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Abstract

The Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-SCZ) recently identified 

108 loci associated with increased risk for schizophrenia (SCZ). The vast majority of these 

variants reside within non-coding sequences of the genome and are predicted to exert their effects 

by affecting the mechanism of action of cis regulatory elements (CREs), such as promoters and 

enhancers. Although a number of large-scale collaborative efforts (e.g. ENCODE) have achieved a 

comprehensive mapping of CREs in human cell lines or tissue homogenates, it is becoming 

increasingly evident that many risk-associated variants are enriched for expression Quantitative 

Trait Loci (eQTLs) and CREs in specific tissues or cells. As such, data derived from previous 

research endeavors may not capture fully cell-type and/or region specific changes associated with 

brain diseases. Coupling recent technological advances in genomics with cell-type specific 

methodologies, we are presented with an unprecedented opportunity to better understand the 

genetics of normal brain development and function and, in turn, the molecular basis of 

neuropsychiatric disorders. In this review, we will outline ongoing efforts towards this goal and 

will discuss approaches with the potential to shed light on the mechanism(s) of action of cell-type 

specific cis regulatory elements and their putative roles in disease, with particular emphasis on 

understanding the manner in which the epigenome and CREs influence the etiology of SCZ.
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Introduction

Recent years have witnessed renewed interest in studying genetic risk for SCZ, largely 

driven by advances in genomic technologies and a massive increase in sample sizes through 

the efforts of large consortia. The largest genome-wide association study (GWAS) analysis, 

conducted by the Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-SCZ), 

comprises a sample set of 36,989 cases and 113,075 controls and identified 108 common 

variants that show statistical associations with SCZ (PGC-SCZ, 2014). Concurrently, the 

advent of next generation sequencing technologies has identified rare and de novo mutations 

conferring a high risk for the disease (Fromer et al., 2014; Purcell et al., 2014). In these 

exome sequencing studies, rare variants and de novo alleles were spread across a large 

number of SCZ genes, converging onto common, albeit broad, biological pathways, 

including genes involved in postsynaptic protein complexes and calcium signaling pathways.

Despite these efforts, a precise variant or target gene for SCZ has not been identified. There 

are several explanations for this, including unidentified rare variants with high penetrance or 

somatic mosaicism, and current methodological advances will be able to test these 

hypotheses in future studies. Here we focus on findings that emerge from the largest and 

more recent GWAS in SCZ that set out to identify common risk loci. First, the variants 

associated with SCZ have small effect sizes that confer moderate risk but that, collectively, 

contribute to SCZ (i.e. SCZ is a polygenic disease with no single variant accounting for the 

entire risk). We will, therefore, need to adapt current methods to allow for multiple causal 

variants and genes to be studied simultaneously. Second, the variants most associated with 

SCZ often fall within large regions of high linkage disequilibrium (LD) containing multiple 

variants, any of which may be driving the association. As such, additional information is 

required to determine which variants are more likely to have functional effects. Third, and, 

from the perspective of this review, perhaps most importantly, the majority of identified 

variants are located outside of exons and, as such, do not change the protein coding 

sequence of genes, suggesting a substantial role for regulatory neuroepigenomic variation in 

the pathogenesis of SCZ.

In this review, we first describe the neuroepigenome and our current understanding of the 

ways in which it can be modified. We will then discuss its role in development, how it 

changes across the lifespan and its impact on disease. Finally, we provide a perspective for 

ongoing and future approaches to further our understanding of the neuroepigenome with an 

emphasis on applications utilizing frozen human postmortem brain tissue. While numerous 

epigenomic studies have focused on peripheral tissues and animal models, the aim of this 

review is to discuss studies that pertain to the human brain and, more specifically, to the 

neuroepigenome.
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What is the neuroepigenome & why is it important?

Nuclei are between 2 and 10μM in diameter yet contain approximately 2 meters of DNA. In 

order to fit inside the nucleus, chromosomes are packaged in to a condensed mass consisting 

of genomic DNA and protein, termed chromatin. Chromatin falls into two broad categories: 

the more densely packed, transcriptionally repressed, heterochromatin and the less densely 

packed, transcriptionally active, euchromatin. The basic unit of chromatin is the nucleosome, 

which is composed of ~147 base pairs of genomic DNA wrapped in sequence around an 

octamer made up of the core histone proteins, H2A, H2B, H3 and H4. Chromatin consists of 

arrays of nucleosomes, connected by linker DNA and linker histones, such as histone H1. 

The combination of histones and DNA constitute the primary building blocks of the 

epigenome, which comprises a regulatory network that modulates chromatin structure and, 

ultimately, the accessibility of specific DNA sequences to other factors, such as the 

molecular machinery involved in transcription. The neuroepigenome refers, specifically, to 

the epigenetic mechanisms (including those that modify chromatin) that contribute to brain 

development and function.

