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Abstract

Although mice are the most widely used model organism, genetic studies have suffered from 

limited mapping resolution due to extensive linkage disequilibrium (LD) that is characteristic of 

crosses among inbred strains. Carworth Farms White (CFW) mice are a commercially available 

outbred mouse population that exhibit rapid LD decay compared to other available mouse 

populations. We performed a genome-wide association study (GWAS) of behavioral, physiological 

and gene expression phenotypes using 1,200 male CFW mice. We used genotyping-by-sequencing 

(GBS) to obtain genotypes at 92,734 single nucleotide polymorphisms (SNPs). We also measured 

gene expression using RNA-Sequencing in three brain regions. Our study identified numerous 

behavioral, physiological and expression quantitative trait loci (QTLs). We integrated the 

behavioral QTL and eQTL results to implicate specific genes, including Azi2 in sensitivity to 

methamphetamine and Zmynd11 in anxiety-like behavior. The combination of CFW mice, GBS 

and RNA-Sequencing constitutes a powerful approach to GWAS in mice.

Introduction

In the last decade, genome-wide association studies (GWAS) have demonstrated that 

common alleles influence susceptibility to virtually all common diseases1–3. The success of 

GWAS in elucidating the genetic determinants of disease in humans is due in part to the 

large number of recombinations among unrelated individuals, which permits high-resolution 

mapping across the genome. One important conclusion from those studies is that most 

causal loci appear to be due to regulatory rather than coding polymorphisms4.

Mice offer a powerful tool for elucidating the genetic architecture of complex traits: 

environmental factors can be held constant or systematically varied; genome editing permits 

experimental testing of identified genotype-phenotype relationships; most mouse genes have 

a human homolog, allowing rapid translation to humans; and relevant tissues can be obtained 

under highly controlled conditions and used to identify gene expression quantitative trait loci 

(eQTLs). However, the mouse populations used in most prior studies lacked sufficient 

recombination to narrow the implicated loci to a tractable size and thus generally failed to 

identify specific genes5,6.

In this study, we mapped QTLs and eQTLs using Carworth Farms White (CFW) mice, 

which are a commercially available outbred population7. While CFW mice were not 

developed for genetic research, they have several attractive properties. CFW mice were 

derived from a small number of founders and have been subsequently maintained as an 

outbred population for more than 100 generations, thus degrading linkage disequilibrium 

(LD) between nearby alleles8–10. Although CFW mice have longer range LD compared to 

most human populations, they have less LD than other commercially available laboratory 

mice9, and therefore should provide fine-scale mapping resolution. Compared to humans, 

the more extensive LD in CFW mice means that fewer markers are needed to perform 

GWAS and correspondingly lower levels of significance are required because fewer 
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independent hypotheses are tested. We used genotyping-by-sequencing (GBS) to overcome 

another barrier to GWAS in mice, which is the high cost and limited coverage of extant SNP 

genotyping arrays. Finally, based on the importance of regulatory variation suggested by 

human GWAS4,11, we identified eQTLs that co-mapped with behavioral QTLs in an effort to 

identify the most likely causal genes.

Results

We phenotyped 1,200 male CFW mice for conditioned fear, anxiety-like behavior, 

methamphetamine sensitivity, prepulse inhibition, fasting glucose, body weight, tail length, 

testis weight, the weight of five hindlimb muscles, bone mineral density, bone morphology 

and gene expression in prefrontal cortex, hippocampus and striatum (Figure 1, 

Supplementary Figures 1–4, Online Methods, Supplementary Note).

Genotyping

Existing mouse SNP genotyping technologies, such as the Mouse Universal Genotyping 

Array (MUGA), MegaMUGA12, the more recent GigaMUGA13 and the Mouse Diversity 

Array (MDA)14 were not designed to capture common genetic variation in the CFW 

population. Furthermore, we sought to reduce the cost of genotyping, which has been a 

barrier to GWAS in mice. Therefore, we adapted GBS, which was originally developed in 

maize15, for use in mice. We used GBS to genotype 1,024 CFW mice, and identified 92,734 

autosomal bi-allelic SNPs after filtering, 79,284 (86%) of which were present in dbSNP 

(v137). The remaining 13,450 SNPs (14%) represent “novel” SNPs that had not been 

previously reported. The distribution of GBS SNPs on autosomes is shown in Figure 2A. 

The nonuniform distribution of SNPs is likely due to differences in the numbers of 

polymorphic markers among all laboratory mice (Figure 2A, Supplementary Figure 5) and 

regions that are identical-by-descent among CFW mice. The non-uniform distribution of 

polymorphic SNPs appears to be a characteristic of CFW mice since polymorphic SNPs 

identified by the MegaMUGA array showed a similar pattern (Figure 2A; r2 = 0.43 on log-

scale).

To assess the quality of GBS genotypes, we estimated the genotyping error rate in two ways. 

First, we compared GBS SNPs against those that were also present on the MegaMUGA 

array among 24 CFW mice that were genotyped using both platforms. This comparison 

yielded an overall discordance rate of 3%. We obtained a second estimate of the error rate of 

1.6% by comparing genotypes in pairs of haplotypes that were identical-by-descent. Based 

on these results, we concluded that GBS provided a larger number of polymorphic SNPs 

than were found using MegaMUGA.

