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Abstract

In CASP11, the organizers sought to bring the biological inferences from predicted structures to 

the fore. To accomplish this, we assessed the models for their ability to perform quantifiable tasks 

related to biological function. First, for 10 targets that were probable homodimers, we measured 

the accuracy of docking the models into homodimers as a function of GDT-TS of the monomers, 

which produced characteristic L-shaped plots. At low GDT-TS, none of the models could be 

docked correctly as homodimers. Above GDT-TS of ~60%, some models formed correct 

homodimers in one of the largest docked clusters, while many other models at the same values of 

GDT-TS did not. Docking was more successful when many of the templates shared the same 

homodimer. Second, we docked a ligand from an experimental structure into each of the models of 

one of the targets. Docking to the models with two different programs produced poor ligand 

RMSDs with the experimental structure. Measures that evaluated similarity of contacts were 

reasonable for some of the models, although there was not a significant correlation with model 

accuracy. Finally, we assessed whether models would be useful in predicting the phenotypes of 

missense mutations in three human targets by comparing features calculated from the models with 

those calculated from the experimental structures. The models were successful in reproducing 

accessible surface areas but there was little correlation of model accuracy with calculation of 

FoldX evaluation of the change in free energy between the wild type and the mutant.
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Introduction

Protein structure prediction has long been a tool in the biological sciences, since the 

structures of the first proteins were determined.1–3 Even in what is widely believed to be the 

first application of template-based modeling (in 1969), the prediction of the structure of α-

lactalbumin from the structure of lysozyme,4 the model was used to interpret existing 

experimental data indicating that α-lactalbumin binds (non-catalytically) a shorter 
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polysaccharide than lysozyme due to a truncated binding site. In another early example 

(1980), Greer used template-based modeling of haptoglobin, a pseudo-protease, based on 

combining the experimental structures of trypsin, elastase, and chymotrypsin primarily to 

infer potential binding sites on haptoglobin of an αβ heterodimer of hemoglobin.5 The 

model was used subsequently to interpret proteolysis data to identify the hemoglobin 

binding site,6 which has only very recently been confirmed with an experimental structure of 

haptoglobin bound to hemoglobin.7

Protein structure prediction, like experimental structure determination, can be used as a key 

to understanding the biological function of proteins. But the biological function of a protein 

may have several different meanings. One way to define it for a specific protein is the set of 

molecules with which the protein interacts and the subsequent biological effects of these 

interactions. Several examples may be given: a protein may bind DNA at specific sites and 

enhance transcription through interactions with an RNA polymerase; an enzyme binds its 

substrate(s) and causes a chemical reaction to occur; a protein may bind to a second protein, 

and activate (or inhibit) the function of the binding partner, whatever that may be. In some 

cases, structural information may be helpful in predicting a binding partner or in 

determining what the downstream effect of binding may be. But it is much more common 

that structural information is used to determine how a protein accomplishes binding to 

known partners (e.g., what regions of a protein are utilized) and what that binding may do to 

either or both partners (e.g., conformational or dynamic changes) so that some further effect 

is accomplished. Such structural information may provide a rationale for the effects of 

alteration of either protein in the form of post-translational modifications or mutations. Even 

when structure does not provide a direct answer to these questions, it may be used to 

generate testable hypotheses and experiments to provide such answers. Given this 

description of functional inference from structure, in this paper we have utilized data from 

the CASP11 experiment to evaluate the utility of protein structure prediction in biology and 

medicine related to binding events and the effects of mutation on binding. Through the 

Molecular Modeling Facility at the Fox Chase Cancer Center, we have extensive experience 

in using protein structure prediction in similar tasks in cancer biology.8–17

The utility of protein structure prediction for biological inference as described above is 

difficult to quantify and to benchmark. Many uses of structure prediction do not lend 

themselves to quantitative assessment, although there are several that do. Yue et al.18 

compared the sequence identity of templates with the accuracy of a structure-based 

phenotype predictor with template-based modeling with the SCWRL3 program.19 They 

found similar accuracies of experimental structures and models for templates with sequence 

identity above 40%, while accuracy fell especially when sequence identity was below 30%. 

Yates et al. have recently studied the utility of predicted structures for the prediction of 

missense mutation phenotypes.20 Vakser et al. have studied the accuracy of protein-protein 

docking given predicted structures at different RMSDs from the native monomers21 and 

created extensive sets of homology models of monomers at different RMSDs from native 

suitable for future benchmarking of docking methods.22 Several groups have studied the 

accuracy of ligand docking on predicted structures.23–26 Previous studies have suggested 

that homology models constructed with >50% sequence identity are accurate enough for 

structure-based drug design, and those with >30% identity can be used to assess the 
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druggability of a target.27,28 Conversely, Bordogna et al. concluded that there is no 

relationship between model quality and docking accuracy but they suggested that using 

flexible binding site residues could have a large impact on effectiveness.24 In most of these 

studies, the procedure was to utilize a single structure prediction protocol on a set of proteins 

and to compare the results of functional predictions (docking, phenotypes) with those of the 

experimental structures. However, few of these studies employed comparison of ensembles 

of models of the same protein and quantified the relationship of functional predictions with 

the accuracy of the models.

In previous CASPs, function prediction and ligand-binding site prediction have been 

assessed. Function prediction was attempted in CASP629 and CASP730 but turned out to be 

very difficult given the limited amount of functional information that was available for the 

CASP targets, many of which were proteins of unknown function from structural genomics 

projects. In CASP8,31 CASP9,32 and CASP10,33 the experiments were restricted to 

prediction of binding sites for small ligands, which met with more success since the 

experimental structures contained ligands so that binding site predictions could be assessed 

quantitatively.

In CASP11, the organizers sought to emphasize the biological implications of structure 

prediction by asking the authors of experimental structures in CASP to provide their 

rationale for pursuing structure determination. In a limited number of targets, this 

information was provided by the depositors and subsequently given to the predictors who 

could use the information as they saw fit. The information ranged from interest in the 

oligomeric structure of the protein, the positions of ligands in the experimental structure, and 

structural explanations of missense mutations associated with disease. In addition, many 

targets for which no information was provided by the authors fall into the same categories if 

publicly available annotations are considered. In this paper, we provide a quantitative 

analysis between the accuracy of protein structure models and their utility in three common 

tasks, related to biological function as described above, that can be quantitatively evaluated: 

protein-protein docking; ligand docking; and prediction of missense mutation phenotypes.