Importantly, the epigenome is not static and can be modified, providing a temporal 

dimension to gene expression and, ultimately, to cell function. Histones can undergo an 

array of post-translational modifications, including, but not limited to, mono-, di- and tri-

methylation, acetylation and serine phosphorylation and these modifications can have a 

variety of impacts on genome structure and function. For example: Histone H3 methylation 

at lysines 4, 9, and 27, are marks associated, respectively, with active transcription, 

heterochromatin formation, and transcriptional repression (Li and Reinberg, 2011). Histone 

H3 trimethylation at lysines 27 and 9 are associated with polycomb repression and 

heterochromatin silencing, respectively, whereas acetylation at either residue is a 

characteristic of active enhancers and regulatory sequences (Ernst et al., 2011; Pasini et al., 

2010; Zhu et al., 2013). Together, these provide illustrative examples of how the same 

residue can have a diametrically opposed influence on gene expression depending on how it 

is modified. For review of the different histone modifications and their impacts see 

(Jakovcevski and Akbarian, 2012) and references therein.

DNA sequence can also be chemically modified, leading to a variety of effects on the 

activity of a given gene. An example is DNA methylation, which typically results in the 

suppression of gene expression e.g. methylation of CpG dinucleotide islands, which are 

usually found in proximity to (or within) promoters. Although some genes become 

hypermethylated over time, there is a trend towards global loss of DNA methylation 

(hypomethylation) throughout life (Gonzalo, 2010), a trend that may be a contributory factor 

in age related neurodegenerative disorders (Akbarian et al., 2013; Johnson et al., 2012). The 

importance of DNA methylation in the regulation of gene expression is further demonstrated 

by the fact that hypermethylation and hypomethylation, relative to normal tissue, have been 

implicated in a variety of human cancers where, typically, there is hypermethylation of 

tumor suppressor genes and hypomethylation of oncogenes (Gokul and Khosla, 2013).

In addition to methylation, cytosine residues in DNA are also susceptible to modification 

through hydroxymethylation, in which hydrogen 5 of cytosine is replaced by a 
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hydroxymethyl group (5hmC). Whereas methylation occurs in promoters and is associated 

with lower gene expression, 5hmC, conversely, affects intragenic regions and, although it’s 

precise role is unknown, is associated with elevated gene expression (Kato and Iwamoto, 

2014; Nestor et al., 2012). During early postnatal development the neuronal genome 

accumulates uniquely high levels of non-CpG methylation and 5hmC (Kinde et al., 2015). 

Whole genome analysis has revealed that the content of 5hmC is particularly high in the 

brain, where it constitutes the primary modification of many enhancers and regions actively 

undergoing transcription (Wen et al., 2014). In addition, 5hmC peaks are found at the 5′ 
splice sites of exon-intron boundaries where it is thought to influence splicing and gene 

expression (Khare et al., 2012; Wen et al., 2014). Due to the presence of high levels of 5hmC 

in the brain, and in neurons, hydroxymethylation has been speculated to play a pivotal role 

in controlling neuronal differentiation, neural plasticity and brain functions (Wen and Tang, 

2014). Genomic DNA from mouse adult brain contains high levels of 5-methylcytosine 

(5mC) in a non-CG context compared with other tissues (Xie et al., 2012). High levels of 

5hmC have also been observed in humans, where the content of 5hmC between normal 

tissues appears to be highly variable, is associated with the body of transcribed genes, and is 

directly proportional to levels of transcription of those genes (Nestor et al., 2012).

Epigenetic modification of DNA has also been identified as a key mechanism for 

environmental regulation of gene expression (Jirtle and Skinner, 2007) and environmental 

factors can trigger lifelong molecular changes to the epigenome with a profound impact on 

the health and, perhaps, behavior of the organism later in life (Klengel and Binder, 2015). 

Although the majority of epigenetic research has focused on modifications of histones and 

DNA, RNA is also extensively modified (Satterlee et al., 2014). RNA methylation has been 

observed in both prokaryotic and eukaryotic organisms and in numerous types of RNA 

molecules, including mRNA, tRNA, and non-coding RNA (Wang and He, 2014). Although 

the function of RNA methylation remains unclear, it has been proposed to play roles in, 

among others, post transcriptional regulation of gene expression (Yue et al., 2015) and RNA 

biogenesis and splicing (Alarcon et al., 2015a; Alarcon et al., 2015b; Dominissini et al., 

2012).

The genome in 3-Dimensions

Importantly, DNA methylation and its variants (hydroxymethylation, etc.), multiple post-

translational histone modifications and other types of epigenetic regulation, fail to fully 

characterize the epigenome and localized chromatin architecture at any given genomic locus. 

This is because the chromosomal arrangements in the interphase nucleus are not random and 

it is now generally accepted that genetic information is not only encoded in nucleotide 

sequence but also in the dynamic 3-dimensional organization of the genome. For example, 

loci at sites of active gene expression are more likely to be clustered together and positioned 

towards a central position within the nucleus, while heterochromatin and silenced loci are 

located towards the nuclear periphery (Cremer and Cremer, 2001; Duan et al., 2010). Thus, 

the spatial position of genomic sequences provides a critically important layer of regulation 

in eukaryotic cells. Furthermore, chromosomal loopings are associated with transcriptional 

regulation by permitting direct interaction between distal DNA elements, often separated by 
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many kilobases along the linear genome (Gaszner and Felsenfeld, 2006; Sanyal et al., 2011; 

Wood et al., 2010).