Genetic Architecture of the CFW Population

Comparing LD in different populations is useful for gauging mapping resolution16. Figure 

2B shows that LD (r2) decays rapidly in CFW mice compared to other populations, 

consistent with previous findings based on a much smaller number of SNPs9,17, supporting 

their suitability for high-resolution mapping. Importantly, the majority of the SNPs we 

identified in CFW mice segregate among domesticus-derived laboratory strains (Figure 2C). 
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Unlike the Collaborative Cross (CC) and the Diversity Outbred (DO), few of the SNPs found 

in CFW are derived from the castaneous and musculus subspecies18–20. When compared to a 

panel of inbred mice, CFW are most genetically similar to FVB/NJ (Figure 2C).

Next, we considered the distribution of minor allele frequencies (MAF) of SNPs genotyped 

in the CFW mice (Supplementary Figure 6). The majority of SNPs (73%) had relatively high 

allele frequencies (MAF > 0.05). This profile is consistent with the reported history of CFW 

mice; namely, a severe bottleneck at the inception of the CFW population, followed by 

expansion to create an outbred population with a modest effective population size9. The 

mean MAF of novel SNPs was lower than for previously reported SNPs, consistent with the 

hypothesis that some of these novel SNPs are unique to the CFW population.

Although we requested only one mouse from each litter, we were concerned that individuals 

in our study might have close familial relationships because they were sampled from a finite 

breeding population; however, we did not detect widespread population structure or cryptic 

relatedness in the CFW mice (Supplementary Figures 7–11).

SNP Heritability

Supplementary Table 1 shows the SNP heritability21,22, which is the proportion of variance 

in the trait explained by available SNP genotypes. SNP heritability estimates ranged from 9–

60%, with a mean of 28%. The mean SNP heritability for physiological traits was slightly 

higher (32%) compared to behavioral traits (27%).

GWAS

We mapped QTLs for 66 behavioral and physiological phenotypes (Supplementary Tables 1, 

2; Figure 3A). We used GEMMA to fit a linear mixed model (LMM) and quantify support 

for an association at each SNP. We also used a simpler linear model that did not correct for 

population structure and observed that it produced broadly similar results (see 

Supplementary Figure 12). However, we have presented the results from the LMM-based 

analysis because it may reduce subtle inflation of the test statistics due to close relationships 

or fine-scale population structure. We calculated a threshold via permutation, which is a 

standard approach for QTL mapping in mice that controls for the type I error rate23,24 

(Supplementary Figure 13). This approach identified numerous QTLs for physiological and 

behavioral traits (Figure 3A, Supplementary Figures 14–18) that exceeded 2 × 10−6 (p < 

0.1). Supplementary Table 2 contains more detailed information about all the most 

significant physiological and behavioral QTLs.

For testis weight we found a strong association with rs6279141 on chromosome 13 (Figure 

3B, p-value: 4.51 × 10−18) that accounted for 7.5% of variation in that trait. The implicated 

region contained few genes (Figure 3D), one of which was Inhba, a gene that has been 

shown to affect testis morphogenesis, testicular cell proliferation and testis weight in 

mice25–27, and is therefore a promising candidate gene.

The strongest association for soleus muscle weight mapped to rs30535702 on chromosome 

13 and explained 2.8% of trait variance (p-value: 8.33 × 10−8). One of the genes in this 
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interval, Fst, is known to influence muscle mass28,29 and is a strong candidate to explain this 

association.

We identified several examples of pleiotropy. For example, two independently measured 

muscle weights, tibialis anterior (TA) and extensor digitorum longus (EDL), were both 

associated with rs27338905 on chromosome 2, in each case accounting for 2.3% of the 

variation. Tp53inp2 is near the peak marker and is abundantly expressed in skeletal 

muscle30, where it functions as a negative regulator of muscle mass31. Likewise, the weight 

of three muscles (gastrocnemius, EDL and soleus) mapped to the proximal end of 

chromosome 13; in each case, the minor allele was associated with increased muscle weight. 

Finally, on chromosome 12 we identified pleiotropic effects on tibia length and EDL weight.

Unexpectedly, we found that CFW mice appear predisposed toward abnormally high bone 

mineral density (BMD). This is a characteristic of CFW mice that does not appear to be 

shared with commonly used inbred laboratory strains (Supplementary Figure 3). This 

“abnormal BMD” phenotype was strongly associated with rs33583459 on chromosome 5 

and rs29477109 on chromosome 11 (p-values: 1.57 × 10−9, 1.12 × 10−14, respectively). The 

locus on chromosome 5 contains a large number of genes, including Abcf2 and Slc4a2. The 

human ortholog, ABCF2, has been associated with BMD in the largest GWAS of BMD 

completed to date32, and is highly expressed in osteoblasts33. Slc4a2 plays a critical role in 

osteoclasts34 and homozygous deletion of Slc4a2 is associated with the osteopetrosis-like 

phenotype “Marble Bone Disease” in Red Angus cattle35. Thus, both Abcf2 and Slc4a2 are 

viable candidates for this region. The association on chromosome 11 contains the gene 

Col1a1. In humans, Osteogenesis Imperfecta Type I can be caused by a null allele of 

COL1A1 and results in gracile bones with decreased strength36,37. COL1A1 is also 

associated with other bone size phenotypes38, making Col1a1 a likely causal gene for this 

locus.

