidMaps29, PubChem30, Chemical Entities of Biological 

Interest (ChEBI)31, Madison Metabolomics Consortium Database (MMCD)32, METLIN33 

and MassBank34 databases. The Metabolomics Standards Initiative (MSI)35 was created to 

help to avoid discrepancies between databases and to promote consistency and 

reproducibility between laboratories with different instrumentation and methods of analysis.
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 State-of-the-art technologies

Profiling the metabolome is challenging, owing to the intrinsic heterogeneity of the 

compounds involved36–38, and it becomes even more problematic when absolute 

quantification of one or more biomarkers is required, particularly in the context of clinical 

studies39. Before performing any metabolite analyses, careful design of sample collection, 

data processing and data analysis is crucial to limit unwanted bias. Adding quality control 

during data acquisition is important to obtain reproducible results and ensure generation of 

meaningful data: if samples are not collected properly, or stored and processed uniformly, 

the data generated could be invalid. Sample collection, storage, and processing procedures 

are extremely important for the conduction of successful metabolomic studies, which also 

require careful design to minimize and account for the effects of factors such as gender, age, 

diet, fasting state, exercise and physical activity, the use of drugs, medications and other 

active substances, and the time of day of sample collection.

Metabolomic analysis can involve different analytical platforms. These methodologies 

include ultraviolet spectroscopy, Fourier transform infrared spectroscopy and Raman 

spectroscopy40, but the most commonly utilized platforms are NMR spectroscopy and mass 

spectrometry (MS), both of which have advantages and disadvantages (BOX 2).

 NMR spectroscopy

NMR spectroscopy, although having lower sensitivity than MS, is a robust metabolomic 

platform with several advantages. NMR is currently the best technique for chemical 

structure elucidation41; it requires only minimal sample preparation, and is nondestructive, 

inherently untargeted, highly reproducible42,43 and intrinsically quantitative44–46. An 

advantage of NMR spectroscopy is the ability to bridge the gap between in vitro, ex vivo and 

in vivo studies, with the use of high-resolution magic-angle spinning to profile intact tissues 

and magnetic resonance spectroscopic imaging for in vivo applications47. Developments in 

the sensitivity and resolution of NMR instrumentation come about through improvements in 

the availability of superconducting materials, the strength of magnetic fields48 and cryogenic 

probe technology49.

Historically, NMR probes required large sample sizes (500–600 μl), but advances in 

microprobe development now enable the analysis of samples ≤30 μl50. Cooling microprobe 

coils with a stream of helium gas (20–30 K)51 enables 60–80-fold increases in the NMR 

signal-to-noise ratio compared with conventional 5 mm room-temperature probes.

In the metabolomic profiling of biological samples, the majority of NMR spectra are 

acquired by 1D NMR for the high throughput required for screening purposes52. However, 

compared with 1D NMR, ultrafast and nonuniform sampling has shown potential to reduce 

signal overlap and acquisition time and to enhance signal sensitivity by increasing the 

dimensionality of NMR spectra53–55. In a study of the human urine metabolome56, high-

esolution NMR detected and quantified >200 metabolites in an untargeted fashion, including 

>100 metabolites that were identified by NMR but not by other techniques. However, the 

need to increase the number of detected metabolites to obtain a more comprehensive 
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description of the metabolic status has motivated researchers to add — or to switch to — 

MS-based analysis56–61.

 Mass spectrometry

Currently available mass analysers62 include triple quadrupole, quadrupole time-of-flight 

(TOF) and linear ion trap–Fourier transform ion cyclotron resonance, as well as orbitrap 

devices63,64. Metabolites can either be directly injected into the mass spectrometer as a 

mixture, or they can first be separated, by one of a variety of methods. Direct injection 

without separation into a high-mass-accuracy mass spectrometer (such as an orbitrap) is 

commonly called direct infusion MS65 or shotgun MS66,67. This high-throughput, untargeted 

and comprehensive technique is ideal for a first metabolic screen, but the lack of initial 

separation means that metabolites with the same mass will overlap, interfering with 

identification.

Gas-chromatography–MS (GC–MS) and liquid-chromatography–MS (LC–MS) are the most 

common MS-based metabolomics methodologies. GC–MS is ideal for the analysis of 

volatile compounds, and is also commonly used for targeted metabolic analysis of organic 

acids, amino acids, sugars and fatty acids, following chemical derivatization. GC–MS is one 

of the most robust MS-based techniques for metabolomic68 and lipidomic quantification69, 

but GC–MS systems commonly have low-resolution spectrometers, and high-resolution LC–

MS platforms are increasingly being utilized for both untargeted and targeted metabolic 

analyses. In LC–MS, in addition to choosing between MS systems, the choice of liquid 

chromatography column (regardless of the use of high pressure or ultrahigh pressure) is vital 

to the success of the profiling experiment, and in general multiple columns are necessary for 

optimal detection of metabolites70. LC–MS systems can detect thousands of features and 

identify hundreds of compounds71. However, many features cannot be identified using 

available databases. Tandem MS (MS/MS)27,29,33 can aid in identification; alternatively, 

spiking a sample with a chemical standard can help to identify a putative metabolite72.