We have assessed the utility of models in protein-protein docking by applying the program 

ClusPro34,35 on predicted monomer structures to generate models of homodimers, which if 

successful would be similar to homodimers identified as probable biological assemblies in 

the crystal structures of CASP11 targets. ClusPro applies fast Fourier transforms to search a 

six-dimensional space of rotations and translations of the relative positions and orientations 

of two proteins, and scores docked complexes with a function consisting of attractive and 

repulsive van der Waals terms, an electrostatic term, and a pairwise amino acid contact term 

parameterized on known dimer structures.34 ClusPro is fast, implemented as a web service, 

and has performed well in blind tests of protein-protein docking.35 As such, it is highly 

suitable for the experiment on CASP11 structures that we describe here. To assess the utility 

of the CASP11 models in docking, we measured the similarity of contacts in the ClusPro 

homodimer models with those in the experimental structure. The similarity of contacts was 

measured by the Q score,36,37 which is a form of Jaccard similarity38,39 and we investigated 

the relationship of Q with model accuracy in the form of the GDT-TS score and other CASP 

accuracy measures.
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As a measure of evaluating the usefulness of modeling in drug design, we performed 

docking calculations on target T0805 with the programs SwissDock40 and AutoDock 

Vina,41 both of which are freely available for academic use as web services. T0805 is an 

oxygen-insensitive nitroreductase called Rv3368 from M. tuberculosis, which has a bound 

flavodoxin in the unpublished crystal structure. The best templates are 27% identical in 

sequence. In the docking calculations with AutoDock Vina, we treated both the flavodoxin 

ligand and the protein receptor as flexible. In the SwissDock calculations, only the ligand 

was flexible. We compared both RMSD of the docked ligand position from the position in 

the experimental structure and also the similarity of the contacts of the docked ligand and 

the native structure based on a Jaccard similarity.

Missense mutation predictors that use protein structure employ a variety of features, but one 

of the most common is the relative surface accessibility of residues in monomeric or 

oligomeric structures.42,43 Since we have lists of disease-associated mutations for three 

human proteins in CASP11 and few or no neutral mutations in these proteins, we have 

compared the predicted solvent accessibilities of these mutations with the experimental 

structures and assessed the root-mean-square deviation of these predictions as a function of 

structure prediction accuracy scores. As an alternative method of assessing the biophysical 

consequences of mutations, we calculated the change in Gibbs free energy of mutation using 

FoldX44 for each mutation in the predicted structures. FoldX quantitatively estimates the 

effects of interactions on the stability of proteins and protein complexes. We performed 

similar calculations on all residues in these three proteins.

Finally, we highlight some predicted structures that generate reasonable hypotheses on how 

some CASP targets may function in ways that are similar to what one might generate from 

the experimental structures. In these few cases, the real answer is not yet known, so this 

analysis is offered only as suggestive.

Results

Homodimer docking of predicted structures of monomers

For two of the CASP11 targets, the predictors were provided with information from the 

crystallographers that the structure of the dimer was a question posed for the structure 

determination. In one case, target T0759, the predictors were told that the structure was 

“Likely monomer, possibly dimer. Related to human cancer.” However, the experimental 

structure showed that the most likely dimeric interface in the crystal was in fact made up 

mostly of residues from the His tag, and thus this structure does not provide a suitable target 

for evaluating docking of models. For target T0792, the predictors were told “Main 

modeling interest lies in correct prediction of the dimer.” Several other targets are also 

probable homodimers in their crystal structures, giving us a set of target homodimers to 

evaluate.

We have focused on using the predictions of the monomer structures to assess the ability of a 

single docking program to produce good models of the dimers as a function of the accuracy 

of the structure prediction of the monomer. We excluded several targets that had ambiguous 

identification of the correct dimer in the crystal and we excluded probable tetramers as well. 
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This left us with a total of 10 CASP11 template-based-modeling (TBM) targets that turned 

out to be probable homodimers in the crystal structures, as determined by the authors and/or 

the program PISA,45 once they became available for analysis. These are listed in Table I. In 

all of these cases, the predictors were told that the likely oligomeric state was a dimer. 

However, all of the targets were available for servers only. Human groups were allowed to 

submit oligomeric structures of these targets for evaluation by the CAPRI team (Wodak et 

al., this issue), which we have not analyzed. Thus, we performed docking calculations on 

server-produced models of the CASP11 targets.

We utilized the ClusPro server35 to dock two copies of each predicted monomer structure for 

each target in Table I. ClusPro provide the centroids of approximately 20 of the largest 

clusters of docked models, sorted in order of decreasing size. We compared these structures 

with the experimental dimer in the crystal with the Q score that we derived to compare 

interfaces in multiple crystal forms of homologous proteins.36,37 Q measures the similarity 

of contacts in two different protein dimers, whether the proteins are identical in sequence or 

merely homologues. It penalizes over and under prediction of contacts and is dependent on 

the position of Cβ atoms (Cα for Gly), not side-chain positions.

The Q score is related to the Jaccard similarity coefficient or Jaccard index, invented by Paul 

Jaccard in 1901 to measure the overlap of species in different zones of the French alps.38,39 

In his case, the “coefficient of community” was the number of species common to two 

different zones divided by the number of species in either or both zones in total. The Jaccard 

index is widely used in bioinformatics and structural biology,46–48 for instance as a measure 

of sequence alignment accuracy compared to structure alignments.49 For comparing two 

interfaces, Q is the number of contacts that exist in both structures divided by the number of 

contacts contained in one or both structures. When counting, each contact is scaled by the 

similarity of the Cβ/Cβ distances in the model and the experimental structure with an 

exponential function (see Methods). The contacts are also weighted by the shorter of the 

distance in the predicted structure and the experimental structure, so that closer contacts 

count more than more distant contacts.

In order to mimic how models might actually be used to predict interfaces in actual 

applications when the answer is not known, we assessed the top 1, top 5 and top 10 docking 

models for each CASP predicted structure; we also performed docking with ClusPro on a 

monomer from each experimental structure. These are reasonable numbers that we would 

investigate with experimental collaborators, potentially narrowing down the list to 2–3 cases 

that might be probed by experimental mutagenesis (e.g., selected based on surface area, 

symmetry, sequence conservation, prior experimental data). The results for the target T0792, 

for which the dimer was the goal of structure determination,50 are shown in Figure 1, which 

demonstrates the relationship between three measures of structure prediction accuracy, GDT-

TS (Figure 1A), RMSD (Figure 1B), and LDDT (Figure 1C),51 and the best Q score of the 

top 10 cluster centroids provided by ClusPro. The results of using the experimental structure 

of the T0792 monomer are marked in each panel with a magenta circle. In each figure, we 

see an L-shaped distribution of points: the poorest models (e.g. GDT-TS<60%) are not able 

to achieve a good Q score in any of the ClusPro clusters; when GDT-TS is between 60 and 

70%, a subset of the models are able to achieve good Q scores (>0.3); however, many of the 
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models in the same range are not able to provide good predictions of the homodimer 

structure. Above GDT-TS ~ 73%, four models are all able to achieve high values of Q as 

does the experimental structure (Q=0.58). The RMSD (Figure 1B) and LDDT plots (Figure 

1C) show similar trends, with some structures with RMSD<2.2 Å and/or LDDT>0.5 able to 

achieve good docking results, while others in the same range do not.