Finally, we identified several associations for behavioral traits, including methamphetamine 

sensitivity on chromosome 6 at rs22397909 (p-value: 9.03 × 10−7) and chromosome 9 at 

rs46497021 (p-value: 1.58 × 10−6); these associations account for 2.6% and 2.1% of the 

phenotype variance, respectively (Figure 4). We also identified an association for anxiety-

like behavior with rs238465220 on chromosome 13 (p-value:7.31 × 10−8) that explained 3% 

of the variance. For prepulse inhibition (12 db), we identified associations with rs264716939 

on chromosome 7 (Figure 3C) and rs230308064 on chromosome 13 (p-values: 1.18 × 10−6 

and 2.17 × 10−6, respectively). There were many genes in the ~3Mb region on chromosome 

7 that were associated with PPI (Figure 3E), making it difficult to identify the causal gene(s). 

Candidate genes for the associations with behavioral traits are discussed below.

eQTLs

In an effort to identify causal genes within our behavioral QTLs, we mapped eQTLs for 

three brain regions that are critical for the behaviors that we studied. We performed RNA-

Seq on messenger RNA (mRNA) from three brain regions: hippocampus (n = 79), striatum 

(n = 55) and prefrontal cortex (n = 54). In a cis-eQTL scan that was limited to the region 

flanking the gene being interrogated (Supplementary Figures 19, 20), we identified a total of 

6,045 associations for 4,174 genes (Figure 4A, Supplementary Figure 21, Supplementary 
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Table 3) at a permutation-derived significance threshold of p < 0.05 (this threshold reflects a 

per-gene, per-brain region). For 534 of those genes we identified a cis-eQTL in all three 

tissues. For an additional 803 genes, we identified a cis-eQTL in two of the three tissues 

(Figure 4B). The RNA-Seq data were generated from a set of partially overlapping 

individuals; therefore, we did not perform a joint analysis of the three brain tissues39.

In addition, we searched for cis-eQTLs by examining allele-specific expression (ASE), 

which measures relative expression of the two possible RNA alleles derived from a 

heterozygous SNP40,41. We identified 655 genes with ASE in at least one of the three 

tissues. Of these, 380 (58%) were found only using ASE, and 275 (42%) were also identified 

in the conventional cis-eQTL scan, suggesting that there was more overlap than would be 

expected by chance. Overlap was likely limited by several factors, including type I errors in 

the ASE and type II errors in both the ASE and conventional cis-eQTL mapping.

We also mapped eQTLs genome-wide for each gene in an effort to detect trans-eQTLs. We 

identified 2,278 trans-eQTLs that were significant (p < 0.05 permutation-based threshold) 

after testing 43,414 transcripts across the three brain regions. We expected almost that many 

tests to be positive under the null hypothesis. Consistent with this, a quantile-quantile (QQ) 

plot of these results suggested that only a small number of these results were true positives 

(Supplementary Figure 22). As expected, most true positive results appear to be from the 

hippocampus, which had the largest sample size (n = 79).

Integration of behavioral QTLs with eQTLs

Based on evidence from human GWAS, we anticipated that heritable gene expression 

polymorphisms (eQTLs) would be responsible for most of the observed behavioral 

associations. Therefore, we tried to identify eQTLs that co-mapped with behavioral QTLs, 

under the assumption that the eQTL might be the molecular cause of the behavioral QTL. 

For example, we observed an association between methamphetamine sensitivity and 

rs46497021 on chromosome 9 (p-value: 1.6 × 10−6; Figure 4C, Supplementary Figure 18). 

The implicated region was small (<1 Mb) and contained only 2 genes: Cmc1 and Azi2 
(Figure 4D). We identified cis-eQTLs for both genes in the striatum, which is the tissue that 

is most relevant for methamphetamine sensitivity. However, rs46497021 was most strongly 

correlated with Azi2 expression (p-value: 1.2 × 10−8; Figure 4E). In addition, the pattern of 

SNPs associated with methamphetamine sensitivity and Azi2 expression showed obvious 

overlap. Therefore, while both Cmc1 and Azi2 are credible positional candidates, the eQTL 

data suggest that Azi2 is most likely to be the causative gene. Neither gene has been 

previously implicated in dopaminergic/striatal processes, suggesting that this observation 

may offer novel insights into the biology of this drug abuse-relevant trait.

Additionally, we identified an association between anxiety-like behavior and rs238465220 

on chromosome 13 (p-value: 7.3 × 10−8, Supplementary Figure 17). The implicated region 

spanned ~1.5 Mb and contained 4 genes: Chrm3, Larp4b, Dip2c, and Zmynd11. Among 

those genes, rs238465220 was also associated with expression of Zmynd11 in the 

hippocampus, suggesting that this locus may influence anxiety-like behavior through 

regulation of Zmynd11 expression (Supplementary Figure 23). Zmydn11 has not been 

previously implicated in anxiety; however, copy number variants in ZMYND11 were 
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recently shown to be associated with autistic tendencies and aggressive behaviors in 

humans42. These examples illustrate the utility of combining GWAS with eQTL data to 

identify the molecular mechanism by which a chromosomal region influences a complex 

trait.