 Stable-isotope-assisted metabolomics

Identification and quantification of metabolic biomarkers can provide a metabolic snapshot 

of the status of a living organism, but cannot provide an unambiguous picture of the 

metabolic flux between cellular compartments. For instance, an increase in the concentration 

of a metabolite can be associated with either the upregulation of the enzyme that synthesizes 

the metabolite or the downregulation of the one that consumes it. Stable-isotope labelling 

(with an isotope such as 13C) of a precursor (such as glucose or glutamine) enables tracking 

of its cellular fate in vitro or in vivo53,73. Datasets from such experiments can be fed into 

mathematical models such as metabolic flux analysis6–9,74,75 (see Supplementary 

information S1 (figure)).

 Metabolomic studies in rheumatic disease

Metabolomics can provide important information relating to pathogenesis and disease 

activity in rheumatic conditions. The fundamental rationale in metabolomics is that 

perturbations in a biological system caused by disease will lead to correlated changes in the 

Guma et al. Page 5

Nat Rev Rheumatol. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



concentrations of certain metabolites. Although in some situations (such as genetic 

metabolic disease) the identification of a single, robust diagnostic metabolite migth be 

possible, in many others (including rheumatic disorders) the perturbations involve the 

activation of multiple pathways. NMR and MS can identify biomarkers and patterns of 

change that are highly discriminatory for these perturbations and for disease states. Disease-

specific metabolic pathways can indicate potential therapeutic targets, to enable alteration of 

the metabolic activity implicated in pathogenesis. They can also identify disease-specific 

biomarkers.

Biomarkers are anatomical, physiological, biochemical or molecular variables or imaging 

features that enable diagnosis and prognosis of disease and evaluation of the effects of 

treatment. The accessibility of biomarkers is important, and blood and urine are more 

accessible than synovial tissues or fluids in joints affected by rheumatic diseases. Despite the 

relative inaccessibility, metabolic profiling using intact tissue has gained momentum as an 

approach for understanding the molecular basis of disease.

The study of metabolomics in inflammatory disease represents a new approach to 

identifying biomarkers beyond autoantibody profiling and transcriptomics. Several 

metabolomics studies have focused on the identification of metabolites associated with 

rheumatic diseases or the prediction of response to treatment. In general, the results of these 

studies have been promising, but most included small numbers of patients, with 

heterogeneous clinical characteristics and treatments, and require confirmation76. Studies to 

identify correlations between metabolomic profiles and inflammation, bone and cartilage 

damage and the effects of therapeutic intervention are needed. The inclusion of normal 

controls matched for age and sex, and of populations affected by other arthritic diseases, as 

well as validation cohorts will help to determine whether metabolic signatures can 

distinguish between subsets of patients and help in diagnosis and prognosis.

The metabolomics of rheumatic disease have been studied in humans and in murine models. 

Some elements of metabolism are similar in different species, and biomarker discovery 

might benefit from the use of targeted animal models in which induction of disease and 

treatment can be controlled, and correlations between the metabolomes of serum and joints 

can be evaluated.

 Systemic lupus erythematosus (SLE)

Alteration of the metabolic profile in SLE has been studied by1H-NMR on serum samples 

obtained from patients with SLE (n = 64), patients with rheumatoid arthritis (RA; n = 30) 

and healthy controls (n = 35)77. In patients with SLE, significant reductions in the levels of 

valine, tyrosine, phenylalanine, lysine, isoleucine, histidine, glutamine, alanine, citrate, 

creatinine, creatine, pyruvate, cholesterol, glycerol and formate were detected in comparison 

with the control population. Apart from the decrease in creatine, the same profile was 

detected in patients with RA as in those with SLE, suggesting a correlation of these 

metabolic changes with inflammation.

A comparison of sera from 20 patients with SLE and nine healthy controls using LC–MS 

and GC–MS platforms identified >100 metabolites that were significantly different in the 

Guma et al. Page 6

Nat Rev Rheumatol. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SLE population78. Validation of these findings was performed with an independent cohort of 

38 patients with SLE, along with 20 patients with RA and 14 healthy controls78. Compared 

with the controls, sera from patients with SLE showed evidence of profoundly dampened 

glycolysis, Krebs cycle, fatty acid β-oxidation and amino acid metabolism, suggesting 

reduced energy biogenesis from all sources78. Whereas levels of long-chain fatty acids were 

significantly reduced, those of medium-chain fatty acids were elevated in association with 

SLE. The metabolomes in patients with SLE exhibited profound lipid peroxidation reflective 

of oxidative damage, with deficiencies in the cellular antioxidant glutathione, as well as 

methyl group donors required for glutathione regeneration78.

Urinary metabolites that discriminate between proliferative and pure membranous lupus 

nephritis have been identified with NMR spectroscopy in a pilot study involving seven 

patients79. Urinary citrate levels were eightfold lower in patients with class V lupus nephritis 

than in those with class III or class IV disease (P <0.05), in whom the levels were normal. 

Conversely, levels of urinary taurine were mostly normal in patients with class V disease, 

but >10-fold lower in those with class III or class IV disease, suggesting that these urinary 

metabolites can serve as biomarkers to help discriminate between different classes of lupus 

nephritis.

Preclinical models can provide important clues to help refine searches for biomarkers in 

human disease. Rapid-resolution liquid chromatography coupled with quadrupole TOF-MS 

(RRLC–Q-TOF-MS) has been utilized to acquire metabolic profiles of serum samples 

obtained from mice treated with single intraperitoneal injections of pristane, which induces 

an SLE-like disease characterized by the production of autoantibodies80. These mice had 

altered levels of 13 metabolites associated with the metabolism of unsaturated fatty acids 

(UFAs), phospholipids and tryptamine80.