Some interactions influence fundamental biological processes such as imprinting (Zhang et 

al., 2014) and dysregulated higher order chromatin is also thought to contribute to disease, 

for example Cornelia de Lange Syndrome (CdLS). With an estimated incidence of 1:10–

30,000 live births, CdLS is among the more frequent genetic disorders (source http://

ghr.nlm.nih.gov). CdLS is associated with a range of neuropsychiatric symptoms, including 

various manifestations of psychosis (Moss et al., 2008), and is likely to be caused by 

mutations in the cohesin complex (Deardorff et al., 2012; Gervasini et al., 2013), which 

functions to promote the physical interaction of distal promoters and enhancers to regulate 

gene expression (Kagey et al., 2010).

The full extent to which the 3-D structure of chromatin influences cell function is unclear 

and awaits further investigation using novel technologies (Cattoni et al., 2015). Over the last 

decade, several approaches have been developed to determine the frequency with which any 

two loci in the genome are in close enough physical proximity to interact. All of these 

approaches are based on Chromosome Conformation Capture (3C) (Dekker et al., 2002). 

Using 3C and its iterations, thousands of significant long-range interactions between gene 

promoters and distal loci have been identified (Sanyal et al., 2012). Importantly, ligation-

based chromosome conformation capture is a technique that is applicable to postmortem 

brain (Mitchell et al., 2014b).

The neuroepigenome in development

Unlike the underlying genome, the composition of the epigenome can be dynamically 

modified during development and both histones and DNA can display the hallmarks of 

epigenetic modification (Zhou et al., 2011a). The epigenome is, therefore, variable, and this 

variability is a major determinant of the distinct patterns of gene expression observed across 

a wide array of developmental stages, cell lineages, and environmental conditions (Bernstein 

et al., 2007). Lister and colleagues examined both mouse and human frontal cortex during a 

broad range of developmental stages and demonstrated that widespread reconfiguration of 

the methylome occurs during fetal to young adult development. During this period (when 

synaptogenesis and synaptic pruning are at their peak), highly conserved non-CG 

methylation (mCH) accumulates in neurons, but not glia, to become the dominant form of 

methylation in human neurons (Lister et al., 2013). More recently, genome-wide analysis 

examined DNA methylation in human fetal brain samples, ranging from 23 to 184 days post-

conception (Spiers et al., 2015). Significant changes in DNA methylation during brain 

development were observed, characterized by an enrichment of hypomethylated loci with 

fetal age. Moreover, during early postnatal development, high levels of non-CpG 

methylation and hydroxymethylation accumulate in neurons (Gabel et al., 2015; Kinde et al., 

2015). Furthermore, Shulha and co-workers examined a histone modification marker of 

promoters - H3K4 trimethylation (H3K4me3) - in chromatin isolated from neurons of 

subjects across a developmental spectrum ranging from late in gestation to 80 years of age. 

Their work revealed that histone methylation is highly dynamic during the late prenatal 
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period and the first year after birth, and that this trend is maintained throughout life, albeit 

with increasingly slower kinetics over time (Shulha et al., 2013).

Zhu and co-workers examined multiple epigenomic marks in twenty-nine different tissue 

and cell types, including six distinct brain regions (anterior caudate, cingulate gyrus, 

hippocampus, middle inferior temporal lobe, mid-frontal lobe and substantia nigra) (Zhu et 

al., 2013). Assays included analysis of H3K4methylation and H3K9 and H3K27 methylation 

and acetylation. Histone modifications associated with diverse regulatory and epigenetic 

functions across different developmental stages, lineages, and cellular environments were 

identified, emphasizing the need to carry out cell- and tissue-specific analysis in pursuit of a 

more comprehensive understanding of the mechanisms underlying development, normal 

cellular function and disease. Interestingly, neurons have been shown to display a distinctive 

DNA methylation profile with greater inter-individual variation when compared with non-

neurons (Iwamoto et al., 2011).

The role of the neuroepigenome in schizophrenia

Numerous studies link dysregulation of the epigenome to disease [for examples see 

(Robertson, 2005) (Mirabella et al., 2015)] such as cancer (Deb et al., 2014), heart disease 

(Zhang and Liu, 2015) and metabolic disorders (Martinez-Jimenez and Sandoval, 2015). In 

addition, a number of groups have attempted to assess the role of the epigenome in the 

etiology of neurological disorders, including autism (Shulha et al., 2012a), addiction (Zhou 

et al., 2011b), Huntington’s disease (HD) (Bai et al., 2015), multiple sclerosis (MS) (Huynh 

et al., 2014) and Alzheimer’s disease (De Jager et al., 2014) (Lunnon et al., 2014).