We wondered if the success of docking might be more correlated with the accuracy of the 

predicted structure of the interface region than it was with the entire structure. We calculated 

GDT-TS of the interface region (GDT-TS_i) with the program LGA52 as well as the RMSD 

of the interface region (RMSD_i). The results (Figures 1D and 1E respectively) are very 

similar to the GDT-TS and RMSD of the whole structure (Figures 1A and 1B respectively). 

As expected, GDT-TS and GDT-TS_i are highly correlated (Figure 1F).

The results for the remaining 9 targets are shown in Figures 2, 3, and 4 which show the 

maximum Q score over the top 10 docked structures for each CASP monomer prediction as 

a function of GDT-TS (Figure 2) and GDT-TS_i (Figure 3), and the relationship between 

GDT-TS and GDT-TS_i (Figure 4). The results for the experimental structures are plotted as 

magenta circles. A common L-shaped pattern is evident in most of the plots in Figures 2 and 

3. The poorest models are not able to achieve a good Q score in any of the top clusters, while 

at some value of GDT-TS (Figure 2) or GDT-TS_i (Figure 3) above 60% (depending on 

target), many and sometimes most of the predicted monomeric structures are able to do so. 

However, in all cases, many of the models at the same values of GDT-TS or GDT-TS_i do 

not produce good homodimer models with ClusPro. The relationship between GDT-TS and 

GDT-TS_i (Figure 4) shows that for most targets, the interface is more accurate than the 

entire structure, and for some significantly so (T0852, T0851, T0849). For T0770 and 

T0843, the GDT-TS of the interface is worse than for the whole structure, and the 

distribution of Q is notably poor for these targets. The experimental structure (magenta 

points in Figures 2 and 3) achieved Q scores between 0.3 and 0.7, and in 6 out of 10 cases 

some models were able to achieve higher values of Q than the experimental structure.

In Figure 5, we show the percent of models that are able to achieve good Q scores in the 

largest ClusPro cluster, in the top 5 and top 10 largest clusters, and in all clusters (~20 per 

target). Two of the targets, T0801 and T0851 produced good homodimers for a majority of 

the CASP11 predicted monomer structures in the top 5, 10, and all ClusPro clusters, while 

T0770 produced none even though some predictors produced monomer structure models 

with GDT-TS>60% (Figure 2). Three other targets produced only a few good homodimer 

models. The RMSD and LDDT results are shown in the Supplementary Material.

We were curious about the very different success rates across the CASP11 targets, and 

hypothesized that it may have to do with the nature of the oligomers of the available 

templates for each target. We have developed a database called ProtCID (Protein Common 

Interface Database),37 which clusters similar interfaces of homologous proteins (both 

homodimers and heterodimers) in all of the available crystal forms in the PDB which 

contain the same Pfam domains.53 We have found that as the number of crystal forms that 

contain a particular dimer interface increases, especially if this dimer is in most of the 
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available crystal forms, it is more likely that the interface is the biologically relevant 

dimer.36

We searched ProtCID for the Pfams of the CASP11 targets, listed in Table I. The numbers of 

crystal forms of the largest clusters are listed in the table, along with the number of crystal 

forms available for that Pfam as well as the number of entries in the cluster and in the entire 

PDB. For instance, targets T0801 and T0843 are in Pfam DegT_DnrJ_EryC1, (DegT/DnrJ/

EryC1/StrS aminotransferases). This Pfam is found in 23 crystal forms and 45 PDB entries. 

The largest cluster of similar interfaces (shown in Figure 6A) comprises 22 crystal forms 

and 44 entries (including T0801 and T0843) and this dimer is annotated as the biological 

assembly in 40 entries (91%) by the PDB and all 44 entries by PISA. This same dimer is the 

biological dimer for the two CASP11 targets with this Pfam, T0801 (Figure 6B, PDB: 

4PIW) and T0843 (Figure 6C, PDB: 4XAU).

As another example, we compared the interfaces of T0792 (PDB: 5A49), which is not yet in 

ProtCID, built by the appropriate symmetry operators with the other 5 crystal forms in the 

PDB that contain the OST-HTH Pfam domain. This interface is found in PDB entry 3RCO 

(Structural Genomics Consortium, unpublished) and is part of the 24-mer biological 

assembly produced by PISA for 3RCO. The T0792 crystal interface is also identified as the 

likely biological assembly by PISA and by the authors who provided the T0792 target to 

CASP.50 The ClusPro T0792 dimer with the highest value of Q, the T0792 experimental 

dimer, and the similar 3RCO dimer are shown in Figures 6D, 6E, and 6F respectively.

Table I lists seven targets (including T0792) for which the homodimer assigned by the 

authors and/or PISA45 (T0801, T0776, T0843, T0819, T0851, T0792, T0849) also were 

contained in ProtCID clusters of homologous proteins. Only 5 of these were ProtCID 

clusters that contained the majority of all crystal forms (and hence templates) for that target 

(T0801, T0843, T0819, T0851, T0849). What is notable is that the models of four of these 

targets (all but T0849) were the most successful in the docking experiment (Figure 5). The 

reason is likely that the servers producing the models used templates in the PDB that had the 

same dimer as the experimental CASP structures, and that these modeled structures were in 

some sense primed to form the same homodimers in ClusPro. Three targets (T0764, T0770, 

and T0852, shown at the bottom of Table I) contained small clusters in ProtCID, but these 

clusters were not the same as the homodimers in the crystals of the CASP targets. We 

examined whether any of the ClusPro clusters contained interfaces similar to the ProtCID 

clusters for these three targets, and did not find any values of Q above 0.1 (data not shown).

Docking of small ligands to predicted protein structures in CASP11

A small number of the CASP11 structure prediction targets contained biologically relevant 

compounds in the crystals. A few groups produced models of these ligand/protein 

complexes, but our goal here is to determine whether the predicted protein structures in 

CASP11 for each target were suitable for docking of ligands, and to analyze docking success 

as a function of structure prediction accuracy. We selected one target for this experiment, 

T0805, a nitroreductase from M. tuberculosis, with a bound flavodoxin ligand. Other targets 

either had covalently bound ligands such as PLP or NAG, very large ligands, or a dimeric 

ligand (cyclic diguanosine monophosphate), which present complications for docking.
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Because in most real-world applications of ligand docking, the binding site of the ligand is 

obvious from the experimental structure of the templates and the predicted structure of the 

targets, we built a search space box of 28×18×20 Å covering the binding site as identified in 

the experimental structure of the CASP11 target. We took the starting structure of the ligand 

from the experimental structure. We first used the program AutoDock Vina and treated the 

ligand as flexible as well as 10 of the side chains in the binding site (R17, S18, R20, Y71, 

A103, L106, W159, T160, T161, L162). We assessed the accuracy of the top 9 scoring 

docked poses (the default of Autodock Vina) and determined the RMSD to the native ligand 

after superposition of ligand binding residues. The RMSDs of the best docking (of 9) for 

each CASP11 model are shown in Figure 7A as a function vs GDT-TS, while all 9 for each 

CASP11 model are shown in Figure 7B. The best docking of the ligand to the experimental 

structures results in a poor RMSD of 6.2 Å. Docking to the predicted structures shows a few 

structures that are a little better than docking to the native, although there is little correlation 

with the accuracy of the model as measured by GDT-TS.

