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Abstract

The RNA polymerase II (pol II) enzyme transcribes all protein-coding and most non-coding RNA 

genes and is globally regulated by Mediator, a large, conformationally flexible protein complex 

with variable subunit composition (for example, a four-subunit CDK8 module can reversibly 

associate). These biochemical characteristics are fundamentally important for Mediator's ability to 

control various processes important for transcription, including organization of chromatin 

architecture and regulation of pol II pre-initiation, initiation, re-initiation, pausing, and elongation. 

Although Mediator exists in all eukaryotes, a variety of Mediator functions appear to be specific to 

metazoans, indicative of more diverse regulatory requirements.

 Introduction

Eukaryotic transcription is governed, in part, by DNA-binding transcription factors (TFs), 

which assemble at promoter and enhancer sequences throughout the genome. A 

characteristic feature of promoters and enhancers is the presence of sequence motifs that 

allow multiple TFs to bind across the same region. In addition to sequence-specific DNA-

binding domains, TFs typically possess separate activation domains that interact with 

transcription regulators. The Mediator complex, which is comprised of 26 subunits in 

mammals (up to 21 subunits in yeast; see Box 1), is a general target of TF activation 

domains; moreover, because different TFs bind to different Mediator subunits, multiple TFs 

might bind Mediator at the same time.

A basic function of Mediator is to communicate regulatory signals from DNA-bound TFs 

directly to the RNA polymerase II (pol II) enzyme. The precise mechanisms by which 

Mediator regulates pol II activity remain poorly understood, but clearly involve extensive 

protein-protein interactions between Mediator, pol II, and other general and gene-specific 

transcription regulatory factors. Mediator is also critical for the organization of genomic 

DNA into topological domains, including gene loops, which appear to be fundamental 

structures that enable the coordinated regulation of cellular transcription1. The large size of 

Mediator likely facilitates these diverse functional interactions.

Indicative of its functional versatility, Mediator is implicated in regulating at least some 

aspect of many fundamental processes involved in transcription, including transcription 

initiation, transcription elongation, chromatin architecture and enhancer-promoter gene 
looping. Throughout this Review we will emphasize the role of Mediator in some of these 
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processes, and we direct readers to other recent reviews that address additional aspects of 

Mediator structure and function2,3, or Mediator roles in selected human diseases4-6.

 Mediator composition and structure

A fundamentally important characteristic of Mediator is that its subunit composition can 

change; subunits can be lost or added to affect the biological function of the complex. Little 

is known about how subunit exchange is regulated and this remains an area of great interest 

and importance. Mass spectrometry (MS) analyses have indicated that although most 

Mediator subunits are present in similar numbers in human and yeast cells, select subunits 

are markedly over- or under-represented7. Furthermore, several labs have isolated 

mammalian Mediator complexes lacking one or more of the 26 core Mediator subunits8,9. 

These results suggest that a subset of endogenous Mediator complexes may lack specific 

subunits. Mediator complexes that lack specific subunits are incapable of transducing 

activation signals from TFs that would usually bind the missing subunit. For example, the 

thyroid hormone receptor (TR) binds the MED1 subunit and the Elk-1 TF binds the MED23 

subunit10,11. In MED1 knockout murine embryonic fibroblasts (MEFs), activation of TR 

target genes was inhibited12; similarly, Elk-1 was unable to activate its target genes in 

MED23 knockout murine embryonic stem cells11. Importantly, however, the Mediator 

complexes lacking MED1 or MED23 could activate transcription in response to TFs that 

bind to other Mediator subunits11,12.

These examples illustrate that different transcription factors — and thus the signaling 

pathways that activate them — rely on different Mediator subunits to orchestrate their 

transcriptional responses. In support of this, it appears that the subunit composition of 

Mediator is simplified in differentiated cells13,14. Whereas the phenomenon of simplified 

subunit composition in differentiated cells is best defined for the multi-subunit transcription 

factor IID (TFIID) complex15, smaller Mediator complexes with fewer than the typical 26 

subunits would also likely adopt more specialized functions. This could help enforce the 

expression of a restricted set of genes in differentiated cells; by contrast, proliferating cells, 

including cancer cells or stem cells, generally express all 26 core Mediator subunits in 

addition to the CDK8 module subunits (see below).

 CDK8-Mediator

The most well-characterized example of Mediator subunit exchange is the reversible 

association, with Mediator, of the four-subunit CDK8 module. The CDK8 module can 

stably associate with Mediator, which results in a biochemically distinct pool of CDK8-
Mediator complexes in cells16,17. Notably, the MED26 subunit is not present in CDK8-

Mediator, resulting in a 29-subunit CDK8-Mediator complex. Upon association with 

Mediator, the CDK8 module dramatically alters Mediator structure and function18,19. The 

molecular mechanisms underlying the reversible CDK8 module-Mediator association are 

incompletely understood, but recent studies indicate that MED13 phosphorylation, 

ubiquitylation, and protein turnover are involved20. Targeted degradation of MED13 is 

expected to affect CDK8 module association with Mediator, as MED13 was shown to 

directly link the CDK8 module to Mediator in both yeast and humans18,19.
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CDK8 module subunits have been implicated in a growing number of cancers and 

developmental diseases (Box 2)21-24. Whereas some mechanistic details have been 

delineated25,26, much remains to be discovered regarding the altered function of pathogenic 

mutations in CDK8 module subunits. The general lack of understanding stems from 

insufficient structural data, and the fact that connections between CDK8 module subunits 

and human diseases have been made relatively recently. In addition, CDK8 appears to 

function in context-specific ways, such that its biological function may vary in different cell 

types or in response to distinct stimuli. For example, in HCT116 cells, CDK8 regulates 

different genes during hypoxia or in response to serum27,28.