Over the past decade an increasing number of studies have also investigated a role for the 

epigenome in the etiology of SCZ, with initial work focusing on the impact of differential 

methylation on the expression of specific genes, such as Reelin (RELN) (Grayson et al., 

2005) (Abdolmaleky et al., 2005), membrane-bound catechol-O-methyltransferase (COMT) 

(Abdolmaleky et al., 2006), Sex Determining Region Y-Box 10 (SOX10) (Iwamoto et al., 

2005), serotonin receptor 2A (HTR2A) (Abdolmaleky et al., 2011) and 1A (HTR1A) 

(Carrard et al., 2011), brain-derived neurotrophic factor (BDNF) and the dopamine 

transporter (DAT1) (Kordi-Tamandani et al., 2012) (Table 1).

With the advent of new, cost effective, genome-wide approaches, more recent endeavors 

have attempted to assess links between the neuroepigenome and disease in an unbiased, 

global, manner. By examining 12,000 CpG islands in the frontal cortex of SCZ cases (n=35), 

Mill and colleagues revealed differential DNA methylation in genes associated with 

glutamatergic and GABAergic pathways when compared to controls (n=35) (Mill et al., 

2008). DNA methyltransferase1 (DNMT1) and ten-eleven translocase methylcytosine 

dioxygenase1 (TET1) belong to families of enzymes that methylate and hydroxymethylate, 

respectively, CpG islands of many gene promoters. Overexpression of DNMT1 and TET1 
was observed in the brain of SCZ and Bipolar (BP) patients coupled with increased binding 

of DNMT1 to a subset of GABAergic (e.g. GAD1) and glutamatergic (e.g. BDNF-IX) 

promoters (Dong et al., 2014). The GAD1 regulatory network plays a role in chromatin 

regulation and cell cycle control and, more recently, hypermethylation of components of the 
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GAD1 family has been implicated in SCZ and BP (Ruzicka et al., 2015). Interestingly, the 

increased binding of DNMT1 to GABAergic and glutamatergic promoters was detected in 

the cerebral cortex but not in the cerebellum, suggesting a brain region specific mechanism 

and further emphasizing the need to carry out cell- and tissue-specific analysis when 

studying disorders of the brain (Dong et al., 2014). For further information on the role of 

GAD1 in SCZ see (Mitchell et al., 2014c).

Pidsley and colleagues assessed levels of DNA methylation in two brain regions (prefrontal 

cortex and cerebellum) from SCZ patients and controls (Pidsley et al., 2014). Differentially 

methylated loci were identified in regions of the genome rich in genes implicated in 

neurodevelopment. In addition, genome-wide methylation and gene expression profiles of 

brain tissue (cerebellum) from controls (n=43), BP patients (n=36) and patients with SCZ 

(n=39) identified a strong correlation between gene expression and methylation for a number 

of genes, including nescient helix-loop-helix 1 (NHLH1) (a.k.a. NSCL1) (Chen et al., 

2014a) a gene expressed during neurodevelopment (Lipkowitz et al., 1992). Genome-wide 

analysis of CpG methylation sites (27,578 CpGs spanning 14,495 genes) of human 

postmortem tissue isolated from the dorsolateral prefrontal cortex (DLPFC) of healthy 

controls and individuals with SCZ, identified aberrant DNA methylation at 107 CpG sites 

associated with SCZ. Of these sites, 73.8% were hypermethylated. Furthermore, a large 

number of cis-methylation quantitative trait loci (mQTL) were identified, including 

associations with known SCZ risk variants (Numata et al., 2014). Similarly, Wockner and 

colleagues compared DNA methylation of the frontal cortex between cases with SCZ (n=24) 

and controls (n=24) (Wockner et al., 2014). 2929 differentially methylated genes were 

found, of which 1291 (44%) were located in CpG islands and 817 (17.1%) in promoter 

regions. More than 100 of these genes overlap with a previous DNA methylation study of 

peripheral blood from SCZ patients in which 27,000 CpG sites were analyzed (Nishioka et 

al., 2013) demonstrating that, while analysis of peripheral cells can be informative, directly 

studying cells of the brain is likely to provide a more thorough understanding of brain 

function. Indeed, early analysis has provided evidence that SCZ single nucleotide 

polymorphisms (SNPs) might have a pleotropic effect on the epigenomic regulation of gene 

expression in other tissues besides the brain (PGC-SCZ, 2014), however, the enrichment is 

expected to be lower in tissues other than the organ of interest (i.e. brain). Similar to SCZ, 

widespread changes in DNA methylation have also been observed in BP. Genome-wide 

DNA methylation profiling using methylated DNA immunoprecipitation followed by 

sequencing (MeDIP-seq) uncovered differentially methylated regions (DMRs) in two brain 

regions (frontal cortex and anterior cingulate) of SCZ (n=5) and BP (n=7) relative to 

controls (n=6). In SCZ and BP, the different brain regions display distinct patterns of 

methylation, with hypomethylation observed in the frontal cortex while the anterior 

cingulate displayed extensive hypermethylation (Xiao et al., 2014). Interestingly, DMRs in 

the same brain regions from SCZ and BP could successfully distinguish BP and/or SCZ 

from normal controls while differentially expressed genes could not (Xiao et al., 2014). 