We also developed a Jaccard index measure by determining the list of protein-residue/

ligand-atom contacts in the predicted structure and in the experimental structure and 

calculating the ratio of the intersection of these lists and the union of these lists (not 

counting duplicates twice), such that a Jaccard index of 1.0 denotes perfect similarity. The 

results for this index are shown in Figure 7C and 7D (for top Jaccard index poses and all 

poses, respectively). Unlike the classical ligand RMSD, one of the nine docking poses to the 

experimental structure outperformed all of docking simulations to the predicted structures.

Because one important task in docking is to identify specific interactions of the ligand with 

side chains of the protein, we measured the RMSD of ligand-atom/side-chain distances 

compared to native. These interactions consist of a salt-bridge of the terminal phosphate 

group to R17 and an interaction of the aromatic rings of FMN with W159. We refer to the 

RMSD of these distances with the native structure as scRMSD (specific-contact RMSD). 

The results for the best scRMSD for each model are shown in Figure 7E and the results for 

all models are shown in Figure 7F.

The ligand RMSD and the scRMSD are compared in Figures 8A (best scRMSD structure, 

including the native in red) and 8B (all models and the native structures in red). A total of 

101 out of 139 (72.7%) models yielded an scRMSD of less than 1 Å, indicating that while 

the docked ligands may not superpose extremely well with the experimental structure, some 

of the important charged and hydrophobic contacts are reproduced. As with the ligand 

RMSD, the scRMSD of docking to the native structure is not better than docking to many of 

the models. A comparison of the Jaccard index with the classical ligand RMSD is shown in 

Figure 8C and 8D. In this case, there is some correlation between the two measurements (R2 

= 0.42 and 0.46 for the best Jaccard-index pose and all poses, respectively). Docking to the 

experimental structure has higher Jaccard-index scores for comparable RMSDs than most of 

the models (i.e., most of the red points are above the line in Figure 8D).

To ensure that these relatively poor docking results were not a result of the chosen docking 

method, we repeated the docking experiment with a second docking program, SwissDock.40 

We employed a flexible ligand approach using a 23×15.5×20.5 Å search box. Prior to 
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calculating the RMSD, we aligned the backbone heavy atoms of the active site residues (i.e. 

residues within 5 Å of the ligand in the crystal structure) of each model and the crystal. 

SwissDock was able to dock the ligand to the crystal structure much more accurately than 

AutoDock Vina with a ligand RMSD of 0.49 Å. While these docking runs performed much 

better on the crystal structure, the performance on the models was comparable to the 

AutoDock Vina results. The best docking RMSD of the ligand to any model was 5.2 Å. The 

correlation of Jaccard index and ligand RMSD with GDT-TS and Active site backbone 

RMSD are shown in Figure 9. We see a similar L-shaped pattern that we observed for the 

homodimer docking (Figure 3), especially with the Active site backbone RMSD (RMSD_i) 

is used a as the measure of quality of the structure: at high RMSD, all of the docked ligand 

RMSDs are higher than 8 Å. Then when the Active site backbone RMSD falls below 5 Å, 

some models achieve better (lower) RMSDs (Figure 9D) and (higher) Jaccard index values 

(Figure 9B). Still, the docking results to the models are relatively poor, which is not terribly 

surprising, when taken in the context of the active site residue backbone RMSDs, as the 

median RMSD_i for all models is 3.8 Å and the best RMSD_i was 2.0 Å. Almost certainly a 

method that produced an ensemble of conformations of the backbone and the side chains of 

the active site might perform better.

The experimental ligand structure is shown in each panel of Figure 10 in magenta and the 

experimental active side chains are in pink. The docking to the experimental structure by 

AutoDock Vina (Figure 10A) and SwissDock (Figure 10C) are shown in dark blue. The best 

docking models with AutoDock Vina (Figure 10B) and SwissDock (Figure 10D) show the 

ligands in dark orange and the model side chains in pale yellow.

Protein structural features used in prediction of missense mutation phenotypes

Another common goal in protein structure prediction is the analysis of missense mutations 

that arise in the germline or in tumors.9,17,54 The models may be used to provide plausible 

mechanisms of action of the known deleterious mutations, or in predictions of the 

phenotypes by machine-learning algorithms. In the latter case, features that ordinarily may 

be determined from experimental structures must be obtained from the models, and it is 

therefore worthwhile to examine the accuracy of predicted features versus the same features 

calculated from the experimental structure. Here, we focus on a commonly used feature 

from structure in missense phenotype predictors, the relative accessible surface area of 

amino acids.42,43

There were 7 human proteins among the CASP11 targets and all of these contained one or 

more domains in the TBM category. We searched for known mutations in these proteins in 

Uniprot,55 the Exome Variant Server (EVS),56 COSMIC,57 and BioMuta databases.58 For 

three of these targets, we were able to find a sufficient number of mutations to analyze. The 

three targets were T0783 (Uniprot: ISPD_HUMAN; PDB: 4CVH), T0794 (Uniprot: 

VNN1_HUMAN; PDB: 4CYG), and T0812 (LAMA2_HUMAN), and we were able to 

identify 27, 20, and 31 germline and somatic missense mutations in these genes respectively. 

The mutations, sources, surface areas, Polyphen2 predictions,59 and phenotypes (if 

available) are listed in Table II.
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Since we do not have phenotypes for most of these mutations, it is not possible to compare 

the predicted CASP models with the experimental structure in terms of phenotype 

prediction, but we can measure features that might be used in machine-learning predictors. 

A commonly used feature is the relative solvent accessible surface area (rSASA).42 We have 

used the program VMD60 to calculate the rSASA of the mutations in Table II in both the 

predicted structures from CASP11 and the experimental structures, and we have calculated 

the root-mean-square deviation of the predicted values relative to the experimental values 

(given in Table II). In Figure 11, the RMSDs of rSASA for the relevant mutations for the 

models of each of the three proteins are graphed vs the accuracy of the predicted structure as 

measured by GDT-TS (Figure 11 A,B,C). For two of the targets, there was good correlation 

of the RMSD of the surface area predictions with GDT-TS with R2 of 0.68 and 0.53 for 

T0783 and T0794 respectively. However, the correlation is poor for TBM-hard target T0812, 

where none of the predicted structures have GDT-TS above 45%. Very few of the models 

have RMSD of rSASA of less than 20% for this target, while many models have RMSD of 

less than 20% for T0794 and even below 10% for T0783. To confirm that our results were 

not biased by a restricted sample set, we repeated this procedure for all residues in the 

proteins, which generated very comparable results (Figure 11 D,E,F).