As a kinase that reversibly associates with Mediator, CDK8 seems poised to broadly regulate 

gene expression. Although few CDK8 kinase targets have been identified, DNA-binding TFs 

represent common targets in yeast and human cells, suggesting that CDK8 may serve as a 

general regulator of TF function. Phosphorylation by yeast or human CDK8 appears to 

regulate TF activity and/or target TFs for proteasomal degradation29,30. As examples, Cdk8 

phosphorylation of Gal4 or Sip4 activates these yeast TFs31,32, whereas CDK8 

phosphorylation of the human TFs SREBP-1c or E2F1 appears to repress their activity33,34.

Another important consideration is the presence of CDK19, MED12L, and MED13L, 

paralogs of CDK8, MED12, and MED13, that have emerged in vertebrate organisms. Little 

is known about the biological roles of these paralogs, but they appear to assemble in a 

mutually exclusive fashion35. Specifically, mass spectrometry (MS) analyses have revealed 

that MED12 and MED12L will not associate in the same kinase module, nor will MED13 

and MED13L or CDK8 and CDK19. Whereas CDK19, MED12L, and MED13L have been 

linked to neuronal and developmental disorders36,37, their basic biological importance 

relative to CDK8, MED12, or MED13 remains unclear.

 Mediator structural dynamics

Mediator is not only dynamic in its subunit composition, it is also structurally dynamic. An 

abundance of computationally predicted intrinsically disordered regions (IDRs) are 

observed in both yeast and human Mediator subunit sequences38, and a high degree of 

structural flexibility is evident based upon electron microscopy (EM) analyses of 

Mediator17,39,40. In addition, the structural state of Mediator can shift dramatically upon 

binding other proteins or protein complexes. Examples of this are shown in Figure 1. In each 

case, Mediator structural shifts correlate with changes in Mediator function. Structural shifts 

that occur upon TF-Mediator binding (FIG. 1a), which appear to propagate throughout the 

entire Mediator complex17, correlate with activation of pol II transcription41. Large-scale 

structural shifts also occur upon Mediator binding to pol II (FIG. 1b) or the CDK8 module 

(FIG. 1c); these structural changes may ensure that pol II and CDK8 module binding to 

Mediator is mutually exclusive. Numerous structural, functional, and biochemical assays 

have demonstrated that pol II-Mediator binding precludes association of the CDK8 module 

with Mediator and, conversely, that the CDK8-Mediator complex does not associate with pol 

II. For instance, Mediator complexes bound to the pol II CTD lack any detectable CDK8 

module subunits42, and proteomic data for CDK8-Mediator yield no detectable co-purifying 

pol II subunits43. Because existing structural data for the large assemblies depicted in Figure 
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1 are of low resolution, the precise nature of the structural shifts remain unknown. It is not 

clear how many subunits are involved in a given TF-Mediator structural shift, for example, 

or which subunit-subunit interfaces are changed. TF-induced structural changes appear to be 

a conserved feature of Mediator44 and the general conservation of IDRs38 and 

conformational flexibility from yeast to humans suggests that structural plasticity is a 

fundamental aspect of Mediator's cellular functions.

Indicative of its structural complexity, recent EM studies have completely redefined previous 

architectural models of yeast Mediator, which assigned subunits to co-called head, middle, 

and tail sections of the complex. A key feature of the more recent studies was the 

implementation of EM labeling strategies to identify the location of select subunits for the 

first time. The resulting models, aided by crystal structure docking of individual Mediator 

subunits, allowed more accurate delineation of the head, middle and tail modules44,45. 

Whereas previous structural models placed tail domain subunits away from a pol II–

Mediator binding site46, the new models position the tail subunits adjacent to this site. These 

results clarify some confounding issues with the previous models, including how tail module 

subunits could influence pol II–Mediator interactions47 and assembly of the pre-initiation 

complex (PIC; Box 3)48-51, and how CDK8 module interaction with head module subunits 

were observed in yeast two-hybrid screens52.

Whether the subunit organization of mammalian Mediator complexes is similar to yeast is 

complicated by the fact that humans possess additional Mediator subunits; however, recent 

success with reconstitution of a partial human Mediator complex (15 subunits) has provided 

the most information to date about this basic question53. Crosslinking-mass spectrometry 

studies of this reconstituted 15-subunit Mediator complex showed similarities and 

differences between yeast and human Mediator in terms of overall subunit organization53. 

Because existing subunit-subunit interaction data for yeast and human Mediator (e.g. via 

crystal structures or crosslinking-mass spectrometry) have, understandably, involved partial 

assemblies53-57, it remains to be determined whether potential differences in subunit 

organization will persist upon comparison of fully assembled complexes. These questions 

should be answered in the next several years.