Aberrant modification of histones has also been implicated in neuropsychiatric disorders. 

H3K9me2 is associated with a restrictive chromatin state, leading to reduced levels of 

transcription. Chase and colleagues demonstrated, by immunoblotting, an increase of 

H3K9me2 in the parietal cortex of cases with SCZ compared to controls and showed that 
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increased histone methyltransferase (HMT) mRNA transcript levels correlated with the 

severity and duration of symptoms of SCZ, as well as family history (Chase et al., 2013).

In addition to methylation etc., alterations in chromosomal loop structures have also been 

implicated in disease, having been shown to affect expression of GABA synthesis genes 

(Bharadwaj et al., 2013), NMDA glutamate receptor subunits (Bharadwaj et al., 2014) and 

the calcium channel gene CACNA1C (Roussos et al., 2014) in the prefrontal cortex of 

subjects with SCZ. Long-range intrachromosomal interactions, therefore, offer an additional 

explanation for the initially surprising finding that many SCZ risk loci reside within non-

coding sequences.

Taken together, the data supports a major role for brain-region and cell-type-specific 

epigenomic differences in the pathogenesis of neuropsychiatric disorders, including SCZ. It 

is also evident that tissue and cell-type specific assays are essential if a thorough 

understanding of the underlying genetic causes of SCZ is ever to be achieved. The majority 

of studies to date have employed microarrays to examine CpG methylation. In order to 

generate a more complete picture of the role of the epigenome in normal development and 

disease, the study of other epigenetic modifications using newer technologies that assess the 

neuroepigenome, genome-wide, is required (Maunakea et al., 2010). This strategy holds the 

promise to elucidate the function of non-coding, disease-associated loci, and moves towards 

the development of testable hypotheses regarding biological processes involved in the 

pathogenesis of SCZ and other disorders. For further information see the following reviews 

and the references therein: (Keverne, 2014) (Svrakic et al., 2013) (Gavin and Floreani, 2014) 

(Akbarian, 2014) (Jakovcevski and Akbarian, 2012).

As is the case with most studies of SCZ the potential influence of treatment with 

antipsychotic drugs cannot/should not be overlooked. A case in point is a recent study by 

Melka et al. (2014) that showed increased (~1,200 genes) and decreased (~550 genes) 

methylation of genes in multiple brain regions of rats treated chronically with therapeutic 

relevant doses of the antipsychotic drug olanzapine (Melka et al., 2014).

Recent large-scale efforts to study the non-coding genome

Large-scale, coordinated, efforts are required to systematically explore the regulatory 

function of the non-coding genome. Projects such as ENCyclopedia Of DNA Elements 

(ENCODE) project (ENCODE Project Consortium, 2012) (Bernstein et al., 2012; Maurano 

et al., 2012), the NIH Roadmap Epigenome Mapping Consortium (REMC) (Bernstein et al., 

2010; Roadmap Epigenomics et al., 2015) and FANTOM5 (Andersson et al., 2014) have 

made great strides towards providing a detailed catalogue of CREs in the human genome. As 

in other common diseases, SCZ-associated variants are enriched in these functional non-

coding elements (Roussos et al., 2014). In particular, genetic variants associated with SCZ 

overlap CRE subgroup annotations in specific cell types in the brain that define active 

enhancers and promoters (e.g. histone modification H3K4me3), and within the broad 

functional class of deoxyribonuclease I (DNase I) hypersensitive sites (DHSs) (Gusev et al., 

2014). Importantly, the enrichments are specific for cell types related to the disease 

(Maurano et al., 2012; Trynka et al., 2013). Therefore, integrating functional information 
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with genetic association data has been shown to be a useful tool to improve fine-mapping 

accuracy, as well as to provide insights into the underlying biological mechanisms by 

identifying relevant tissue-specific functional elements (Gusev et al., 2014; Kichaev et al., 

2014; Pickrell, 2014).

However, application of existing epigenome data is challenging and limited for several 

reasons. First, ENCODE (Bernstein et al., 2012; Maurano et al., 2012) focused primarily on 

various actively dividing cell lines and tissues: no brain tissue specimens were included. 

Thus, findings from the ENCODE project will require follow-up work utilizing human brain 

tissue. Second, REMC (Roadmap Epigenomics et al., 2015; Zhu et al., 2013) assessed 

multiple chromatin modification markers, including assays for promoters and enhancers and, 

third, FANTOM5 generated annotations for enhancers using cap analysis gene expression. 