Discussion

We performed a GWAS in a commercially available outbred mouse population, which 

identified numerous physiological, behavioral, and expression QTLs. In several cases the 

implicated loci were smaller than 1 Mb and contained just a handful of genes that included 

an obvious candidate. In addition, we used the eQTL results to further parse among the 

genes in the intervals that were implicated in the behavioral traits.

The goal of using CFW mice was to enhance our mapping resolution. CFW have shorter-

range LD than other commercially available populations9. Using GBS genotypes, we 

estimated LD in CFW mice and compared it to other mapping populations (Figure 2B). The 

34th generation of the LG/J×SM/J advanced intercross line (LG×SM-AIL) that we have used 

in prior studies43–46 showed more extensive LD compared to CFW. Various outbred 

heterogeneous stocks (HS), typically made up of 8 inbred strains, have also been used in 

prior mapping efforts47–49. We examined one HS49, and found that it also had longer range 

LD compared to CFW. The Hybrid Mouse Diversity Panel (HMDP)50,51, which is a 

collection of approximately 100 inbred mouse strains that has been used for QTL mapping, 

also showed greater LD compared to CFW, as did a smaller panel of 30 inbred strains52. The 

DO12,18,19,53 exhibited LD decay that was almost as degraded as CFW. Populations like the 

AIL and HS (including the DO) are expected to show decreased LD in the future due to the 

accumulation of additional recombinations (for example, the LG×SM-AIL is now at 

generation 62). MF-1 is another commercially available outbred population that has been 

used to map QTLs50,54, but we were unable to obtain the data needed to estimate LD decay 

in this population. Comparing LD patterns in different populations is a common method for 

estimating mapping resolution16, however additional factors including the allele frequency 

distribution55, population structure56, error rates and the number, effect size and frequency 

of causal variants all influence power and mapping resolution. Despite these limitations, our 

comparison of LD (Figure 2B) and our mapping results (Figures 3–4, Supplementary Table 

2, Supplementary Figures 14–18, 21–23) suggest that CFW mice are an attractive option for 

fine-mapping studies.

Another important parameter for GWAS studies is allele frequency, since power to identify 

associations increases with greater MAF. Laboratory mouse populations have higher average 

MAF compared to humans or wild populations17. We found that 73% of SNPs genotyped in 

this study had MAF > 0.05, although our SNP filtering steps may have underestimated the 

number of rare SNPs. Populations produced by crossing inbred strains, such as F2 crosses, 

recombinant inbred (RI) lines, AILs and HS typically have even more desirable MAF 

distributions43. Because the ascertainment of SNPs included in genotyping platforms 

directly influences the estimated MAF distribution, we did not attempt to use publicly 

available data to compare MAFs in commonly used mapping populations.
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We found that CFW mice lacked genetic variability in certain regions; for example, 

Chromosome 16 had a low density of polymorphic markers as measured using both GBS 

and MegaMUGA (Figure 2A) and no significant QTLs (Figure 3A). This is an example of a 

previously described tendency for laboratory mouse populations to harbor regions that are 

identical-by-descent43,57.

Several other advantages of CFW mice include their commercial availability, their low cost, 

and the ability to acquire non-siblings upon request. We also found that the CFW mice were 

easy to handle, and their uniform coat color simplified automated scoring of certain 

behavioral traits.

One barrier to more widespread adoption of GWAS in mice has been the lack of universal 

and economical SNP genotyping platforms. One innovative aspect of this paper is the use of 

GBS to overcome this obstacle. GBS is a reduced-representation sequencing approach in 

which a small fraction of the genome is sequenced at moderate depth in order to obtain 

genotypes at a subset of markers. While GBS shares some characteristics with low-coverage 

whole-genome sequencing58–60, GBS yields high coverage for a subset of the genome, thus 

acquiring information about fewer SNPs but with greater confidence. Our GBS methods 

included a custom-designed library preparation protocol (which reduced per-sample costs), 

and used the standard software toolkits GATK61 and IMPUTE262. An advantage of GBS 

was that it did not require pre-selection of polymorphic SNPs. We chose conservative 

criteria for SNP calling, which yielded 92,734 SNPs, of which 14% were newly discovered 

and possibly unique to CFW. These 92,734 SNPs provided extensive coverage of the 

genome (Figure 2A) and allowed for fine-mapping (Figures 3C–D, 4D–E and 

Supplementary Figures 17, 23). The number of markers obtained using GBS can be titrated 

by varying the restriction enzymes used, the fragment sizes selected and the degree of 

sample multiplexing. GBS involves imputation to correct errors and to populate missing 

genotypes, requiring more expertise than analysis of SNP genotyping arrays. Compared to 

conventional array-based SNP genotyping, GBS had a higher error rate, which is expected to 

modestly decrease power, but should not produce false positive QTLs since the errors will 

not be correlated with the traits. We are currently improving genotype imputation methods 

for populations in which the founder haplotypes are known, such as AILs and HS 

populations 12,45,46,63,64. Because the monetary advantage of GBS over array-based 

genotyping will continue to improve as sequencing prices decrease, we anticipate that GBS 

and other sequencing-based approaches will supplant array-based methods in the coming 

years.