The results of these metabolomics studies suggest that an imbalance in lipid profiles might 

contribute to disease, especially in relation to arachidonic acid metabolism. Evidence 

derived from studies involving both human and murine80 samples implicates disorder of 

UFA metabolism in SLE and SLE-like disease. UFAs have an important role in the 

maintenance of normal physiological functions, including regulation of the immune 

response. Among the UFA metabolites that are differentially regulated in SLE, 12-

hydroxyeicosatetraenoic acid (12[S]-HETE) is an active metabolite of arachidonic acid that 

is produced through the arachidonate 12-lipoxygenase pathway. This metabolite has a 

prominent role in the promotion of inflammation, causes the accumulation of extracellular 

matrix and induction of mesangial-cell hypertrophy, and is involved in the pathogenesis of 

diabetic nephropathy81. An increase in the level of 12(S)-HETE in SLE might promote 

kidney inflammation and cell hypertrophy, thereby aggravating the symptoms of kidney 

disease. Other metabolites, such as 5-hydroxyicosatetraenoic acid and leukotriene B4, are 

also elevated in SLE and can contribute to the pro-inflammatory milieu and prothrombotic 

state.

 Osteoarthritis (OA)

The alteration of the metabolic profile in OA has been studied in media from the culture of 

synovial explants dissected from diseased joints in patients with no OA or early OA 
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compared with end-stage OA (11 patients per group)82. The samples were subjected to 

global metabolic profiling with LC–MS and GC–MS, resulting in the identification of 11 

compounds with significantly different concentrations in the two groups82. The metabolite 

profiles suggested that abnormal degradation of collagen contributes to an ‘OA signature’ in 

the blood. However, given the discrepancy in the mean ages of the patients (67 years in the 

end-stage OA group versus 18 years in the group with no OA or early OA), some of the 

observed metabolite changes could be secondary to age-related chondrocyte changes, rather 

than being specific to OA82.

A study in which OA phenotypes were classified by the results of metabolomic analyses was 

limited by the absence of synovial fluid samples from healthy people, and by the failure to 

associate the phenotypes with clinical data83. In another study, synovial fluid samples were 

collected from 55 patients with symptomatic chronic knee OA and 12 normal human 

cadaveric knee joints; this study also included a validation group and was age-matched84. 

The samples were analysed by1H-NMR and GC–MS, and the differences in metabolic 

profiles were indicative of hypoxic conditions in diseased and inflamed knee joints, and high 

energy requirements in patients with OA84. Similar alterations have been described 

previously84–88, with some variations in the involvement of specific metabolites, possibly 

owing to the use of animal models84–86,88 or the lack of a healthy human control group87. 

These studies did not include samples from other inflammatory arthritides, so further studies 

are needed to determine the specific metabolomic profile of OA.

Studies have also been conducted with serum or urine samples to determine the 

metabolomic signature of OA. In a study with MS/MS analysis of serum samples from 

patients with knee OA, the ratio of branched-chain amino acids (valine and leucine) to 

histidine was described as a novel biomarker89. Analysis by1H-NMR of urine samples from 

47 controls and 45 individuals with OA identified a metabolite profile suggestive of altered 

energy metabolism that was strongly associated with OA90. A comparison of plasma and 

synovial fluid from patients with primary knee OA (with metabolic profiling by MS/MS)91 

found modest correlation between metabolite concentrations, but higher correlation between 

metabolite ratios, which are considered proxies for enzymatic reaction rates. Assessment of 

metabolite ratios should be considered when using plasma as a surrogate for synovial fluid 

in biomarker identification in OA and probably in other diseases.

 RA and inflammatory arthritides

Metabolic profiling has been explored in synovial fluid in inflammatory arthritides. Synovial 

fluid samples from 38 patients with RA, ankylosing spondylitis, Behçet disease or gout were 

analysed by GC–MS92, and 20 metabolites were selected as potential biomarkers to 

discriminate RA from the other conditions. Higher abundance of a number of metabolites in 

samples from patients with RA indicated activation of energy pathways such as the 

tricarboxylic acid (TCA) cycle, as well as amino-acid metabolism92. However, the levels of 

inflammatory markers were not measured, so these changes could be related to a greater 

degree of inflammation in RA than in the other conditions.

Untargeted screening of lipids in synovial fluid samples from patients with RA has been 

performed with an LC–MS/MS screening platform93. Approximately 70 different 
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components from distinct lipid classes were detected, although no control group was 

analysed93. A targeted lipidomics strategy was developed for quantification of anti-

inflammatory bioactive fatty acids maresin 1, lipoxin A4 and resolvin D5. In a study of 

synovial fluid samples from unaffected controls (n = 9) and from patients with early OA (n = 

17), late OA (n = 13) or RA (n = 30), phospholipid species were quantified by MS/MS94. 

Several lipid classes were identified, and the highest concentrations (with the exception of 

phosphatidylserine) were observed in late OA94. Samples from patients with RA also had 

higher concentrations of these lipids than control samples. These observations suggest that 

phospholipid changes are secondary to cartilage damage; their production could protect 

cartilage from friction-induced mechanical damage. However, significant differences in age 

and gender between groups made it difficult to conclude that these differences were disease-

specific94.