Both REMC and FANTOM5 employed assays using cell-type nonspecific brain tissue 

homogenates from a small number (N<3) of control brains only. Within brain tissue, 

however, neurons are intermingled with, and outnumbered by, multiple types of non-

neuronal cells (microglia, oligodendrocytes and astrocytes). This is important, since SCZ-

associated abnormalities have been demonstrated in specific cellular populations, including 

neocortical neurons (Benes et al., 2001; Chen et al., 2014b; Rajkowska et al., 2001), 

astrocytes (McCullumsmith et al., 2015; Schnieder and Dwork, 2011), oligodendrocytes 

(Haroutunian et al., 2014; Mighdoll et al., 2015; Roussos and Haroutunian, 2014) and 

microglia (Bernstein et al., 2015). Furthermore, CRE-mediated epigenetic regulation shows 

cell type specificity (Cheung et al., 2010; Heintzman et al., 2009; Maurano et al., 2012; 

Roadmap Epigenomics et al., 2015). Therefore, the study of mixed cell populations can 

mask cell-type specific signals. In addition to cell-type specific annotations, inclusion of 

functional data from large sample sized sets of controls and cases will provide sufficient 

statistical power to identify robust differences in CREs altered in psychiatric disorders, as 

well as measuring the effect of genetic variants on the cis regulation of gene expression.

Ongoing efforts from large brain-focused consortia, including the CommonMind 

Consortium and PsychENCODE aim to generate detailed region- and cell-type specific 

annotation maps of the transcriptome and epigenome, and to identify alterations associated 

with neuropsychiatric diseases. The goal of the CommonMind Consortium 

(www.synapse.org/cmc) is to generate and analyze large-scale transcriptome data from brain 

specimens of controls subjects and cases with SCZ and BP. The PsychENCODE consortium 

was recently established to study the epigenome landscape of neuropsychiatric diseases 

(Akbarian et al., 2015). The project focuses on 3 neuropsychiatric diseases (autism spectrum 

disorder, BP and SCZ). PsychENCODE aims to characterize the epigenome landscape of the 

brain in a large cohort of cases and controls, as well as to functionally characterize disease-

associated regulatory variants in model systems. Completion of large projects focusing on 

the neuroepigenome will shed light onto the regulatory mechanisms of SCZ-associated 

variants.
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Future approaches to better characterize the non-coding regulatory regions 

of the genome

In the following section we outline ongoing and future approaches to analyze dynamic 

modifications of chromatin and further our understanding of the structure and function of 

non-coding regulatory regions of the genome. Ideally, such approaches will facilitate the 

study of the neuroepigenome at a cell-type specific resolution while utilizing low amounts of 

input material.

Cell-type specific analysis within the postmortem brain

In cortical gray matter, significant differences are observed when comparing the distribution 

of trimethylated histone H3K4 (H3K4me3) in neurons (identified using an antibody against 

the neuron-specific antigen, NeuN) to that of non-neurons (NeuN-) in cell populations 

residing in the same tissue, the prefontal cortex (PFC) (Cheung et al., 2010; Shulha et al., 

2012b). Therefore, the study of homogenous cell populations may fail to distinguish signals 

unique to specific cell-types, potentially missing critical changes in discrete cell populations. 

To overcome these limitations it is, therefore, necessary to conduct cell-type specific 

epigenome studies. Working with frozen postmortem tissue presents unique challenges, 

however, including loss of cytoplasm (and, with it, many cell-specific antigens) as a 

consequence of freeze-thawing, compromise of tissue integrity due to variable postmortem 

interval (PMI) and diverse agonal and pre-agonal events, impacting the quality of biological 

material. The isolation of cell-specific nuclei is hampered by a limited repertoire of available 

antibodies against cell-type specific nuclear antigens. Despite this, Jiang and colleagues 

developed a fluorescence-activated cell sorting (FACS)-based method for separating 

neuronal and non-neuronal nuclei from frozen brain samples using the anti-NeuN antibody 

(Jiang et al., 2008). Similar cell-type specific nuclear antigens are increasingly being utilized 

to isolate other brain cell populations (for example glutamatergic and GABAergic neurons 

(Kozlenkov et al., 2015)), ultimately allowing for the generation of comprehensive region 

and cell-specific maps of the neuroepigenome from frozen postmortem brain tissue. Coupled 

with advances in genomics and increased data generation from small numbers of cells, 

conducting cell-type specific analysis of the epigenome with limited amounts of human 

brain tissue is becoming increasingly achievable.

Whole-genome bisulfite sequencing

DNA methylation is critically important to regulate gene expression and cellular functions 

(Bibikova and Fan, 2010). So far, various techniques have been developed to profile DNA 

methylation but most do not allow for measuring methylation status in large sample sets at 

high resolution and may be insensitive to subtle, disease associated, methylation changes. 