 Mediator roles in pol II transcription

Mediator is generally required for PIC assembly (Box 3), as revealed by a host of 

biochemical, cellular, and genetic studies in human cells and model organisms. In 

agreement, structural studies have revealed that Mediator makes extensive contacts with the 

pol II enzyme39,58,59, which serves as a central scaffold around which the rest of the PIC 

assembles. Mediator is also a general target for DNA-binding TFs, invoking a “molecular 

bridge” model in which Mediator integrates and communicates regulatory signals from 

DNA-binding TFs directly to the pol II enzyme and the rest of the PIC. This central and 

fundamental role for Mediator is consistent with its global requirement for pol II 

transcription60,61.
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 PIC assembly

For gene-specific transcription, that is, regulated transcription, pol II must be recruited to 

specific sites on the genome. This is generally controlled by sequence-specific, DNA-

binding TFs. Although TFs do not directly bind pol II, one mechanism by which they can 

promote pol II recruitment is by binding to the Mediator complex. Mediator enables pol II 

recruitment via interaction with the C-terminal domain (CTD) of the pol II RPB1 

subunit42,62-64. The large size of Mediator likely promotes stable PIC formation by directly 

interacting with multiple PIC factors (FIG. 2a). Numerous labs have shown cooperative and 

even synergistic functions between Mediator and TFIID during PIC assembly and 

transcription activation65-69; moreover, Mediator helps regulate the recruitment and/or the 

activity of the PIC components TFIIA, TFIIB, TFIIE, and TFIIF, within promoter-bound 

PICs70-72. Mediator also helps recruit the multi-subunit TFIIH complex to the PIC, likely via 

an interaction with the MED11 subunit73,74.

An additional role for Mediator in PIC assembly appears to involve pol II complexes that 

contain Gdown1, which is now considered to be a 13th subunit of pol II, called POLR2M. 

Gdown1/POLR2M was identified as a factor that repressed transcription in the absence of 

Mediator in vitro75. Later work has shown that POLR2M affects PIC assembly by inhibiting 

TFIIF binding to pol II72,76. In fact, structural and biochemical data indicate that binding of 

TFIIF and POLR2M to the free pol II enzyme is mutually exclusive72,77. In the presence of 

Mediator, however, it appears that TFIIF can associate with pol II complexes containing 

POLR2M and this, in turn, may promote formation of active PICs72. The central role of 

Mediator in regulating POLR2M and TFIIF interactions with pol II may also have important 

implications in pol II pausing and elongation76, as described below.

 Pol II initiation

Following PIC assembly and the formation of the open complex, pol II must break contacts 

with Mediator and the PIC to leave the promoter and transition to productive elongation. 

Although many mechanistic details remain to be discovered, phosphorylation of the CTD of 

pol II plays a key role in disrupting the Mediator–pol II interaction (FIG. 2a)78. In particular, 

the pol II CTD is phosphorylated by TFIIH (via its CDK7 kinase subunit), and this is 

accompanied by pol II (and thus transcription) initiation79,80. The ability of TFIIH to 

phosphorylate the pol II CTD is dependent on Mediator41,62,81,82, but it is unknown whether 

Mediator regulates other enzymatic functions within TFIIH. It also remains unknown how 

many CTD repeats must be phosphorylated to sufficiently disrupt Mediator–pol II binding 

to enable pol II to escape from the promoter. Recent results in yeast have shown that TFIIH-

dependent pol II CTD phosphorylation contributes to, but is not required for, the disruption 

of Mediator–pol II contacts at the promoter83,84. Whereas promoter-proximal paused pol II 

does not appear to be a common regulatory intermediate in yeast85, these and other86 

findings suggest a conserved role for Mediator in regulation of pol II promoter escape.

 Pol II pausing and pol II elongation

In metazoans, the pol II enzyme can pause after transcribing 30 – 60 nucleotides87,88; these 

“paused” pol II complexes are widely observed at promoter-proximal sites throughout the 

genome, which establishes paused pol II complexes as common regulatory 
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intermediates89-91. Although Mediator appears to regulate pol II pausing and/or pause 

release, the molecular mechanisms remain unclear41,92-94. For example, it is not known 

whether Mediator remains bound to paused pol II or whether paused pol II complexes 

dissociate from Mediator (FIG. 2b); if Mediator-pol II contacts are broken during early 

initiation and pausing stages, Mediator-dependent regulation of pol II pausing or pause 

release would require association with intermediary factors. A growing set of proteins and 

protein complexes are known to regulate pol II pausing or elongation in metazoans95. 

Among these, many are known to physically or functionally interact with Mediator, 

including Gdown1/POLR2M and the super elongation complex (SEC).

Whereas Mediator has been shown to regulate PIC assembly in the presence of POLR2M 

(see above), biochemical, gene expression, and ChIP-Seq data have implicated Mediator in 

regulating potential POLR2M functions in pol II pausing and/or elongation as well72,76. In 
vitro transcription assays indicate that POLR2M stabilizes pol II pausing, at least in part, 

through blocking pause termination by TTF276. Furthermore, POLR2M co-localized with 

paused pol II across the genome, and POLR2M knockdown caused an increase in pol II 

density downstream of pause sites76. Because Mediator appears to be essential for activating 

PICs that contain POLR2M72,75, these data suggest additional roles for Mediator in the 

regulation of pol II pausing and elongation.

The Super Elongation Complex (SEC)96, in various forms97, appears to be a general 

regulator of pol II elongation and contains factors such as P-TEFb, AFF4, and ELL. The 

metazoan-specific MED26 subunit of Mediator has been shown to interact with the SEC to 

facilitate pol II elongation at a subset of genes68. Interestingly, a region on MED26 to which 

the SEC binds was also shown to bind TFIID, suggesting that MED26 acts as a switch, 

perhaps initially binding TFIID to promote PIC assembly and then, in response to an 

activating signal, binding the SEC to control elongation68. Another mechanistic link has 

been observed between the SEC and CDK8-Mediator complexes (FIG. 2b). SEC subunits, 

including CDK9, CCNT1, and AFF4, have been shown to interact with CDK8-Mediator 

complexes43, and knockdown of CDK8 negatively affects transcription elongation and the 

recruitment of SEC factors at serum response promoters27. Similarly, pol II elongation and 

SEC recruitment at hypoxia-inducible genes is highly sensitive to CDK8 protein levels28. 