Studies have also been carried out to identify metabolites in serum and plasma that can help 

in diagnosis, prognosis and the prediction and measurement of response to treatment in 

rheumatic diseases. In a comparison of serum metabolic signatures in OA, RA, ankylosing 

spondylitis and gout by MS95, homoserine, 4,8-dimethylnonanoyl carnitine, glyceraldehyde, 

lactic acid, dihydroxyfumaric acid and aspartic acid were identified as candidate markers in 

the four types of arthritis, compared with healthy controls. In another study, with1H-NMR 

characterization of serum samples from patients with established RA, early arthritis and 

healthy controls, levels of several metabolites, such as 3-hydroxybutyrate, glucose, lactate, 

and urea, were correlated with the extent of inflammation96.

The data from these studies suggest that upregulation of glycolysis, the TCA cycle, 

metabolism of glycine and serine, fatty acid and amino acid metabolism occurs in all these 

inflammatory conditions, indicating that these pathways might not be suitable sources of 

disease-specific biomarkers. Further studies are required to complement these investigations 

and others involving RA and inflammatory arthritides (such as psoriatic arthritis and 

ankylosing spondylitis) to identify specific biomarkers for each condition97–101.

In a preclinical study102, a serum metabolomic method involving RRLC–Q-TOF-MS was 

performed for an evaluation of the metabolic changes in collagen-induced arthritis (CIA) in 

rats. Herein, 10 metabolites (suggestive of dysregulation of the arachidonic acid and 

phospholipid metabolic networks) were found to be associated with the pathogenesis of 

CIA. The relationships between eicosanoid metabolism, arthritis and inflammation have 

been reviewed previously25.

Attempts to correlate metabolite profiles and response-to-treatment have had promising 

results. In one study103, a 1H-NMR metabolomic approach was applied to 38 patients with 

active RA. After 24 weeks, patients who responded to methotrexate treatment showed 

significant elevations in serum levels of uric acid, taurine, methionine, glycine, histidine and 

hypoxanthine, and reductions in levels of uracil, TMAO, α-oxoglutarate, aspartate, and 

tryptophan, compared with patients in whom methotrexate was not effective103. NMR 

analysis of urine from 16 patients with RA and 20 with psoriasis (before anti-TNF 

therapy)104 identified upregulation of histamine, glutamine, phenylacetic acid, xanthine, 

xanthurenic acid and creatinine, and downregulation of ethanolamine, p-
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hydroxyphenylpyruvic acid and phosphocreatine in samples from patients who had a good 

response to therapy.

 Disease-specific metabolic pathways

Because metabolic pathways are so closely related, the alteration of one of these pathways 

will probably have wider effects on the metabolome. Analysis of metabolomics data might 

identify specific metabolic pathways and activated signalling pathways associated with the 

pathogenesis of a disease. Metabolic changes described in specific cell types or bioactive 

metabolites involved in the pathogenesis of the disease105 might also correlate with changes 

observed in metabolomics studies.

Many signalling pathways activated under inflammatory conditions have profound effects on 

cellular metabolism, supporting cell growth and survival. These adaptations must be 

implemented in the stressful and dynamic microenvironment of inflamed tissues, where 

concentrations of crucial nutrients such as glucose, glutamine and oxygen are spatially and 

temporally heterogeneous. Therefore, multiple molecular mechanisms converge to alter core 

cellular metabolism and provide support for three basic needs of dividing cells: ATP 

generation to maintain energy status; biosynthesis of macromolecules; and tight maintenance 

of appropriate cellular redox status. Cells acquire alterations to the metabolism of the major 

classes of macromolecules — carbohydrates, proteins, lipids and nucleic acids. The study of 

cancer cell metabolism has successfully identified cancer-specific metabolic changes, but 

other cell types, such as lymphocytes and stromal cells, are also subject to major metabolic 

challenges upon activation, and adopt specific metabolic programmes to adapt to changing 

environmental conditions.

Immune cells have specific metabolic signatures related to effector function. Metabolic 

changes occurring in T cells106–110, macrophages111 and dendritic cells112,113 have been 

extensively reviewed, but less information is available with regard to stromal cells, including 

fibroblasts, and endothelial cells105. Emerging evidence also indicates that metabolism is not 

only involved in the determination of cell differentiation and function, but also that 

metabolic changes contribute to the pathogenesis of cancer, diabetes and inflammatory 

diseases105. Some of these changes are summarized in FIG. 2 and BOX 3.

 SLE

Glycolysis and mitochondrial oxidative metabolism are elevated in CD4+ T cells from lupus-

prone mice (compared with nonautoimmune controls) and also in CD4+ T cells from 

patients with SLE; the elevation correlates with the patients’ activation status, and IFN-γ 

production is significantly reduced by metformin114. Treatment with a combination of 

metformin and 2-deoxy-D-glucose normalizes T-cell metabolism and reverses changes in the 

levels of disease biomarkers in animal models of lupus, suggesting a promising therapeutic 

approach for SLE114. However, serum metabolomics in patients with SLE have shown 

reduced glycolysis and Krebs cycle activity relative to healthy controls, and the contribution 

of these pathways to SLE pathogenesis is yet to be determined78.
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CD4+ T cells from patients with SLE display an altered profile of lipid-raft–associated 

glycosphingolipids compared with those from healthy controls115. Glycosphingolipids are 

essential for many cellular processes and are enriched predominantly in lipid rafts, 

influencing a range of T-cell functions including T cell receptor-mediated signalling and 

apoptosis, as well as recycling and endocytosis of membrane-associated receptors and 

signalling molecules. Inhibition of glycosphingolipid biosynthesis in vitro normalizes 

glycosphingolipid metabolism, corrects CD4+ T-cell signalling and functional defects, and 

decreases anti-double stranded DNA (dsDNA) antibody production by autologous B cells in 

patients with SLE115. In metabolomics studies, no changes in this subset of lipids have been 

detected in blood, although further in vivo and in vitro studies are needed to determine if 

these particular T-cell metabolic changes can be detected.