By treating DNA with bisulfite it is possible to introduce specific DNA sequence changes 

based on the methylation status of individual cytosine residues. The development of 

genome-wide DNA methylation profiling technologies has made it possible to interrogate 

DNA methylation status over large genomic regions. Lister et al. compiled the first genome-

wide, single-base resolution, methylation map using whole-genome bisulfite sequencing 

(WBBS) covering more than 90% of the approximately 28.7 million CpGs in the human 
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genome (Lister et al., 2009). However, this accuracy and resolution demands much higher 

sequencing reads which is, for the time being, expensive.

Chromatin immunoprecipitation followed by sequencing

Chromatin immunoprecipitation (ChIP) is a method to identify fragments of genomic DNA 

bound by a particular protein. ChIP works by enriching specific crosslinked DNA-protein 

complexes using an antibody against the protein of interest, such as a transcription factor 

(Mahony and Pugh, 2015). Provided the appropriate antibody exists, ChIP can also be 

employed to isolate DNA bound by modified proteins (e.g. methylated or acetylated 

histones). ChIP-seq combines DNA fragment isolation by ChIP with next-generation 

sequencing in order to measure the genome-wide distribution of DNA binding proteins. 

Numerous studies have employed ChIP-seq approaches to further our understanding of 

transcription, the epigenome and the neuroepigenome (Maze et al., 2014). Traditionally, 

ChIP-seq protocols have required relatively large amounts of sample (~10 million cells), 

limiting their application to the study of readily available tissue (Huang et al., 2006) (Furey, 

2012). In addition, these approaches have traditionally employed tissue homogenates, 

thereby failing, by necessity, to address the cellular diversity found in the brain (Mitchell et 

al., 2014a). However, an increasing number of new methods have become available that are 

compatible with low-input (Adli and Bernstein, 2011; Brind’Amour et al., 2015; Jakobsen et 

al., 2015; Lara-Astiaso et al., 2014; Ng et al., 2013; Schmidl et al., 2015; 

Shankaranarayanan et al., 2011; Zwart et al., 2013). Coupled with FACS, these approaches 

facilitate the application of ChIP-seq to the study of low abundance cell-types in relatively 

small amounts of tissue.

Open chromatin assays to identify potential cis regulatory elements

The nucleosome is known to play a central role in regulating gene transcription from 

promoters and exists in a dynamic equilibrium between open and closed states (Mellor, 

2005). Nucleosome rearrangement (leading to open chromatin) at promoters and enhancers 

results from the binding of specific regulatory factors responsible for transcriptional 

activation (Henikoff, 2008). Open or accessible regions of the genome are regarded as 

primary positions for regulatory elements and are crucial in mediating gene expression (John 

et al., 2011). Approaches such as DNase-seq (DNaseI hypersensitivity regions) (Song et al., 

2011) or FAIRE-seq (Formaldehyde Assisted Isolation of Regulatory Elements) (Simon et 

al., 2012), have been utilized to map open chromatin (Maurano et al., 2012), however, these 

techniques are limited in that they require large amounts of input material, thereby 

prohibiting cell type specific studies where source material is limiting. More recently, a 

tagmentation based method called Assay for Transposase Accessible Chromatin followed by 

Sequencing (ATAC-seq) has been developed (Buenrostro et al., 2013). ATAC-seq employs a 

transpososome complex to insert oligonucleotides into regions of the genome that are 

sufficiently open to facilitate its entry. The oligonucleotides then provide a means of 

generating, via polymerase chain reaction (PCR), sequencing libraries enriched for open 

chromatin with sufficient resolution to map transcription factor occupancy and nucleosome 

positions in regulatory sites. ATACseq offers substantial advantages over DNase-seq or 
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FAIRE-seq due to its speed, simplicity, and low input cell number requirement (~50,000 

cells).

Refining the search to identify active enhancer elements

All of the aforementioned approaches allow for the genome wide identification of potential 

regulatory elements, however, they fail to provide a direct functional readout of the activity 

of these elements. In order to fully understand the genetics underpinning brain development 

and function in health and disease, it will be necessary to distil down this broad inventory of 

putative regulatory elements to a list of the most salient actors. Several different 

methodologies render this goal possible. Techniques such as STARR-seq (Self-Transcribing 

Active Regulatory Region sequencing) (Arnold et al., 2013) and FIREWACh (Functional 

Identification of Regulatory Elements Within Accessible Chromatin) (Murtha et al., 2014), 

allow for the identification of active cell-type specific regulatory elements from libraries of 

fragmented, or pre-selected, DNA, enabling the rapid screening of entire genomes, reviewed 

in (Dailey, 2015). STARR-seq and FIREWACh take advantage of the observation that 

enhancers can work independent of their relative locations and both methods use reporter 

assays to interrogate DNA populations for elements capable of driving transcription. By 

directly coupling candidate sequences to enhancer activity these approaches enable the 

evaluation of millions of DNA fragments in a single experiment. A critical consideration 

with each approach, however, is the relevance of the cells used to carry out the assay and the 

transcriptional programs therein.

Linking the activity of enhancers to specific genes

Having identified active cis regulatory elements within a given cellular context, the next 

requirement would be to assign their activities to a specific gene, or set of genes. 