These findings suggest that CDK8-Mediator stimulates pol II elongation. Because the 

association of the CDK8 module with Mediator is mutually exclusive with pol II, CDK8-

Mediator regulation of pol II elongation likely occurs after pol II–Mediator interactions are 

disrupted. Under these circumstances, the SEC may function as an intermediary factor (FIG. 

2b). Interestingly, MED26 and the CDK8 module are rarely associated in the same Mediator 

complex43,98 and it will be interesting to determine if MED26 and CDK8-Mediator regulate 

the occupancy or activity of the SEC across the genome. Their varied association with 

Mediator suggests that MED26 and CDK8-Mediator regulate SEC function in 

mechanistically distinct ways.

Interestingly, the functional cooperativity between Mediator and POLR2M or the SEC have 

been proposed to involve a structural remodeling or switching mechanism68,76. Consistent 

with these proposals are mechanisms that involve structural shifts in Mediator that are 

induced by TF-Mediator binding. TF-Mediator binding triggers structural changes at the pol 
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II–Mediator interaction site that correlate with activation of pol II at the promoter2. In 

agreement, numerous laboratories have documented that the Mediator-dependent activation 

of pol II elongation coincides with the binding of TFs, such as HSF1, Elk-1, and p53, to 

promoters41,99,100.

Much remains to be discovered regarding the mechanisms by which Mediator helps regulate 

pol II pausing and elongation. In addition to POLR2M and the SEC, other factors involved 

in regulating pol II pausing and elongation have been shown to have mechanistic links to 

Mediator, including cohesin101,102, ELL3103, TFIIS104-106, and DSIF107. This elaborate and 

expanding network of factors, whose regulatory roles are still emerging, coupled with the 

dynamic and apparently combinatorial nature of the pol II initiation and elongation 

machinery, suggests that delineation of specific mechanistic details will require structural, 

cellular, and biochemical assays, including studies with reconstituted in vitro transcription 

systems.

 Pol II re-initiation

After pol II transcription initiation and promoter escape, another pol II enzyme could bind 

the promoter and initiate another transcript (FIG. 2c). This process, called re-initiation, can 

generate multiple transcripts via the recruitment of additional pol II enzymes. Because a 

sustained transcriptional response likely requires efficient re-initiation, this likely represents 

a key regulatory stage at active genes108. In vitro experiments have demonstrated that 

transcription re-initiation occurs more rapidly than the initial round109 and is facilitated by 

scaffold PIC assemblies that remain following pol II promoter escape110. These scaffold 

assemblies appear to be stabilized by DNA-binding TFs and retain most PIC factors, 

including Mediator, but lack pol II and TFIIF (FIG. 2c).

Although TF turnover via proteasome-mediated degradation represents one simple means to 

regulate transcription re-initiation (that is, additional TFs must then be physically present to 

replace degraded TFs)111, the CDK8 module alone and as part of the CDK8-Mediator 

complex may also play an important role18. ChIP-Seq data suggest the CDK8 module co-

localizes with Mediator across the genome28,102; however, ChIP-reChIP and biochemical 

assays indicate that the association of the CDK8 module with Mediator is transient and 

reversible18,112. In stark contrast to the core Mediator complex, CDK8-Mediator does not 

interact with pol II or the pol II CTD42,43; thus, CDK8 module–Mediator binding will 

prevent pol II from being incorporated into the PIC18,113. In addition, the occupancy of 

CDK8 and TFIIH appears to be mutually exclusive at the HIV-1 promoter, suggesting that 

CDK8-Mediator disrupts Mediator-TFIIH interactions as well114. Following transcription 

initiation and pol II promoter escape, binding of the CDK8 module to Mediator would 

prevent a second pol II enzyme from immediately re-engaging the promoter (FIG. 2b). 

Disruption of CDK8 module–Mediator interactions would then be required to enable the 

PIC to fully re-assemble for the re-initiation of transcription (FIG. 2c).

Because the CDK8 module can negatively regulate Mediator–pol II interactions, it is 

fundamentally important to understand how CDK8 module–Mediator binding is regulated. 

PARP-1 and the FBW7 ubiquitin ligase have been shown to regulate the CDK8 module–

Mediator interaction in human cells20,115. Whereas the PARP-1 protein was shown to 
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promote CDK8 module release from Mediator, this did not depend upon its catalytic 

activity115. By contrast, ubiquitylation of MED13 by FBW7 (which required binding a 

metazoan-specific phospho-degron motif in MED13) promoted MED13 degradation by the 

proteasome20. Because MED13 directly links the CDK8 module to Mediator18,19, inhibition 

of MED13 degradation resulted in an increased level of CDK8-Mediator in cells20.