 RA

The observation of increases in serum lactate in metabolomics studies conducted in the 

setting of inflammatory arthritides, including RA, suggests an alteration of glycolysis. 

However, the metabolic status of naive CD4+ T cells has been examined in patients with RA, 

thereby excluding T cells that are directly involved in the inflammatory process itself. These 

naive RA T cells did not produce as much ATP and lactate as naive T cells from healthy, 

age-matched controls, although they proliferated vigorously116. Molecular analysis of the 

underlying defect responsible for this metabolic alteration identified 6-phosphofructo-2-

kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) as a rate-limiting enzyme in the glycolytic 

pathway that was significantly decreased in T cells from patients with RA, compared with 

healthy controls. Fibroblast-like synoviocytes (FLSs) from patients with RA also have a 

higher baseline glycolytic rate than FLSs from patients with OA117,118. Expression of 

GLUT-1 (solute carrier family 2, facilitated glucose transporter member 1) also correlated 

with migration and expression of metalloproteinases. Notably, glucose deprivation or 

treatment with glycolytic inhibitors such as 2-deoxy-D-glucose and bromopyruvate impaired 

cytokine secretion, proliferation and migration in FLSs, and glycolytic inhibition by 

bromopyruvate administered in vivo in a serum-transfer animal model significantly 

decreased arthritis severity compared with untreated animals118. Thus, the increase in lactate 

detected in metabolomics studies95,96 could be secondary to the increase in glycolysis in 

FLSs.

The choline pathway is highly active in FLSs119. Choline kinase-α (CK), the enzyme that 

catalyses the first step in the cytidine-diphosphate–choline pathway, is essential for 

phosphatidylcholine production. In comparison with healthy tissue, elevated levels of CK 

have been associated with malignant transformation, invasion and metastasis in some human 

cancers120–124. CK is expressed in synovial tissue in RA and in cultured FLSs; furthermore, 

a CK inhibitor suppresses the aggressive properties of cultured RA FLSs, including cell 

migration and resistance to apoptosis119. In a serum-transfer model of arthritis, 

pharmacological CK inhibition (compared with vehicle-only) prevented development of 

arthritis when administered before serum transfer, and significantly decreased levels of 

markers of arthritis in treatment of established disease119. Notably, in metabolomics studies, 

choline levels have been correlated with the degree of inflammation in RA, and several lipid 

alterations have been identified in RA samples93,104.
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Sphingosine kinase 1 (SPK-1) phosphorylates sphingosine to make sphingosine-1-phosphate 

(S1P), a bioactive lipid involved in the pathogenesis of several autoimmune diseases24. 

SPK-1 blockade suppresses the release of cytokines and MMP-9 in peripheral blood 

mononuclear cells from patients with RA. In addition, downregulation of SPK-1 — either by 

an siRNA approach or in transgenic mice expressing human TNF and deficient in SPK-1 — 

limits synovial inflammation and joint pathology125,126. The synovia and synovial fluids of 

patients with RA exhibit significantly higher levels of S1P than those of patients with 

OA127.

Activated FLSs from arthritic human patients and animal models express autotaxin, which 

catalyses the conversion of lysophosphatidylcholine to lysophosphatidic acid128–130. This 

expression is induced by TNF, which also acts synergistically with lysophosphatidic acid to 

induce fibroblast activation and effector functions130. Conditional genetic ablation of 

autotaxin expression in mesenchymal cells, including FLSs, results in disease attenuation in 

animal models of arthritis. Notably, high levels of lysophosphatidylcholine and low ratios of 

phosphatidylcholine to lysophosphatidylcholine in plasma represent a reliable measure of 

inflammation131.

 Metabolic targeting in rheumatic diseases

The metabolic rewiring of cancer cells and immune cells has been viewed as a promising 

source of drug targets132–138. Resetting the altered metabolomes in these diseases, either by 

targeting selected molecules or by supplementing the diet with essential metabolites, such as 

fatty acids, offers novel opportunities for disease modulation. Several different approaches 

have been explored, leading to the identification of agents that are now close to entering 

clinical evaluation. Few metabolic inhibitors have been developed so far, reflecting the 

recent rediscovery of the field, as well as concerns regarding reproducibility of results and 

toxicity in cells undergoing intensive proliferation. Whether this approach will result in 

effective drugs for the treatment of rheumatic diseases, with effects beyond those of 

biological and kinase-inhibitor therapies, remains to be determined.

Rheumatologists already use the metabolic inhibitors methotrexate and leflunomide for the 

treatment of inflammatory arthritis139. Teriflunomide, the active metabolite of leflunomide, 

inhibits the mitochondrial enzyme dihydroorotate dehydrogenase. This enzyme is involved 

in de novo synthesis of pyrimidines, including uridine monophosphate (UMP), which is 

required for the synthesis of DNA and RNA; thus, leflunomide inhibits the reproduction of 

rapidly dividing cells, especially lymphocytes. Methotrexate, developed as a folic acid 

analogue, inhibits purine and pyrimidine synthesis, which accounts for its efficacy in the 

treatment of cancer, as well as for some of its toxicity. Other consequences of methotrexate 

treatment, such as adenosine accumulation, might also contribute to its disease-modifying 

effect in RA.