Another common way to assess the functional effects of mutations is to determine the Gibbs 

free energy of mutation. We used FoldX44 to calculate the ΔΔG of mutation for all 

polymorphisms in the T0812, T0783, and T0794, and we determined the RMSD of ΔΔG for 

models versus the crystal structures (Figure 11 G,H,I). There were no strong correlations 

between the similarity of ΔΔG values to those from the crystal structure, except perhaps 

within the group of models with GDT-TS above 60 for T0794 (Figure 11H).

Missense mutations in the human isoprenoid synthase domain-containing protein (Uniprot 

ISPD_HUMAN), target T0783 (PDB: 4CVH61), are associated with the A,7 form of 

Muscular Dystrophy-dystroglycanopathy (MDDGA7) or Walker-Warburg syndrome.62 The 

missense mutations associated with disease cluster around the active site of the N-terminal 

domain. A structure alignment of the experimental structure and the best structure prediction 

of this target is shown in Figure 12A. The positions and even side-chain conformations of 

the wildtype residues are predicted well by the model, and thus any inference on the 

functional consequences of mutations of these positions from the model would be highly 

similar to those from the experimental structure.

The Vanin-1 protein (VNN1) is a membrane-bound and secreted pantotheinase that catalyzes 

the break down of (R)-pantotheinate into cysteamine and (R)-pantothenate (vitamin B5).63 

Its function is not entirely understood, but it is active under oxidative stress and reduces the 

levels of reactive oxygen species.64 As a membrane protein, it may participate in protein-

protein interactions that assist precursor T-cells in localizing to the thymus.63 No missense 

mutations are known to be associated with disease directly, and there is more evidence for 

increased activity leading to disease phenotypes through mutations in the promoter region.65 

Nevertheless, some active site mutations might increase activity (or decrease it) as may 

mutations at some allosteric sites. In Figure 12B, we show the best model produced in 

CASP11 (by LEER) and the experimental structure superimposed. The magenta sticks are 

the experimental wild-type residues of the mutations listed in Table II, and the pink sticks 
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are the side chains of the model. The ligand in spheres is a pantothenate-derived inhibitor. 

Most of the mutations are predicted directly where they should be (both are numbered when 

they are separated by more than 3.0 Å), except for some mutations on long external loops 

like Asp155 and Arg157 and His244.

Heterooligomeric targets in CASP11

Many if not most proteins form physical associations with other proteins (heterooligomeric 

complexes) in the course of carrying out their functions. We searched protein-protein 

interaction databases such as STRING66 and BioGrid,67 given in the Uniprot pages for each 

CASP target for possible PPIs that could be modeled for any of the CASP targets. We found 

44 CASP11 targets with protein interactions that were assigned high confidence of physical 

interactions in these databases, and used our program BioAssemblyModeler (BAM)68 to 

search the PDB for templates which might contain Pfam domains from the CASP target and 

its interacting proteins. BAM works by assigning Pfams to a query consisting of up to six 

different protein sequences, and then searches our PDBfam database53 for any structures 

which contain one or more of the Pfams in the query proteins. In the end, we found no such 

complexes that could be readily modeled without protein docking, primarily because most of 

the CASP targets are bacterial enzymes and there are few heterooligomeric structures in the 

PDBs for the associated Pfams.

However, three heterooligomeric structures were provided by experimental groups as targets 

in CASP11. For technical reasons, these were assigned two target IDs but were evaluated 

primarily as oligomers and were not included in the regular TBM assessment. These 

complexes are: 1) T0787/T0788 (PDB: 4TVP69), a heterohexameric structure of a trimer of 

HIV gp120 each bound with gp41; 2) T0797/T0798 (PDB: 4OJK70), a heterotetramer of a 

coiled-coil homodimer from c-AMP-dependent kinase 2 with one copy of human Ras11b 

bound to each helix; 3) T0840/T0841 (PDB: 4QT871), a heterodimer of the Macrophage-

stimulating protein (MSP) receptor and its ligand Hepatocyte growth factor-like protein (also 

called MSP).

The first oligomeric target, T0787/T0788 (PDB: 4TVP), was a heterohexamer structure of 

HIV gp120 and gp41, in a closed, prefusion state.69 The available templates of gp41 in a 

prefusion state, PDB entries 3J5M72 and 4NCO,73 do not contain an alignment of the gp41 

sequence to the coordinates since the resolutions were 5.8 Å (cryo-EM) and 4.85 Å 

respectively. There are also substantially more residues in the coordinates of the CASP 

target than there are in the templates. The best GDT-TS of gp41 was only 29.0 by the 

BAKER group with a sequence-independent alignment accuracy (AL0) of only 16%. The 

gp120 target structure contains an anti-parallel β sheet of the N-terminus and the C-terminus 

with gp41 wrapped around it, that was not contained in the templates. None of the 

predictions were able to reproduce this feature (not shown).

Target T0797/T0798 (PDB: 4OJK70) is a heterotetramer of a parallel, coiled-coil homodimer 

from c-AMP-dependent kinase 2 with one copy of human Ras11b bound to each helix. In 

the PDB, there are two templates of other Ras domains bound to coiled-coil Ras effectors, 

including a parallel, coiled-coil homodimer of Rab11 family-interacting protein 3 which 

interacts with two individual copies of Rab11a (PDB: 2HV874) and a parallel, coiled-coil 
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homodimer of Rab11 family-interacting protein 2 which also interacts with two individual 

copies of Rab11a (PDB: 2GZD75). The two Rab11a structures in the PDB are very similar to 

each other, as shown in Figure 13A and 13B. Most of the models produced by CASP 

predictors resemble these templates, shown in Figure 13C.

However, the target Rab11b structure is quite different with the coiled-coil helices 

interacting with a different surface of the Ras domain. This structure is shown in Figure 13D 

with the green Ras11b monomer oriented in the same way as the green Ras11a monomers in 

Figures 13A and 13B. The only successful model of the full tetramer was from the group 

Seok, who produced an accurate heterotetramer shown in Figure 13E with a GDT-TS of 70, 

which is a full 20 points better than any other group. The Seok group used docking with the 

program ZDOCK,76 and additional loop modeling and refinement to produce these models.

The third heterooligomeric complex in CASP11 was T0840/T0841 (PDB: 4QT871), a 

heterodimer of the Macrophage-stimulating protein (MSP) receptor and its ligand 

Hepatocyte growth factor-like protein (also called MSP). The authors suggested that the 

interest in modeling was to establish the differences between the obvious template, a 

complex of MET and HGF-β (PDB: 4K3J77), and the target structure. The naïve model 

produced by aligning the target sequences to the template structure and copying the 

backbone coordinates of aligned residues results in a GDT-TS over the heterodimer of 

66.7%, while the best models submitted to CASP of the refined heterodimer had GDT-TS of 

70.0%. Models from the Seok and Legato groups do have a shift in the position of two loops 

of the MSP receptor (after superposition of MSP) from about 5 Å away from the target 

structure in the naïve model to about 3 Å in the CASP11 models (not shown).