 Mediator and chromatin architecture

In eukaryotes, genomic DNA is wrapped around histone proteins and this “packaged” 

genomic DNA is called chromatin. Chromatin provides a general barrier to gene expression; 

compared with unobstructed “naked” DNA, histone-bound DNA (that is, nucleosomal 

DNA), can block PIC assembly to suppress transcription. A basic role for Mediator may be 

as simple as maintaining nucleosome free regions at key regulatory loci, as demonstrated 

recently in yeast. Promoter occupancy of Mediator correlated with PIC assembly, which 

appeared to block nucleosome assembly116. This model is analogous to results in D. 
melanogaster, in which paused promoter-proximal pol II complexes helped maintain 

nucleosome-free regions to promote transcription activation117. Mediator also interacts with 

the SWI/SNF and CHD1 chromatin remodeling complexes118-120 and appears to contribute 

to nucleosome displacement during transcription activation in both yeast and humans92,106.

 DNA looping

In all domains of life, the 3D organization of the genome plays basic roles in coordinating 

gene expression programs121. A common theme is the formation of loops that enable 

interaction between linearly separated DNA sequences. The architectural constraints and 

topological complexity appears to have increased substantially from bacteria to yeast and 

from yeast to mammals122. A general trend toward increasingly larger loops in more 

complex organisms (that is, loops with a greater number of DNA bases spanning the 

interacting sequences) has been observed, including interactions among sequence elements 

on different chromosomes in mammalian cells. Gene loops may represent a predominant 

regulatory mechanism in metazoans1,123, and 3D chromatin organization may functionally 

replace operons to facilitate the coordinated regulation of sets of genes that are not adjacent 

along a chromosome124.

Although Mediator is not required for the formation of gene loops per se — looping can be 

mediated by lacR in bacteria, which lack a recognizable Mediator complex — it plays a 

central role in formation and/or stabilization of looped DNA structures in eukaryotes (FIG. 

3). In mammalian cells, long-range looping interactions between enhancer and promoter 

sequences appear to be important for driving high-level and cell type-specific gene 

expression125-127. Precisely how these loops are formed and stabilized remains uncertain, 

but Mediator, in conjunction with other factors, appears to play important roles102,128-130. 

Whereas yeast genes are not regulated via long-distance enhancer-promoter interactions122, 

it is notable that Sin4 mutants (the yeast ortholog of Med16) were identified in S. cerevisiae 
that enabled upstream activating sequences to activate transcription at longer distances from 

the promoter than normally observed in yeast (normally only 100 – 200 base pairs from the 

promoter TATA sequence)131. Furthermore, Mediator has been implicated in formation of 
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looped DNA structures between the 5′ and 3′-ends of yeast genes132. These findings suggest 

an ancient origin for Mediator in long-range interactions with pol II.

Non-coding RNAs (ncRNAs) are key regulators of gene expression patterns and play 

important roles throughout human development. Mediator's large size and extensive surface 

area may allow it to interact with a diverse set of ncRNAs. In fact, some of the biological 

functions of ncRNAs overlap with known functions of the Mediator complex, such as their 

association with enhancer regions and their ability to regulate chromatin architecture. Recent 

studies suggest that these shared functions may result, in part, from functional cooperation 

between Mediator and ncRNAs. Indeed, a type of long intergenic ncRNA, called activator 

RNAs (aRNAs), increases the transcription of neighboring genes133. These aRNAs were 

shown to interact with Mediator, potentially via the MED12 subunit, and this interaction 

correlated with transcription activation and gene looping between the aRNA locus and target 

promoters (FIG. 3)134. Significantly, MED12 mutants that are linked to developmental 

disorders showed a reduced ability to form gene loops and associate with aRNAs134. 

Because MED12 is part of the CDK8 module, potential ncRNA–MED12 interactions may 

help tether the CDK8 module near the promoter. This could facilitate the reversible (on/off) 

CDK8 module–Mediator interaction at the promoter, thereby regulating pol II recruitment18 

and/or pol II elongation27,28.

The transcription of enhancer sequences, which appears to be common in mammals, 

correlates with enhancer-promoter looping and gene activation1,127,135. In fact, enhancer 

transcription is considered to be an indicator of enhancer activity; that is, whether the 

enhancer will activate transcription at a distal promoter136-138. Although the study of 

enhancer RNAs (a.k.a. eRNAs) is in its infancy, several groups have shown that Mediator is 

required for eRNA-dependent enhancer-promoter looping and gene activation, suggesting a 

functional synergy analogous to aRNAs139,140. Whereas the biogenesis of aRNAs and 

eRNAs may be distinct137, these findings broadly implicate Mediator-ncRNA interactions in 

the 3D organization of mammalian genomes. Many important questions remain, such as 

whether Mediator-ncRNA interactions are specific (that is, if select ncRNA sequences or 

structures target a specific Mediator subunit) or general (that is, if interactions are RNA 

sequence-independent), and whether or how ncRNA-Mediator binding might affect 

Mediator structure or function.

Mediator interactions with the pol II CTD may also help stabilize enhancer-promoter gene 

loops in mammals. Whereas the pol II CTD binds both yeast and mammalian Mediator 

complexes42,62,64, the length of the CTD has increased from yeast (approximately 26 

repeats, depending on species) to humans (52 repeats). This increase in CTD length 

correlates with an increase in the length of DNA looping interactions. Furthermore, it 

appears that a longer pol II CTD is required for cell viability in mammals compared with 

yeast64,141. Because the pol II CTD serves as a binding platform for RNA processing 

factors79,80, this could reflect the greater extent and diversity of RNA processing events in 

mammalian cells (for example, increased reliance upon splicing, alternate splicing, alternate 

3′-end processing, and so on). Not mutually exclusive is the possibility that an extended 

CTD helps establish long-distance enhancer-promoter gene loops that are prevalent in 

mammalian cells. In fact, it has been demonstrated that pol II CTD truncations 
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disproportionately affect enhancer-driven transcription in mammalian cells, whereas 

transcription directed from promoter-proximal elements was not significantly affected142.