Chromosome conformation capture (3C) based methodologies are a useful tool towards this 

purpose, as they allow for the identification of physical interactions between distal genetic 

elements, e.g. between a gene and an enhancer (Naumova et al., 2012; Simonis et al., 2007), 

and can range from target-specific (3C) to unbiased, genome-wide, approaches (Hi-C) 

(Dekker et al., 2013). 3C involves cross-linking of interacting DNA segments, followed by 

digestion with a frequently cutting restriction enzyme. Digested DNA is then re-ligated, 

cross-links are reversed and the resulting 3C library subjected to PCR using primers that 

flank putative ligation junctions, thereby assessing the frequency at which otherwise distal 

genetic elements ligate to one another; a reflection of their physical proximity within 

chromatin. An increasing number of studies have applied 3-C based techniques to the study 

of neuropsychiatric disorders (Bharadwaj et al., 2014; Roussos et al., 2014) and they provide 

a direct means of identifying functional relationships between genes and cis regulatory 

elements.

The future of genome wide analysis of precious materials – less is more

A major limitation of traditional epigenomic approaches (e.g. ChIPseq) is the large number 

of cells required to generate high-quality data sets. The ATACseq method has recently been 

modified to allow profiling of chromatin accessibility at the resolution of single cells 
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(Buenrostro et al., 2015; Cusanovich et al., 2015). A number of new approaches now allow 

for the performance of ChIP-seq, genome wide transcription factor binding and methylome 

analysis using as little as 1000 cells (Adli and Bernstein, 2011; Adli et al., 2010; 

Brind’Amour et al., 2015; Schmidl et al., 2015). Furthermore, additional tagmentation-based 

methodologies have been developed to facilitate analysis of the complete methylome by 

whole-genome bisulfite sequencing, requiring as little as 10ng of input DNA (~3000 cells) 

(Adey and Shendure, 2012; Lipka et al., 2014; Wang et al., 2013). For more information on 

low input approaches see (Greenleaf, 2015).

Although a number of tissue repositories exist worldwide, well-characterized and clinically 

relevant material is a critical and very precious resource. It is, therefore, imperative to utilize 

approaches that can minimize input while maximizing informational yield. All of these low-

input approaches, when combined with chromatin-state capture methods and next generation 

sequencing, portend the near-future prospects of understanding the neuroepigenome, not 

only with cell-type specificity, but in the context of anatomically discrete brain regions and 

nuclei. These improved methods will not only increase our knowledge of the normal 

functions of the brain during the lifespan of an individual, but will provide a deep and 

functional genomic understanding of the neurobiology of brain diseases, including 

schizophrenia and bipolar disorders.
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Table 2

Overview of large-scale epigenomics projects

Project Source material Case/Control Comparison Methods employed Reference

ENCODE cell lines N 5C, RNA-seq, CAGE, RNA-PET, 
ChIA-PET, ChIP-seq, CLIP-seq, 

DNase-seq, FAIRE-seq, RRBS, WGBS

(ENCODE 
Project 
Consortium, 
2012)

REMC stem cells, postmortem 
tissue, cell lines

N WGBS, ChIP-seq, RNA-seq (Bernstein et al., 
2010)

Fantom 5 tissues, primary cells, cell 
lines

N DAGE, DNase-seq, ChIP-seq 
(H3K4me1, H3K27ac)

(Andersson et 
al., 2014)

PsychENCODE postmortem brain, iPSCs Y ChIP-seq (H3K4me3, H3K27ac), 
ATAC-seq, 3C, STARR-seq, WGBS, 
RNA-seq, NOME-seq, MWA-RPPA

(Akbarian et al., 
2015)

3C: Chromosome conformation capture

5C: Carbon-Copy Chromosome Conformation Capture

ATAC-seq: Assay for Transposase Accessible Chromatin followed by Sequencing

CAGE: cap analysis of gene expression

ChIA-PET: Chromatin Interaction Analysis by Paired-End Tag Sequencing

ChIP-seq :chromatin immunoprecipitation followed by sequencing

CLIP-seq: cross-linking immunoprecipitation sequencing

DNase-seq: deoxyribonuclease I (DNase I) hypersensitive site sequencing

FAIRE-seq: Formaldehyde assisted identification of regulatory elements followed by sequencing

FIREWACh: Functional Identification of Regulatory Elements Within Accessible Chromatin

H3K27ac: histone 3 Lysine 27 acetylation

H3K4me1: histone 3 Lysine 4 monomethylation

H3K4me3: histone 3 Lysine 4 trimethylation

iPSCs: induced pluripotent stem cells

MWA-RPPA: micro-western arrays coupled with reverse-phase protein arrays

NOMe-seq: Nucleosome occupancy and methylome sequencing

RNA-PET: RNA Paired-End tags

RNA-seq: RNA sequencing

RRBS: Reduced representation bisulphite sequencing

STARR-seq: Self-transcribing active regulatory region sequencing

WGBS: Whole genome bisulfite sequencing
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