Hypothesis generation

One common use of template-based structure prediction is to generate hypotheses for 

protein sequence-structure-function relationships. Many of the CASP11 targets are of 

unknown function and it is difficult to generate hypotheses purely on the basis of structure. 

Structural information of protein/protein, protein/peptide, protein/ligand, and protein/

nucleic-acid interactions from templates can be used to infer possible interaction sites on 

modeled proteins. An example of this in CASP is target T0856, the SPRY domain of human 

HERC1 (Uniprot HERC1_HUMAN), an E3 ubiquitin ligase.78 One of the targets of HERC1 

is TSC2, which is inhibited by the interaction of TSC1 with TSC2. SPRY domains have a 

variety of functions, but in E3 ligases their role appears to be in binding specific 

substrates.79

Our ProtCID database contains not only domain-domain interactions in crystals of 

homologous domains or domain-pairs, but also a clustering of peptide-domain interactions 

for each Pfam in the PDB with multiple peptides bound. We looked up the SPRY Pfam 

domain in ProtCID and found four PDB entries with bound peptides in a single cluster with 

similar SPRY-domain/peptide binding locations and orientations of the peptides. These 

include the Drosophila Gustavus protein with bound VASA1 peptide (PDB: 2IHS80), human 

SPSB1 (PDB: 3F2O81) and SPSB2 (PDB: 3EMW81) with bound VASA1 peptide, and 

human SPSB1 with bound Par4 peptide (PDB: 2JK981). A superposition of these structures 

with the peptides shown in magenta is shown in Figure 14A. It is unknown what peptides 
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bind to the SPRY domain of HERC1, but the similarity of binding of peptides to other SPRY 

domains provides a useful hypothesis of what site on HERC1 may be used for binding 

peptides in substrate recognition for the E3 ubiquitin ligase activity of HERC1. The best 

models of HERC1 in CASP11 have accurate alignments of the three binding loops in the 

interface with the peptides in the ProtCID cluster, as shown in Figure 14B. There are shifts 

of 3–5 Å between the models and the target structure, but nevertheless the same residues in 

the SPRY domain are in contact with the peptide in both predicted and experimental 

structures. Experiments that could be designed from the model to test for interactions of 

HERC1 with other proteins would be similar to those derived from the experimental 

structure.

Discussion

Over the history of CASP since 1994, the prediction tasks in the experiment have evolved 

from secondary structure prediction, fold identification, and accurate sequence alignment in 

the early CASPs82–84 to template-based and free modeling,85 model refinement,86 and 

contact-assisted prediction87 in the most recent CASPs. The emphasis, of course, has been 

on methods development to produce better and better models in ever more challenging tasks, 

from comparative modeling all the way through ab initio structure prediction.

Nevertheless, the point of developing methods for protein structure prediction is to apply 

them to problems in biology and medicine. Predicted structures, just like experimental 

structures, can be used to design experiments and to understand experimental data and to 

develop hypotheses on how proteins accomplish their function in complex pathways. Indeed, 

to measure how widespread the use of structure prediction is in experimental biology, we 

examined the citation data from Web of Science of five popular comparative modeling 

platforms, namely Modeller,88–90 SCWRL,19,91,92 I-TASSER,93,94 HHpred,95 and 

SwissModel.96–98 After removing duplicates, we found that these methods were cited a total 

of 21,396 times. A sampling of 500 of these citing papers suggests that only approximately 

5% are methods papers or reviews. Thus, we project that there are over 20,000 manuscripts 

to date that have used comparative modeling methods to probe real biological questions. Of 

course, with the many other programs that are available, the true number is much higher.

While the original goal of the CASP organizers was to ask predictors to respond to the 

biological questions posed by the authors of target structures, only a few such questions 

were provided by the depositors. In the process of examining several of these, it became 

evident that we could not assess different predicting groups for their ability to answer such 

biological questions. We also considered using the CASP11 models in some form of 

function prediction ourselves, but that is a very challenging task and few of the targets had 

significant functional information to use in evaluation. We also believe that structural 

information is more relevant to how proteins carry out biological functions, via binding and 

changes in structure and dynamics, rather than being useful in predicting function itself. 

Thus, it made more sense to examine quantifiable predictions of biological function having 

to do with binding and the effects of mutations that could be obtained from models, and to 

assess the success of models as a function of the model accuracy as calculated by the 

standard measures used in CASP. In this way, we could demonstrate for at least a few targets 
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how structural models might be used in biological research. We chose three such tasks – 

docking of homodimers, small-ligand docking , and prediction of structural features used in 

machine learning approaches to missense mutation phenotypes. The advantage we have in 

CASP is a wide array of accuracies in the ensemble of predicted structures for each target so 

that we can judge readily how biological function can be predicted depending on the 

accuracy of the individual model.

In the homodimer docking task, we consistently found an L-shaped pattern of docking 

accuracy as a function of the accuracy of the monomer models. At low GDT-TS, usually 

below 60%, none of the monomers formed the correct homodimer in any of the top clusters 

produced by ClusPro. At some value above 60%, depending on the target, many of the 

models were able to achieve a good homodimer docking. However, at similar values of 

GDT-TS, many models were not able to dock the monomers accurately. The same was true 

of other measures of monomer accuracy such as RMSD and LDDT.

We utilized two docking programs to test the utility of models in small-molecule docking, 

SwissDock and AutoDock Vina. For AutoDock Vina, the models generated by the CASP11 

predictors performed as well as the experimental structure. While few produced impressive 

ligand RMSDs, most were able to reproduce some of the specific interactions present in the 

crystal structure. Among all evaluation criteria, there were no strong correlations between 

model quality and docking results. In this particular case, a limiting factor appears to be the 

robustness of the docking method, since AutoDock Vina did not dock the ligand to the 

crystal structure correctly. Conversely, SwissDock was able to dock the ligand very 

successfully into the crystal structure (0.49 Å RMSD) but the results with the models were 

similar to the AutoDock Vina results, with the best RMSDs of docking to the model at ~5 Å. 

The ligand docking results were thus disappointing, demonstrating that ligand docking to 

models is still a very challenging prospect and not likely to succeed unless the binding site is 

very accurate (much better than the 2.0 Å backbone RMSD that the best models of target 

T0805).

In the prediction of surface areas that might be used in missense mutation predictors, we 

found a linear relationship between RMSD of surface areas from the experimental values 

versus GDT-TS for two of the targets. The R2 values were 0.68 and 0.53 for targets T0783 

and T0794 respectively. For one other target, the RMSDs did not vary significantly with 

GDT-TS. We also used the models to calculate ΔΔG of mutation with the program FoldX, 

but found that there was little correlation with model accuracy, except perhaps within a 

group of high-accuracy models of one of the targets. This issue needs to be examined further 

to determine the utility of FoldX for the prediction of missense mutation phenotypes and for 

the suitability of comparative models for this purpose.