Some drugs that target altered metabolism in cancer could also have therapeutic value in 

rheumatic disease. Attempts to block aerobic glycolysis in tumour cells have not yet been 

effective140,141. Therapeutic approaches targeting numerous points in the glycolytic process 

are currently being evaluated, including inhibition of lactate dehydrogenase142 and 
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inactivation of the glucose-uptake enzyme GLUT-1 (REF. 143) and monocarboxylate 

transporters144, which are responsible for conveying lactate across the plasma membrane. 

Interest is also being refocused on interventions that preferentially target the inducible 

hexokinase-2 isoform rather than the ubiquitous and constitutively expressed hexokinase-1 

(REFS 145–147). Hexokinases control the first committed step of glucose metabolism. 

Expression of hexokinase-2 is restricted in normal adult tissues, making it an attractive target 

for selective inhibition, which could be safer than global regulation of glycolysis.

Ligand binding to G-protein-coupled receptors induces dissociation of heterotrimeric G 

proteins, releasing βγ subunits that activate phosphatidylinositol 4,5-bisphosphate 3-kinase 

catalytic subunit-γ isoform (PI3Kγ) to produce large, transient elevations in levels of 

phosphatidylinositol (3,4,5)-trisphosphate (PIP3)22,148. The lipid kinase PI3Kγ integrates 

multiple signals from chemokines, complement fragments, formylated bacterial peptides and 

other stimuli, and is essential for chemokine-induced leukocyte migration in vivo. PI3Kγ is 

the target of considerable pharmacological efforts to treat inflammatory disease149. 

Inhibitors of PI3Kγ have shown therapeutic effects in mouse models of RA and SLE, 

attenuating the migration of neutrophils and lymphocytes, respectively, into inflamed 

tissue149.

The sphingosine kinase pathway is another target24. Fingolimod, when phosphorylated by 

SPK-1, functions as an S1P-receptor agonist and targets four of the five known S1P 

receptors24. Fingolimod interferes with the exit of lymphocytes from lymph nodes — 

attenuating autoimmune disease such as multiple sclerosis — and is under consideration for 

treatment of other inflammatory and allergic conditions150.

As high proliferation rates entail a considerable demand for the generation of novel 

phospholipid bilayers, targeting de novo lipogenesis151 or glutaminolysis152 also constitutes 

a rational approach for metabolic targeting. Several enzymes involved in these molecular 

circuitries, including fatty acid synthase153, ATP citrate lyase154, acetyl-coenzyme A 

carboxylases155, choline kinase156,157, monoglyceride lipase158 and 3-hydroxy-3-

methylglutaryl coenzyme A reductase159, have been ascribed critical roles in oncogenesis or 

tumour progression in vivo, and might be reasonable therapeutic targets in rheumatic 

disease.

In addition to assessing whether therapies ultimately cause changes in metabolic pathways, 

metabolomics analysis can also measure drug pharmacokinetics160. Pharmacometabolomics 

has the capability to monitor how patients respond metabolically to drugs, and to determine 

whether the metabolic response is correlated with inflammation, adverse events and 

response.

 Future directions

The science of metabolomics in the context of disease is young, but has seen rapid and 

impressive progress. New technologies are now being developed to complement existing 

methods; for example, metabolomic genome-wide association studies (mGWAS) integrate 

multiple layers of molecular data161–164. Metabolomic data can be quantitative, and 
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mGWAS can uncover genetic variants that affect metabolite levels. Associations between 

single-nucleotide polymorphisms and specific metabolites indicate the biological 

mechanisms that underlie the genetic changes.

The influence of the microbiome on the metabolome is an area of increasing interest165–167. 

Perturbations of intestinal microbiota composition or function could have important roles in 

the development of diseases associated with altered metabolism, because intestinal 

microbiota can regulate the absorption, metabolism and storage of host metabolites. 

Dysbiosis of intestinal microbiota can directly perturb host immune regulatory networks. For 

example, butyrate, acetate and propionate — the main bacterially derived short-chain fatty 

acids (metabolites from bacterial fermentation of dietary fibre, highly enriched in the colon) 

— control differentiation and function of mucosal TREG cells168. These relationships 

suggest that intestinal microbial function should be incorporated into an in-depth study of 

the prominent disorders of metabolism and the immune system in rheumatic diseases, and 

the possibility of treatment by regulation of the intestinal microbiota.