 Heterochromatin

In addition to promoting the formation of looped chromatin architectures, studies in model 

organisms have provided fascinating insight into alternative ways in which Mediator 

regulates chromatin structure. In the yeast S. pombe, Mediator has been linked to 

pericentromeric heterochromatin formation143. These studies suggest that Mediator 

functions by coordinating pol II-dependent ncRNA transcription with the RNAi machinery 

to help form and maintain heterochromatin domains143-145. Similarly, Mediator has been 

implicated in telomeric heterochromatin maintenance in the budding yeast S. cerevisiae. 

Using genetic screens and cell biology techniques, several groups showed that S. cerevisiae 
Mediator associates with telomeric heterochromatin and may play basic roles in regulating 

heterochromatin structure at telomeres, as well as maintaining telomere length146-149. 

Whereas data linking Mediator to similar functions in mammalian cells has been lacking, it 

is notable that the D. melanogaster Med26 protein—but not other Mediator subunits—

localizes to pericentric heterochromatin and appears to interact with the heterochromatin-

associated Hp1 protein150. Furthermore, Med26 co-localized with pericentric 

heterochromatin on D. melanogaster polytene chromosomes, but other Mediator subunits did 

not150; this may reflect functional antagonism between the Hp1 protein and Mediator, as 

seen in human cells151.

 Mediator and Signaling Cascades

Different TFs are activated in response to distinct signaling pathways. For example, the 

STAT family of TFs is activated during infection and p53 is activated after DNA damage. 

Because different TFs activate transcription, in part, by interacting with different Mediator 

subunits, specific subunits must be able to convert the biological input (for example, 

developmental cues) to specific transcriptional outcomes (FIG. 4). In agreement with this, 

Mediator has been described as the endpoint of cell signaling pathways because it represents 

an ultimate, functional target for transcription factors152. Below, we highlight a few 

pathways that help illustrate this concept.

 TGFβ–SMAD signaling

Signaling through the TGFβ receptors ultimately results in the formation of different SMAD 

TF complexes (for example, SMAD1/5 with SMAD4 or SMAD2/3 with SMAD4); these 

form in response to different ligands and control processes such as pluripotency or germ 

layer specificity during development. For instance, TGFβ signaling promotes the formation 

of the SMAD2/3 and SMAD4 complex, whereas BMP signaling promotes formation of the 

SMAD1/5 and SMAD4 complex153. The transcriptional outcomes of TGFβ signaling in 

zebrafish are shut down in the absence of MED15, whereas BMP signaling is unaffected154. 

Subsequent experiments confirmed that SMAD2/3 must interact with MED15 to activate its 

target genes, whereas SMAD1/5 targets a different, unknown Mediator subunit155. The 

MED12 subunit, perhaps as part of the CDK8 module, modulates TGFβ signaling by 

directly binding to the TGFβ Receptor 2 and inhibiting its activity156. Notably, MED12 
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regulates CDK8 kinase activity26,157, and CDK8-dependent phosphorylation of SMAD1 or 

SMAD2/3 fully activates these TFs while also marking them for proteasomal 

degradation29,158. These observations suggest an intricate regulatory feedback involving 

Mediator and TGFβ signaling.

 Wnt–β-Catenin signaling

The Wnt–β-catenin pathway is crucial for the development of a vast array of tissues, and 

misregulation of the pathway has been implicated in a variety of cancers159. From genetic 

studies, CDK8 module subunits MED12 and MED13 have been shown to be essential for 

activation of Wnt signaling in metazoans160-163, and binding assays suggest a direct 

interaction between β-catenin and MED12162. In addition, the CDK8 module increases 

Wnt–β-catenin signaling by phosphorylating E2F1. The phosphorylation of E2F1 

antagonizes its ability to repress the Wnt–β-catenin pathway via β-catenin degradation33,164. 

As one consequence, high levels of CDK8 expression can drive colon cancer progression165. 

The CDK8 module therefore facilitates Wnt–β-catenin signaling by two mechanisms: 

mediating the transcription of β-catenin target genes and repressing an opposing pathway 

through its kinase activity.

 Ras–ERK–MAPK signaling

The Ras–ERK–MAPK pathway helps regulate cell growth, survival, and differentiation via a 

set of TFs (termed the ternary complex factor subfamily) that function in part through their 

interaction with Mediator166. Specifically, MED23 is required for Ras–Erk signaling 

through the TCF factor Elk-1 in mammals11. Certain cell types, however, are able to signal 

through the MAPK pathway without MED23. For instance, while MAPK signaling is almost 

completely dependent on MED23 in murine embryonic stem cells, knocking down MED23 

in MEFs has only a moderate effect. This is explained by the higher expression of an 

alternate ternary complex factor, NET, in MEFs; because NET does not stimulate 

transcription through MED23, MED23 knockout MEFs are still able to respond to MAPK 

signaling99. The Elk-1 and MED23 interaction is necessary for angiogenesis in both MEFs 

and multipotent mesenchymal stem cells167,168. However, in mesenchymal stem cells, 

reducing the levels of MED23 leads to adipogenesis rather than angiogenesis168. This 

difference between Ras–Erk signaling in MEFs and mesenchymal stem cells is also 

attributed to a different ternary complex factor interacting with a Mediator subunit other than 

MED23168. Activation of the Ras–ERK–MAPK pathway additionally leads to MED1 

phosphorylation, which increases its association with core Mediator and enhances 

transcription in response to specific TFs169,170.