We also examined several targets for protein-protein interactions. Three of the CASP targets 

were heterooligomers whose interactions were of interest to the crystallographers. For the 

HIV gp120/gp41 prefusion complex, none of the predictors improved upon the templates 

significantly. This has to do with the extensive structural changes between the templates and 

the target structure as well as the fact that gp41 in the templates did not have the sequence 

aligned to the coordinates. For MSP and its receptor, the models were quite similar to the 
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templates with a slight improvement in the interaction of loops in the interface. The third 

target was Ras11b and a homodimer of coiled-coil effector proteins. The templates were 

quite misleading with a different surface of the Ras domain interacting with the coiled-coil 

than that in the experimental structure of the target. One group (Seok) was able to use 

docking to produce a very accurate structure of the heterotetramer.

We showed one example where a knowledge of the molecular interactions in crystal 

structures of homologues might be used to generate a hypothesis of molecular function of 

one of the CASP11 targets. The SPRY domain of human HERC1 is likely to be responsible, 

at least in part, for determining substrates for ubiquitination, including TSC2. Several 

structures of SPRY domains in the PDB have peptides bound on the same surface of the 

domain in relatively similar orientations. The models of HERC1, CASP11 target T0856, 

when superimposed on these domains show a similar interface that is well modeled in the 

predicted structures compared to the experimental structure of the SPRY domain of HERC1. 

The best models were not those with the highest GDT-TS, since some of these aligned one 

of the loops to the template incorrectly. Mutations to disrupt interactions for specific 

substrates could be easily designed based on the models as readily as they might be on the 

experimental structure.

In sum, the CASP11 experiment allowed us to perform a number of quantitative assessments 

of how well comparative models might be utilized in tasks associated with biological 

function typically performed on experimental structures, including molecular binding and 

the effects of mutations. Instead of using a large number of different protein targets and one 

method for producing models, we were able to use many models of individual targets and 

compare the accuracy of binding and mutation calculations as a function of the accuracy of 

the model. There is certainly room for additional assessments of this kind, and we hope the 

data presented in this paper may serve as a pilot experiment of this kind of analysis.

Methods

Docking with ClusPro and assessment of protein-protein docking of CASP11 monomers 
into homodimers

CASP11 monomers were submitted to the ClusPro server99 with an application 

programming interface (API), and the results were retrieved by a PHP script file provided by 

ClusPro group. Docked protein-protein interfaces were compared to the experimental dimer 

using the score function Q. The score Q reflects the similarity of contacts between two 

protein dimers. Because a docked structure may have incorrectly placed side chains, while 

still having the two proteins in roughly the right orientation and distance from one another, 

the Q score is appropriate because it depends only the Cβ–Cβ distances of corresponding 

amino acids in the two interfaces (we use Cα for glycine in what follows). It is a weighted 

sum of differences in distances of corresponding backbone atoms in the two interfaces. If we 

define the two distances as eij and fij and a weight wij (a monotonically decreasing function 

of dij = min{eij,fij} ), then Q is defined as a sum over all contacts in one or both structures:
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A contact is included in the sum if either eij or fij is less than 12 Å. wij is defined 

empirically:36

The denominator is the total number of unique contacts in the two structures, where longer 

contacts between 5 and 12 Å are downweighted exponentially. The distance in the formula 

for wij uses the smaller of the Cβ-Cβ distance of the contact in either the predicted or 

experimental structure. If it is in either structure or both, it will be counted only once. The 

min operator acts like a logical “or.” The numerator is a sum over the same list of contacts 

that are in the denominator, but if the distance is very different in the predicted structure than 

in the experimental structure, it is multiplied by a very small number and hence effectively 

not counted. The only contacts that are counted are those that are similar in the two 

structures. So Q is approximately the number of correct contacts divided by the total number 

of unique contacts, or a Jaccard similarity.

The interface residues are defined as these residues with at least one Cβ-Cβ distance ≤ 12 Å 

between two chains. The LGA program52 was used to calculate GDT-TS and RMSD of the 

interface residues by specifying the residue ranges using the parameters –er1 (prediction) 

and –er2 (target). GDT-TS_i and RMSD_i refer to GDT-TS and RMSD of the interface 

residues respectively.

Docking of FMN to Target T0805

A structural alignment was performed on all predicted structures and the experimental 

structure using Theseus.100,101 For the AutoDock Vina calculations, a 28 × 18 × 20 Å search 

space was used for the docking. The ligand and ten of the receptor residues (R17, S18, R20, 

Y71, A103, L106, W159, T160, T161, L162,) were allowed to be flexible in the simulations. 

We calculated the specific-contact RMSD of the best 9 ligand binding poses for each model, 

and selected the minimum RMSD. The inter-atomic distances used for the scRMSD 

calculations were the minimum distance of the FMN terminal phosphate group oxygens to 

Arg17 side chain guanidinium nitrogens and the minimum distance of the FMN aromatic 

ring carbons to Trp159 aromatic ring carbons. The Jaccard similarity index was calculated 

by compiling lists of protein-residue/ligand-atom contacts in the predicted structure and in 

the experimental structure and calculating the ratio of the intersection of these lists and the 

union of these lists:
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Contacts were determined by calculating the minimum distance between atomic nuclei in 

the ligand and surrounding residues. A distance < 4.5 Å was deemed a “contact” and 

included in the list.

For the SwissDock simulations, we employed a flexible ligand, rigid side-chain approach 

using a 23×15.5×20.5 Å search box. We aligned the backbone heavy atoms of the active site 

residues (i.e. residues within 5 Å of the ligand in the crystal structure) of each model and the 

crystal. We then calculated the RMSD values of ligand heavy atoms and of active site 

residue backbone atoms.

Surface area calculations for human targets with known missense mutations

Solvent accessible surface areas (SASA) for these residues were computed in VMD60 using 

a probe with radius of 1.4 Å. The percent solvent exposed surface area of a given residue 

side chain is determined relative to the average total surface area of each side chain (solvent 

exposed area plus buried surface area). RMSD values of relative SASA were calculated with 

respect to the crystal structure and compared to GDT-TS.