 Conclusions

Metabolomics encompasses a powerful suite of technologies that enable the analysis of a 

wide range of small molecules that are involved in many aspects of physiology and 

pathology. Characterization of the differences in the metabolome between healthy and 

diseased states can improve our understanding of the mechanisms underlying pathological 

processes. As technology advances and our understanding of metabolic perturbations in 

rheumatic disease grows, new therapeutic targets and diagnostic tests will undoubtedly 

emerge. This process will require collaborations between clinicians, laboratory scientists and 

bioinformaticians. Ultimately, scientific advances must be translated into easily accessible, 

structured data that can be used by clinicians at the point-of-care for decision-making in the 

management of patients.
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Refer to Web version on PubMed Central for supplementary material.
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Key points

• Along with other ‘omics’ approaches, metabolomics — the 

comprehensive analysis of all metabolites in a system — represents a 

change from the traditional analysis of single genes, transcripts, 

proteins or metabolites

• Improvements in analytical techniques and pattern-recognition methods 

have led to a rise in the numbers of untargeted and targeted metabolic 

studies that are being performed

• Understanding metabolic changes that are specifically associated with 

the pathogenesis of autoimmune diseases should lead to novel insights 

into disease mechanisms and to new strategies for treatment of 

rheumatic diseases

• The feasibility of metabolomics for biomarker discovery in 

rheumatology is supported by the assumption that metabolites are 

important players in biological systems and that diseases cause 

disruption of metabolic pathways
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Box 1

Definitions in metabolomics

Metabolism

The sum total of all chemical reactions that occur in the cell. Metabolic processes are 

usually classified as catabolic, which usually release energy, and anabolic, which build 

new molecules and usually require energy.

Metabolites

Small biological compounds produced during metabolic activity, usually with a 

molecular mass below 1,500 Da. Typical metabolites include amino acids, carbohydrates, 

organic acids, lipids and nucleotides.

Metabolome

The entire set of metabolites present in a given compartment — such as a cell, tissue or 

body fluid — under a particular set of physiological conditions. The metabolome can 

include many heterogeneous molecules at a range of concentrations, including 

endogenous and exogenous metabolites. The cell metabolome can be divided into 

intracellular and extracellular metabolites, which constitute the endometabolome and 

exometabolome, respectively.

Metabolomics

A “comprehensive analysis in which all the metabolites of a biological system are 

identified and quantified” (REF. 4). As with other ‘omics’ techniques, metabolomics is an 

untargeted and comprehensive analysis.

Metabolic profiling (metabolite target analysis)

The identification and quantification of a predefined subset of metabolites associated 

with a specific metabolic pathway. Sometimes called targeted metabolomics169, a 

misnomer as metabolomics implies an untargeted approach.

Metabolic fingerprinting

A rapid, high-throughput metabolite analysis of biological samples (cells, tissue, blood or 

urine) to determine the health status of an organism.

Metabolic footprinting

The analysis of metabolites excreted and secreted by prokaryotic and eukaryotic cells 

(the exometabolome).

Lipidomics

A subdivision of metabolomics, defined as “the full characterization of lipid molecular 

species and of their biological roles with respect to expression of proteins involved in 

lipid metabolism and function, including gene regulation” (REF. 170).

Stable-isotope-assisted metabolomics
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Metabolomic analysis following stable isotope incorporation, as in metabolic-flux-

balance analysis using 13C tracer.
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Box 2

Pros and cons of current metabolomics technologies

Pros of gas-chromatography mass spectrometry (GC–MS)

• Detection of subpicomolar concentrations possible; can detect ≥200 

metabolites per sample

• Good relative quantification

• Moderate mass accuracy (<50 ppm), improved by GC coupled to 

Orbitrap MS

• Minimal sample requirement

• Analysis of volatile compounds does not require derivatization

• Benchtop instrumentation

• Relatively inexpensive instrumentation (<USD$100,000)

• Moderate instrumentation warranty cost

Cons of GC–MS

• Injected sample cannot be recovered

• Derivatization or extensive sample preparation required for nonvolatile 

metabolites

• Derivatization procedures vary and can lead to formation of several 

products from a single metabolite

• Stereoisomers not identified

Pros of liquid-chromatography mass spectrometry (LC–MS)

• Detection of subfemtomolar concentrations possible; can detect ≥1,000 

metabolites per sample

• Outstanding mass accuracy (<1–3 ppm)

• Detects wide size range of metabolites (≥50 Da)

• Minimal sample requirement

• Good relative quantification

• Increasing number of benchtop instruments becoming available

• Metabolite imaging possible with matrix-assisted laser desorption 

ionization (MALDI)

Cons of LC–MS

• Sample unrecoverable

• Molecular ionization susceptible to sample–matrix effects
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• Requires isotopically enriched internal standards for absolute 

quantification

• Stereoisomers not identified

• Moderately expensive instrumentation (>$300,000–$1,000,000)

Pros of NMR

• Unbiased

• Nondestructive

• Definitive chemical structural identification

• Provides relative and absolute quantification

• Rapid acquisition of 1D1H spectra (1–5 min)

• Minimal sample preparation

• No chromatographic separation required

• Outstanding reproducibility (>98%)

• Metabolites detected in solution, semi-solid and solid samples

• Stereoisomers can be identified

• Can be applied in vivo

Disadvantages of NMR

• Nanomolar detection range of ~50–200 metabolites per sample

• Slow acquisition for 2D spectra (≥4 h)

• Majority of NMR probes require large sample volume (160–600 μl)

• High magnetic-field precludes benchtop instrumentation

• Expensive instrumentation (>$500,000–$2,000,000)
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Box 3

Metabolic changes in activated cells

Activated13,105,106,171 or malignant172–175 cells shift from oxidative phosphorylation to 

glycolysis for ATP generation (FIG. 2). Although the glycolytic pathway is an inefficient 

way to produce ATP from glucose, the glycolytic intermediates can be used as precursors 

for nucleotide, amino acid, phospholipid and triglyceride biosynthesis. Nonmetabolic 

functions of glycolytic enzymes have been described176. Glycolytic products such as 

lactic acid14 and succinate17 can function as signalling molecules to control 

transcriptional responses.