The majority of human GWAS findings implicate regulatory rather than coding 

differences4,11. The identified haplotypes frequently contain several genes. It is now widely 

appreciated that even when an association can be localized to a single gene, that gene may 

not be the cause of the association65, meaning that proximity to the peak SNP is not 

sufficient to identify the causal gene. eQTLs can provide the crucial link between a region 

implicated by GWAS and the biological processes that underlie that association. Therefore, a 

major goal of our study was to integrate behavioral QTL and eQTL data. We used RNA-Seq 

to examine gene expression in three brain regions that are known to be important for the 

behavioral traits that we studied. Although Azi2 was not an obvious candidate for the 

Parker et al. Page 8

Nat Genet. Author manuscript; available in PMC 2017 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



behavioral QTL for methamphetamine sensitivity, our data showing the co-mapping of an 

eQTL for Azi2 expression in the striatum provide an additional layer of evidence. Similarly, 

Zmynd11 has not been previously implicated in anxiety-like behavior, but the eQTL for 

Zmynd11 expression in the hippocampus suggests that it is the most promising of the four 

genes within the behavioral QTL. These examples demonstrate the power of integrating 

fine-mapping of behavioral QTLs and eQTLs and extend on multiple prior mouse studies 

that have used similar approaches in conjunction with F2 crosses66, RIs67–69, selected 

lines70, HS71, outbred MF-1 mice50 and the HMDP51,72,73.

RNA-Seq offers a number of advantages relative to array-based gene expression 

measurements74–80. In particular, we were able to map cis- and trans-eQTLs using a 

traditional mapping approach, and simultaneously map cis-eQTLs by quantifying ASE. 

Since only a fraction of genes can be studied using ASE, we did not anticipate complete 

overlap between genes identified using these two approaches. Using ASE we identified 655 

cis-eQTLs of which 42% were also identified as cis-eQTLs using conventional mapping.

We found that physiological traits typically had slightly higher heritabilities than behavioral 

traits (Supplementary Table 1). We also found the effect sizes of individual associations 

tended to be higher for physiological traits (Supplementary Table 2), consistent with findings 

from another recent study in rats81. However, it was not always true that traits with the 

highest heritabilities also showed the largest effect sizes for individual associations. Because 

the effect size of individual QTL alleles is of paramount importance for assessing power at a 

given sample size, and because this parameter is never known in advance, it is not possible 

to provide general guidelines about the sample size needed for future studies. Based on our 

results, we suggest that a sample size of 1,000 or more CFW mice should be used for most 

traits, though traits like testis weight and abnormal BMD would have yielded significant 

results with just a few hundred mice. While our use of the CFW was intended to increase 

mapping precision, there is a direct tradeoff between mapping precision and statistical 

power6, therefore sample sizes required for studies using CFW will necessarily be larger 

than for F2, recombinant inbred, or other traditional mapping populations that offer less 

precision.

Our data do not directly address the reasons that the effect sizes we observed are so much 

larger than the effect sizes observed in most human GWAS. We can speculate that the unique 

population history of laboratory mice (domestication, selection and repeated population 

bottlenecks) have increased the frequency of alleles that may have been rare in ancestral 

wild mouse populations. It is also true that, unlike many traits studied in human GWAS, the 

traits we are examining are not disease traits (and thus may not influence fitness), and 

therefore may not have been influenced by natural selection even among ancestral wild 

mouse populations from which laboratory populations were originally derived. Furthermore, 

laboratory mice are drawn from a much more uniform environment, potentially diminishing 

gene-by-environment interactions that may reduce effect sizes in human GWAS. Finally, 

because LD in the CFW mice is more extensive as compared to humans, we are effectively 

testing fewer hypotheses and therefore applied a lower (permutation-derived) significance 

threshold.
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We have shown that use of CFW mice in conjunction with GBS and RNA-Seq provides a 

powerful and efficient means for identifying genetic associations, and for nominating 

candidate genes within the associated regions. Compared to other outbred mouse 

populations, CFW mice showed rapid decay of LD (Figure 2B), were less expensive, and 

primarily allowed examination of domesticus derived alleles (Figure 2C). Compared to 

human GWAS, this approach provided dramatically reduced costs, the ability to examine 

phenotypes that include experimental manipulations that would be impractical or unethical 

in humans, the ability to obtain tissue samples for expression analysis, and the ability to 

exert exquisite control over environmental variables. Identified genes can be manipulated in 

future studies via genome engineering82. Thus, our approach can be used to rapidly generate 

specific and testable hypotheses for a wide array of complex traits. More broadly, our results 

demonstrate methods and principles that apply to a variety of other model systems.