 Concluding remarks

Because of its myriad roles in gene expression, Mediator represents fertile ground upon 

which to cultivate a deeper understanding of transcription regulatory mechanisms. Future 

work will no doubt expand upon the themes discussed here and are likely to reveal 

completely new structural or functional roles. Further studies of Mediator-dependent 

regulation of chromatin architecture and enhancer-promoter gene loops should yield 

fundamental insights about Mediator subunit functions and define additional roles in 

Allen and Taatjes Page 11

Nat Rev Mol Cell Biol. Author manuscript; available in PMC 2016 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transcription regulation. New insights may include roles for Mediator in establishing nuclear 

domains, such as transcription factories171, whose functional relevance is congruent with 

increasingly sophisticated chromosome conformation capture experiments that suggest that 

sets of genes can be coordinately regulated via their nuclear co-localization. Interestingly, 

proteins that bind RNA or contain intrinsically disordered regions are capable of forming 

“phase domains” in vitro172,173, which provides a means of spatial segregation in the 

absence of lipid membranes174. Formation of such structures requires RNA, and clusters of 

highly active genes would provide high local concentration of RNA that could help promote 

formation and stabilization of these domains. Mediator binds RNA134 and its large size and 

abundance of intrinsically disordered domains38 suggests that Mediator could help 

demarcate transcription factories by facilitating formation of structural barriers in the 

nucleus. Although this concept remains to be tested, it is consistent with Mediator's known 

roles in 3D chromatin organization at sites of active transcription102,128.

Recent and future insights regarding Mediator structure and function should provide a 

framework for development of methods to manipulate Mediator function for therapeutic 

purposes. Improved structural data, which will increasingly rely upon advances in EM data 

collection and image processing, will enhance our mechanistic understanding of the 

complex and may identify strategies to target Mediator with small molecules. Although 

development of small molecules that bind specific motifs or domains within Mediator would 

represent only a first step toward molecular therapeutics, such reagents would likely serve as 

versatile mechanistic probes to interrogate Mediator function in vitro and in vivo. Finally, 

advances in genome editing tools, combined with increasingly reliable genomics and 

informatics approaches, should continue to transform our ability to study Mediator function 

in cellular and in vivo contexts.
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Box 1

The evolution of Mediator

Consistent with its role as a general transcription factor175, Mediator's emergence in 

eukaryotes coincided with the emergence of other general transcription factors such as 

TFIIH and the TAF subunits of TFIID. Throughout eukaryotic evolution, however, the 

subunit composition, sequences176, and function of Mediator has diversified2. The poor 

sequence conservation between yeast and human Mediator (see Table) may in part reflect 

the high proportion of predicted intrinsically disordered regions (IDRs) within its subunit 

sequences38, which generally tend to diverge more rapidly over time177. As a general 

target of DNA-binding TFs, the divergence of Mediator sequences throughout evolution 

may have been partially driven by the increasing diversity of DNA-binding TFs. An 

intriguing hypothesis is that Mediator may have evolved as a type of cellular defense 

mechanism against “selfish” DNA elements from viruses and transposons178. The 

transcription of these DNA elements is deleterious to the host, and Mediator may help 

ensure that transcription activation utilizes host-specific factors, such as endogenous TFs 

and co-activators. This could be one basis for Mediator's ancient origins in eukaryotes176.

Whereas many basic functions of Mediator are conserved from yeast to humans (for 

example, the ability of Mediator to bind the pol II CTD and TFs, and its requirement for 

pol II transcription genome-wide), Mediator also regulates and interacts with various 

chromatin- or pol II-associated factors that are not present in yeast genomes, such as 

Gdown1/POLR2M72,75, NELF179, and aRNAs134. Mediator also appears to be essential 

for long range enhancer-promoter interactions in mammalian cells102,128, whereas similar 

enhancer-dependent regulatory mechanisms are not observed in yeast122.
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Box 2

Mediator and human disease

The number of diseases linked to Mediator continues to increase, with a growing number 

of mutations linked to developmental diseases and cancer4,5,180. Whereas this 

information is medically important, it can also help delineate cellular functions for 

specific subunits. For example, MED12 mutations found in uterine leiomyomas were 

shown to affect its interaction with the CDK8 module subunit CCNC, which negatively 

affected CDK8 kinase function26.

The biological and structural characteristics of Mediator suggest that it could represent an 

effective therapeutic target181. Because different TFs bind different Mediator subunits, 

blocking one TF-Mediator interaction site (for example, the site at which VP16 interacts 

with MED25) may not broadly inhibit cellular transcription. This is supported by the fact 

that knockout of single Mediator subunits can shut down transcriptional responses to 

specific signaling pathways, while leaving other pathways intact11,12,154. Moreover, in 

the few cases in which structural data are available, the TF binding site within a Mediator 

subunit is structured, with hydrophobic clefts or patches that could be selectively targeted 

with small molecules182-184.