The PPP is required for the synthesis of ribonucleotides and is a major source of 

NADPH177, which is required for and consumed during fatty acid synthesis and the 

scavenging reactive oxygen species. The PPP enables glycolytic cells to meet their 

anabolic demands and combat oxidative stress. A glycolysis–PPP axis is also involved in 

M1 macrophage polarization178.

Fatty acid metabolism is increased in tumour cells, generating novel phospholipid 

bilayers151. Enzymes that catalyse the generation of fatty acids, such as fatty acid 

synthase, or phospholipids, such as choline kinase, have important roles in lipid 

biosynthesis and can alter lipid compositions in cellular membranes in tumours as well as 

regulate cellular functions23. The development and function of different T cell subsets are 

closely linked to the predominant usage of fatty acid synthesis rather than fatty acid 

oxidation179. Short-chain fatty acids, such as butyrate and propionate, which are 

recognized mainly by G protein-coupled receptors such as GPR43 regulate the induction 

and homeostasis of T regulatory (TREG) cells168.

Cell activation increases rates of amino acid uptake by increasing expression of key 

amino acid transporters180. Branched-chain and aromatic amino acids, such as leucine, 

isoleucine, tryptophan and phenylalanine are used for de novo protein synthesis. 

Glutamine can be metabolized to lactate via glutaminolysis to support fatty acid 

synthesis181.
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Figure 1. Overview of major metabolic pathways
Cellular metabolic pathways include synthesis of lipids, glycogen and nucleotides, 

glycolysis (the breakdown of carbohydrates and sugars to produce ATP and pyruvic acid) 

and the hexokinase pathway, which gives rise to substrates for the synthesis of glycoproteins 

and glycolipids. Mitochondrial oxidative phosphorylation (the Krebs cycle) is the sequence 

of reactions by which most living cells generate energy during the process of aerobic 

respiration. Glutaminolysis occurs partly in the mitochondrion and partly in the cytosol, and 

is an important energy source in tumour cells. CoA, coenzyme A; CTP, citrate transport 

protein; MPC, mitochondrial pyruvate carrier; PRPP, phosphoribosyl pyrophosphate; UDP, 

uridine diphosphate.
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Figure 2. Metabolic alterations and signalling pathways involved in activated cells
Activated cells take up large amounts of glucose and glutamine and divert them to the 

pentose-phosphate pathway (PPP) and lipid biosynthesis, respectively. Coupled to an 

increased uptake of glycine, serine and branched chain amino acids (leucine, isoleucine and 

valine), which are required for protein synthesis, this diversion generates sufficient building 

blocks (nucleic acids, proteins and membranes) for proliferation. The increased generation 

of reactive oxygen species requires appropriate levels of antioxidants, most of which 

originate from the PPP. These metabolic changes generate bioactive metabolites that are 

secreted, and that also contribute to cell activation. Numerous signalling pathways are 

involved in metabolic changes in activated cells182,183. 3-PG, 3-phosphoglycerate; A-KG, α-

ketoglutarate; AKT, protein kinase B; AMPK, AMP-activated protein kinase; CoA, 

coenzyme A; G6P, glucose-6-phosphate; HIF-1, hypoxia-inducible factor 1; L-AA, L-amino 

acid; LPA, lysophosphatidic acid; Myc, Myc proto-oncogene protein; p53, cellular tumour 

antigen p53; PI3K, phosphatidylinositol 4,5-bisphosphate 3-kinase; R5P, ribose-5-

phosphate; S1P, sphingosine-1-phosphate; SREBP, sterol regulatory element-binding 

protein.
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Table 1

Biological effects of key metabolites

Metabolite Molecular effect Examples of responsive cells Cell response

Organic compounds

Lactate HIF-1α stabilization • Tumour cells

• DCs

• Angiogenic 
signalling

• Differentiation 
to IL-10-
producing 
DCs

Kynurenine ND T cells TH2 cell polarization

Succinate HIF-1α stabilization Macrophages IL-1β expression

Acetyl coenzyme A Histone-acetyltransferase activity Tumour cells Changes in energy homeostasis

Amino acids or peptides

Branched amino acids mTOR signalling Macrophages IL-1β expression

Glutathione Antioxidant activity T cells T-cell proliferation

Lipids

PIP3 Protein kinase B (AKT) signalling Fibroblasts Cell growth, proliferation and 
migration

Ceramides ND Tumour cells Apoptosis

Sphingosine-1-phosphate MAPK/PLC/PI3K signalling T cells Migration

LPA G-protein-coupled receptor signalling Fibroblasts, T cells Proliferation, migration

Butyrate Deacetylase inhibition DCs and T cells Induction of tolerogenic DCs, T-cell 
apoptosis

Oxysterols Pro-inflammatory gene regulation DCs Enhanced DC immunogenicity

Nucleotides

ATP ND DCs Induction of tolerogenic DCs

DCs, dendritic cells; HIF-1α, hypoxia-inducible factor 1α; LPA, lysophosphatidic acid; MAPK, mitogen-activated protein kinase; mTOR, 
mammalian target of rapamycin; ND, not determined; PI3K, phosphatidylinositol 4,5-bisphosphate 3-kinase; PIP3, phosphatidylinositol (3,4,5)-
trisphosphate; PLC, phospholipase C; TH2, type 2 T helper.
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