Online Methods

Animal Models

We phenotyped 1,200 male Carworth Farms White (CFW) mice (Mus musculus) that were 

obtained from the Charles River Laboratories facility in Portage, Michigan, USA (CRL; 

strain code: CRL:CFW(SW); facility code: P08). We performed a power analysis using the 

program Quanto (hydra.usc.edu/gxe). This indicated that 1200 mice would provide 80% 

power to detect QTLs that accounted for ~3% of total trait variance with p < 5 x 10−7. Since 

our study was completed, the Portage colony has been relocated to Kingston, New York 

(new code K92). It has been reported that ancestors of the CFW mice were obtained from a 

large colony of Swiss mice in 1926, and maintained by Dr. Webster at the Rockefeller 

Institute. A single pair of highly inbred albino mice were later acquired by Carworth Farms 

and used to initiate an outbred mouse stock. Several mice from this colony were later 

acquired in 1974 by CRL and were subsequently maintained as an outbred population8–10.

Every two weeks, 48 male CFW mice were shipped from CRL in Portage, MI to our 

laboratory in Chicago, IL. We requested that CRL send only one mouse from each litter to 

avoid obtaining siblings, since close relatives reduce power to map QTLs, and complicate 

analysis. The average age of the mice upon arrival in our labs was 35 days (ranging from 34 

to 46 days), and their average weight was 25.5 g (ranging from 13.4 g to 38.7 g). Mice were 

housed 4 per cage and given ~15 days to adapt to their new environment (Supplementary 

Figure 1). Standard lab chow and water were available ad libitum, except during the 

behavioral procedures and prior to testing for fasting glucose. Mice were maintained on a 

standard 12:12h light-dark cycle (lights on at 06:30). All phenotyping occurred during the 

light phase between 08:00 and 16:00 hours, over the period of August 2011 to December 

2012. All procedures were approved by the University of Chicago Institutional Animal Care 

and Use Committee (IACUC) in accordance with National Institute of Health guidelines for 

the care and use of laboratory animals.

Phenotyping

The order of phenotyping was identical for each mouse, and is shown schematically in 

Supplementary Figure 1. One day after arrival, mice were fasted for four hours prior to 
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measurement of blood glucose levels. Fourteen days later, we assessed their response to a 

novel environment and to administration of 1.5 mg/kg of methamphetamine in a 3-day 

paradigm64. Twelve days later, we tested mice for conditioned fear46. Nine days after that, 

we tested mice for prepulse inhibition44 (PPI). Finally, after 15 days we weighed and 

sacrificed the mice. Immediately after sacrifice, we weighed testis, and collected one leg for 

measurement of muscle phenotypes, and collected the other leg for measurement of bone-

phenotypes. We also measured tail length at this time (Supplementary Note).

RNA-Seq

After sacrifice, we collected brain tissue from a subset of mice as a source of mRNA from 

the hippocampus (n = 79), striatum (n = 55) and frontal cortex (n = 54). We used RNA-

Seq84,85 to quantify gene transcript abundance in these brain tissues. Library preparation 

was performed with the TruSeq RNA Sample Kit (Illumina). Samples were multiplexed 5-

per lane and sequenced on an Illumina HiSeq 2000 sequencer, using single-end 100-bp 

reads. We processed the RNA-Seq short reads using the Tuxedo software suite79: (1) first, 

we aligned the short reads to the reference genome assembly (NCBI release 38, mm10) with 

bowtie286; (2) next, we used tophat279 to align the short reads to known splice junctions; (3) 

finally, we used cufflinks87 to calculate, for each gene, a gene-level measure of expression 

based on the mapped reads. This measure is reported in reads per kilobase per million reads 

mapped (RPKM). This measure does not depend on length of coding sequences or 

sequencing depth of each sample (so mapping eQTLs will not be biased by these factors). 

We focused on this gene-level measurement for subsequent investigation, including eQTL 

mapping and assessment of allele-specific expression (ASE). See Supplementary Note for 

further details.

Genotyping-by-sequencing (GBS)

Genotyping-by-sequencing (GBS) is a reduced-representation genotyping method for 

obtaining genotyping information by sequencing only regions that are proximal to a 

restriction enzyme cut site15. Our protocol was adapted from the procedures previously 

described88. GBS libraries were prepared by digesting genomic DNA with a restriction 

enzyme, PstI, and annealing oligonucleotide adapters to the resulting overhangs. Samples 

were multiplexed 12-per lane, and sequenced on an Illumina HiSeq 2000 sequencer using 

single-end 100-bp reads. We obtained an average of 4.8M reads per sample. By focusing the 

sequencing effort on the Pstl restriction sites, we obtained high coverage (~15x, 

Supplementary Figure 24) at a subset of genomic loci, although those reads were very non-

uniformly distributed. We aligned the 100-bp single-end reads to Mouse Reference 

Assembly 38 from the NCBI database (mm10) using bwa89. We used GATK61,90 to discover 

variants and to obtain genotype probabilities. For the Variant Quality Score Recalibration 

(VQSR) step, we calibrated variant discovery against (1) whole-genome sequencing (WGS) 

data that we ascertained from a small set of CFW mice, (2) SNPs and indels from the 

Wellcome Trust Sanger Mouse Genome project91, and SNPs available in dbSNP release 137. 