Genome-wide ChIP-Seq analyses in mammalian cells have uncovered enhancer elements 

that are unusually large and possess high-level occupancy of DNA-binding TFs and other 

transcriptional regulators such as cohesin and Mediator. These domains have been called 

super-enhancers185,186, which appear similar to High Occupancy Target (HOT) 

domains187,188 or Locus Control Regions (LCRs)189 that have been identified in other 

studies. Super-enhancers are essentially clusters of enhancers and typically regulate the 

expression of genes that control cell identity; super-enhancers can also drive high-level 

expression of oncogenes in cancer cells. Mediator appears to play a key role in forming 

or maintaining super-enhancer structure and function185; in fact, perturbation of Mediator 

structure by knocking down key subunits, such as Med12, disproportionately affects 

genes regulated by super-enhancers102,186, suggesting that targeting Mediator may 

selectively disrupt oncogene expression in cancer.
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Box 3

The Pre-initiation Complex (PIC)

The eukaryotic RNA polymerase II (pol II) enzyme transcribes most non-coding RNA 

genes and all protein-coding genes. Unlike bacterial polymerases, however, pol II relies 

upon an array of auxiliary factors that ensure transcription initiation at the correct site in 

the genome, as well as subsequent RNA processing events leading to the production of a 

mature transcript190. At the transcription start site, pol II initiation is regulated by a 

protein assembly known as the Pre-Initiation Complex (PIC, see the Figure)191. Whereas 

the PIC can function in various forms (for example, simpler TFIID assemblies may 

operate in differentiated cells) it represents a fundamental intermediate that is targeted by 

an array of general and gene-specific regulatory factors. Each of the factors that comprise 

the PIC (TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, pol II, and Mediator) have varied 

functional and structural roles192, but much remains unknown about how the PIC 

functions as a unit. Biophysical studies have begun to determine the overall structure and 

architecture of the PIC. Although current results suggest different architectures for 

human and yeast PICs193,194, this remains an area of active investigation195. Asterisk: 

TFIID contains TBP and 13 different TAFs, five of which dimerize (TAF4, TAF5, TAF6, 

TAF9, TAF12)196.
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Figure 1. Structural changes in Mediator control its interactions with other transcription 
regulators
This schematic illustrates that as the structure of Mediator changes, its ability to interact 

with other regulatory proteins may also change. Such structural transitions could enable the 

same Mediator complex to adopt distinct functions at the appropriate stages of transcription 

(for example, initiation vs. elongation). Also, the model allows for some cofactors to bind 

Mediator in several different structural states. a) Upon binding a transcription factor (TF), 

Mediator undergoes structural changes that facilitate interactions with additional 

transcription regulators43. Structural changes associated with TF-Mediator binding also 

appear to promote stable association with pol II197, and correlate with activation of 

transcription41. b) Binding of pol II triggers distinct structural changes throughout 

Mediator58,59; these might be important for functional interactions between Mediator and 

factors that promote pol II initiation and/or elongation, such as TFIIS, TFIIF, or 

POLR2M72,76,104,105. c) CDK8 module–Mediator binding also induces structural changes in 

Mediator that prevent pol II binding18,198; further, CDK8-Mediator associates with 
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elongation factors such as the SEC27,43, which may regulate the timing of SEC recruitment 

at some genes.
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Figure 2. A simplified model for Mediator-dependent regulation of multiple stages of pol II 
transcription
a) Mediator plays key roles in the assembly of the Pre-initiation Complex (PIC). Mediator 

helps recruit pol II and other PIC factors to the promoter191. At this stage, the pol II CTD is 

not highly phosphorylated. During transcription initiation, the pol II CTD becomes highly 

phosphorylated by TFIIH80, and the pol II enzyme begins to transcribe the gene. At some 

genes, pol II may pause after transcribing about 60 nucleotides95; whether this “paused pol 

II” remains associated with Mediator is not known. b) The CDK8 module may associate 

with Mediator after pol II-Mediator contacts are broken, and this may regulate pol II 

elongation or release from a paused state at some genes. CDK8-Mediator may regulate the 

recruitment or activity of the super elongation complex (SEC) to promote pol II pause 

release and elongation27,28. c) Because CDK8-Mediator cannot interact with pol II, re-

initiation of transcription requires release of the CDK8 module. A scaffold PIC complex, 

which may be stabilized by a transcription factor, could facilitate rapid re-initiation110.
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Figure 3. Mediator regulates chromatin architecture
The cooperative interactions between Mediator and transcription factors (TF), cohesin and 

non-coding RNAs (ncRNA) appear to stabilize enhancer-promoter loops102,134,139,140. An 

expanding set of factors influence the formation and stability of enhancer-promoter loops1 

and the formation of such structures correlates with high levels of transcription125-127. 

Because the CDK8 module must dissociate from Mediator to allow pol II–Mediator 

binding18,19, a potential ncRNA–CDK8 module interaction, perhaps via the CDK8 module 

subunit MED12134, may tether the CDK8 module near the PIC. This could facilitate re-

formation of CDK8-Mediator complexes following pol II promoter escape.
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Figure 4. Mediator as an endpoint of signaling cascades
Four representative, simplified signaling pathways are shown. Each pathway is activated by 

different signals; for instance, p53 signaling is activated during cell stress, toll like receptors 

(TLR) are activated in response to infection, and the sterol regulatory element binding 

protein (SREBP) is activated in response to metabolic cues. Each pathway converges on a 

distinct transcription factor that targets a different Mediator subunit, helping to recruit and 

regulate Mediator activity at select genomic loci. The end result is transcription factor-

dependent activation (or repression) of a specific set of genes that are important for the 

response to the stimulus. Due to Mediator's role in relaying and integrating these signals 

directly to the transcription machinery (including the pol II enzyme itself), Mediator can be 

considered an endpoint of signaling cascades152.
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