We used IMPUTE262 to improve low-confidence genotypes, or genotypes that were not 

called in individual mice. Supplementary Table 4 and the Supplementary Note detail our 

efforts to estimate the error rate of GBS in this study. The Supplementary Note also contains 

a description of a small number of SNPs that were discarded because a large proportion of 
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the genotypes were imputed with low certainty. Finally, the Supplementary Note details our 

identification of 110 DNA samples that appeared to be mislabeled and were therefore 

excluded from our study (Supplementary Figures 25–28).

Treemix analysis

We estimated phylogenetic relationships between the CFW mice and different lab strains 

sequenced as part of the Wellcome Trust mouse genome sequencing project using treemix92. 

We used the genotypes for the lab strains sequenced by the Wellcome Trust to obtain the 

locations of SNPs that were identified in the CFW mice using our GBS pipeline. We 

excluded the mus spretus strain from the Wellcome Trust data, since this strain was included 

as an outgroup. Since the lab strains are all inbred, we assumed that the allele frequency was 

1 or 0. We represented each strain by only a single individual. We used a subset of 100 CFW 

mice to compute the allele frequencies from the genotype likelihoods of GBS SNPs in our 

sample. Treemix was used to fit a maximum-likelihood tree to all the lab strains and CFW 

samples.

QTL mapping for behavioral and physiological traits

We performed a GWAS for the behavioral and physiological phenotypes using all SNPs with 

MAF > 2% and good imputation quality (defined as 95% of the samples having a maximum 

probability genotype greater than 0.5). Although our analyses did not suggest the presence 

of close relatives or population structure, we used the linear-mixed model implemented in 

the program GEMMA93. GEMMA is similar to a standard linear regression, in which the 

quantitative trait (Y) is modeled as a linear combination of the genotype (X) and the 

covariates (Z), except that it includes an additional “random” or “polygenic” effect capturing 

the covariance structure in the phenotype that is attributed to genome-wide genetic sharing:

The notation in this expression is defined as follows: yi is the ith phenotype sample; zik is ith 

sample of covariate k, in which k ranges from 1 to the number of covariates included in the 

regression (m); αk is the coefficient corresponding to covariate k; xij is the genotype of 

sample i at SNP j; βj is the coefficient corresponding to SNP j; ui is the polygenic effect for 

the ith sample; εi is the residual error; and μ is the intercept. The genotype, xij, is represented 

as the expected allele count, in which 0 represents a homozygous major allele, and 2 

represents a homozygous minor allele, and βj is the additive effect of the expected allele 

count on the phenotype. The residuals εi are assumed to be i.i.d. normal with zero mean and 

covariance σ2, whereas the polygenic effect u = (u1, …, un)T is a random vector drawn from 

the multivariate normal distribution with mean zero and n × n covariance matrix σ2 λK, 

where n is the number of samples.

We estimated the relatedness matrix, K, from the genotype data. We specified the covariance 

matrix using the realized relationship matrix K = XXT/p, where p is the number of SNPs, 

and X is the n × p genotype matrix with entries xij. This formulation was derived from a 

polygenic model of the phenotype in which all SNPs helped explain variance in the 

phenotype, and the contributions of individual SNPs were i.i.d. normal94–96.
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The inclusion of a genetic marker in both the fixed and random terms can deflate the test 

statistic for this marker, leading to a loss of power to detect a QTL; this problem has been 

termed “proximal contamination”95. To avoid proximal contamination, we computed 19 

different K matrices, each one excluding one of the 19 autosomes. To scan markers on a 

given chromosome, we used the version of K that did not include that chromosome. We have 

previously proposed this leave-one-chromosome-out (LOCO) approach as a simple solution 

for avoiding the problem of proximal contamination23.

We used a permutation-based approach to calculate the genome-wide significance threshold 

for p-values calculated in GEMMA. We estimated the distribution of p-values under the null 

hypothesis by mapping QTLs in 1,000 randomly permuted data sets, then taking the 

threshold to be the 100(1 − α)th percentile of this distribution, with α= 0.1. Although this 

permutation test is technically only valid under the assumption that the samples are 

exchangeable97, we have previously suggested that ‘naive’ permutations are generally 

sufficient23. Furthermore, given our observation that population structure is subtle, we 

expect that this simulation provides a good approximation to the null (Supplementary Note).

Heritability estimates

Instead of computing a point estimate for h2, which is the usual approach (e.g. using the 

REML estimate98), we evaluated the likelihood over a regular grid of values for h2, which 

allowed us to directly quantify uncertainty in h2 under the reasonable assumption of a 

uniform prior for the proportion of variance explained96.

We estimated the SNP heritability, h2, of our phenotypes21. Because the GBS SNPs did not 

completely tag all casual variants (and because we excluded the sex chromosomes), our 

estimates of h2 underestimated a trait’s true narrow-sense heritability. To estimate h2, we 

assumed that all genetic markers made some small contribution to variation in the trait, and 

that these contributions were normally distributed with the same variance96,98,99. Under this 

polygenic model, the covariance of the phenotype measurements was Cov(Y1, …,Yn = σ2H, 

where , I is the n × n identity matrix, K is the n × n realized relatedness matrix, 

σa
2 is the variance of the additive genetic effects, and σ2 is the variance of the residuals. 

Under this formulation, σa
2 represents the relative contribution of the additive genetic 

variance, and we can use this parameter to provide an estimate for h2:

where sa is the mean sample variances of all the available SNPs, or the mean of the diagonal 

entries of K assuming that the columns of X are centered so that each of the columns have a 

mean of zero. See Supplementary Note for further details.

Expression QTL (eQTL) mapping

We used the RPKM measurements from RNA-Seq and the GBS genotype data to map 

eQTLs. We performed an eQTL scan separately in each brain tissue (hippocampus, striatum, 

prefrontal cortex). First, we discarded genes with low levels of expression (RPKM < 1), and 

genes that showed no variability in expression. For the remaining genes, we quantile-
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normalized the expression data. To account for unknown confounders, we removed linear 

effects of the first few principal components (PCs) calculated from the K x N gene 

expression matrix (20 PCs for hippocampus, 10 PCs for striatum, 20 PCs for prefrontal 

cortex)41. After removing linear effects of the PCs, we again quantile-normalized the 

expression data. We then used an LMM as implemented in GEMMA to scan for cis-eQTLs, 

as described above for the behavioral and physiological phenotypes. To define cis-eQTLs, 

we only considered SNPs within 1 Mb of the gene’s transcribed region (preliminary 

analyses indicated that 1 MB captured most of the significant signals; Supplementary 

Figures 19–20). We used a permutation-based approach to calculate significance thresholds 

for p-values in the cis-eQTL mapping. We used 1,000 permutations of the expression values 

to compute a separate significance threshold for each gene, using only the SNPs that were 

included in the cis-eQTL scan. In addition to cis-eQTL scans, we also performed genome-

wide trans-eQTLs scans for all the genes. The genome-wide scans were performed using the 

same LMM that was used for cis-eQTL analyses, except that all the SNPs outside a 2 Mb 

region around the gene were included in the trans-eQTL analysis. The significance threshold 

for trans-eQTLs was computed using permutations of 1,000 randomly selected genes in each 

tissue; this approach is permissible because all expression traits were quantile-normalized 

(Supplementary Note).

Allele-specific expression (ASE)

Finally, we performed an analysis of allele-specific expression (ASE) to identify genes that 

had ASE QTLs. This analysis was performed independently from the mapping of cis-eQTLs 

described above. We identified variants that had at least 10 samples with high-confidence 

heterozygote genotype calls. For genes that contained at least one such variant, we compared 

the relative expression of the two alleles across these heterozygote samples. To account for 

overdispersion, we used a beta-binomial model to fit the counts of the two alleles for each 

sample. We then used a likelihood-ratio test to test for significant deviation of the observed 

data from the expectation of equal counts from both alleles (Supplementary Figure 29 and 

Supplementary Note).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Components of study
Each of the 4 panels illustrates a component of the study: (A) Behavioral testing and 

measurement of physiological traits; (B) Genotyping-by-sequencing (GBS); (C) 

Measurement of gene expression in brain tissues using RNA-Seq; (D) QTL mapping for 

physiological and behavioral traits, and for gene expression.
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Figure 2. Genetic characteristics of CFW mouse population
(A) Density of GBS SNPs on autosomal chromosomes; (B) Mean LD (r2) decay rates 

estimated using frequency-matched SNPs55, with MAF > 20%, in a 34th generation AIL 

derived from LG/J and SM/J strains43,46, heterogeneous stock (HS) mice bred for > 50 

generations49, the Hybrid Mouse Diversity Panel (HMDP)83, a panel of 30 inbred lab 

strains14,52, Diversity Outbred mice12, and CFW mice; (C) Treemix analysis summarizing 

genetic relationship between CFW mice and inbred strains in Wellcome Trust sequencing 

panel.
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Figure 3. QTLs for physiological and behavioral traits
(A) Minimum p-values for association across all tested behavioral and physiological 

phenotypes (see Supplementary Table 1 and 2 for details). (B) Genome-wide scan for testis 

weight and (C) Pre-pulse inhibition in response to +12 dB pre-pulse. (D) Association signal 

for testis weight near the QTL on chromosome on 13. (E) Association signal for pre-pulse 

inhibition near the QTL on chromosome 7. Dotted red lines indicate thresholds (p<0.1) 

estimated via permutation tests.
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Figure 4. Overview of eQTL mapping
(A) Color of each pixel in the matrix depicts the lowest p-value among all eQTLs using a 10 

Mb × 10 Mb window. (B) Overlap of genes with eQTLs in the three brain tissues detected 

using the traditional cis-eQTL mapping method (not ASE). The permutation-based p-value 

threshold for each eQTL is 0.05. (C) Genome-wide scan for total locomotor activity on day 

3 of the methamphetamine sensitivity tests. (D) Association signal for total locomotor 

activity in the QTL region on chromosome 9. (E) Association signal for expression of Azi2 

Parker et al. Page 23

Nat Genet. Author manuscript; available in PMC 2017 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in the striatum, in the same region as panel D. Dotted red lines indicate thresholds (p < 0.1) 

estimated via permutation tests.
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