ΔΔG calculations for human targets with known missense mutations

FoldX is an empirical force field that uses the following equation to approximate the free 

energy (in kcal/mol) of a protein system:

In this equation, the ΔGsolvH, ΔGsolvP, and Gwb terms represent solvent interaction 

contributions, ΔGvdw accounts for van der Waals contributions, ΔGhbond represents hydrogen 

bonding contributions, ΔGel accounts for electrostatic contributions, ΔGclash accounts for 

steric overlaps, and the TΔSmc and TΔSsc terms account for the entropic costs of fixing the 

backbone and side chain, respectively. The BuildModel function of FoldX was used to 

determine the difference in calculated free energies (ΔΔG) of the wild type and mutant 

proteins. This function optimally rebuilds all side chains around the residue of interest and 

calculates interaction energies of the residue with its environment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Q scores of docked homodimers from monomeric models of target T0792. Each predicted 

monomer structure was submitted to the ClusPro server, and the best Q score of the top 10 

clusters produced by ClusPro was plotted versus a measure of the model quality: A) GDT-

TS; B) RMSD; C) LDDT; D) GDT-TS_i (GDT-TS of the interface residues); E) RMSD_i 

(RMSD of the interface residues); F) scatter plot of GDT-TS vs. GDT-TS_i. The “_i” refers 

to the interface residues of the crystal dimer that have at least one inter-chain Cβ-Cβ 
distance ≤ 12 Å. GDT-TS_i and RMSD_i are calculated from interface residues only by 

LGA program.
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Figure 2. 
Q scores of docked homodimers for all targets (except T0792 shown in Figure 1A) vs GDT-

TS. The best Q score of the top 10 largest ClusPro clusters is shown. The targets are ordered 

by decreasing average GDT-TS scores (Table I). The same order is used in Figure 3, 4 and 5.
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Figure 3. 
Q scores of docked homodimers for all targets (except T0792 shown in Figure 1D) vs GDT-

TS_i. The best Q score of the top 10 largest ClusPro clusters is shown. The targets are 

ordered by decreasing average GDT-TS scores (Table I)
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Figure 4. 
The scatter plots of GDT-TS and GDT-TS_i for all targets (except T0792 shown in Figure 

1F). The targets are ordered by decreasing average GDT-TS scores (Table I)
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Figure 5. 
Percentage of monomer models that were able to achieve a Q score of at least 0.3 for the 

first cluster, the top 5 clusters, the top 10 clusters, and all clusters (on average ~20 per 

model). The targets are ordered by decreasing average GDT-TS scores (Table I)
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Figure 6. 
A. Cluster of similar interfaces from crystals of proteins containing Pfam domain 

DegT_DnrJ_EryC1, (DegT/DnrJ/EryC1/StrS aminotransferases, provided by ProtCID. The 

interface is observed in 23 crystal forms of this Pfam and 44 PDB entries. B. The biological 

dimer of CASP11 target T0801 (PDB: 4PIW). C. The biological dimer of CASP11 target 

T0843 (PDB: 4XAU). D. Predicted structure of T0792 (group 216) docked by ClusPro. E. 

Experimental structure of T0792. F. Similar dimer in crystal of PDB entry 3RCO (human 

TDRD7).

Huwe et al. Page 29

Proteins. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Docking of flavodoxin to models of target T0805 with AutoDock Vina and comparison with 

experimental structure. A. RMSD vs. GDT-TS of model for lowest RMSD of 9 docked 

poses by AutoDock/VINA. B. RMSD vs GDT-TS for all docked poses to each model; C. 

Jaccard index vs GDT-TS for highest Jaccard index of 9 docked poses. D. Jaccard index vs 

GDT-TS for all docked poses for each model. E. scRMSD (specific-contact RMSD) vs 

GDT-TS for top scRMSD docked poses; F. scRMSD vs GDT-TS for all docked poses. For 

all plots, the results for the experimental structure are marked with red X’s.
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Figure 8. 
A. scRMSD vs RMSD for top scRMSD docked poses. B. scRMSD vs RMSD for all docked 

poses. C. Jaccard index vs RMSD for top scRMSD docked poses; D. Jaccard index vs 

RMSD for all docked poses. Red X’s indicate docking to experimental structure.
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Figure 9. 
Docking of flavodoxin to models of target T0805 with SwissDock and comparison with 

experimental structure. A. Jaccard index vs GDT-TS; B. Jaccard index vs RMSD_i 

(interface backbone atom RMSD); C. RMSD of ligand vs GDT-TS; D. RMSD of ligand vs 

RMSD_i. Docking to the experimental structure produced a Jaccard index of 0.93 and a 

ligand RMSD of 0.49 Å (not shown on plots).
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Figure 10. 
T0805 docking. A. AutoDock Vina docking of ligand to experimental structure (blue) along 

with experimental position of ligand (magenta). B. AutoDock Vina docking of ligand to 

predicted structure by group IntFold3 (model 1) (orange) along with experimental position 

of ligand (magenta). C. SwissDock docking of ligand to experimental structure (blue) along 

with experimental position of ligand (magenta); D. SwissDock docking of ligand to 

predicted structure by group BioSerf (model 2) (orange) along with experimental position of 

ligand (magenta). Side chains of experimental structure are depicted in pink and labeled in 

panel C. Side chains of modeled structure are in yellow (panel D).
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Figure 11. 
Correlation of solvent accessible surface areas (SASA) and FoldX-derived ΔΔG of mutation 

with model accuracy for mutations in three human CASP11 targets. Correlation is measured 

by RMSD of SASA and FoldX values predicted on the models vs. those in the experimental 

structure. A. SASA RMSD vs GDT-TS for known mutation site residues in T0783 (Uniprot 

ISPD_HUMAN); B. SASA RMSD vs GDT-TS for known mutation site residues in T0794 

(Uniprot VNN1_HUMAN); C. SASA RMSD vs GDT-TS for known mutation site residues 

in T0812 (Uniprot LAMA2_HUMAN); D. SASA RMSD vs GDT-TS for all residues in 

T0783; E. SASA RMSD vs GDT-TS for all residues in T0794; F. SASA RMSD vs GDT-TS 
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for all residues in T0812. G. ΔΔG RMSD vs GDT-TS for T0783; H. ΔΔG RMSD vs GDT-

TS for T0794; I. ΔΔG RMSD vs GDT-TS for T0812.
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Figure 12. 
A. Best model of T0783 (by group SEOK-refine) superimposed on experimental structure 

with mutations associated with Muscular Dystrophy-dystroglycanopathy (MDDGA7) shown 

in magenta sticks for the experimental structure and pink sticks for the model. The mutations 

are all clustered in the N-terminal domain adjacent to the active site. B. Best model of T0794 

(by group LEER) superimposed on experimental structure with mutations in human VNN1 

found in COSMIC and other sources (Table II) shown in magenta sticks for the experimental 

structure and pink sticks for the model. The effects of these mutations on the protein are 

unknown and are not necessarily associated with disease.
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Figure 13. 
Structures of Ras family proteins with coiled-coil effectors related to the heterotetramer 

target complex of CASP11 targets T0797 and T0798. A. Parallel, coiled-coil homodimer of 

Rab11 family-interacting protein 3 which interacts with two individual copies of Rab11a 

(PDB entry 2HV8); B. Parallel, coiled-coil homodimer of Rab11 family-interacting protein 

2 which also interacts with two individual copies of Rab11a (PDB entry 2GZD). C. Most of 

the models produced by CASP predictors resemble these templates. D. CASP11 T0797/

T0798 target heterotetramer (PDB entry 4OJF); E. Best model produced by predictors of 

T0797/T0798 (group Seok). In both images, the green monomer is oriented similarly to the 

green monomers in panel A.
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Figure 14. 
A. ProtCID cluster of peptides bound to SPRY domains in the PDB; B. Experimental and 

predicted structure of CASP11 target T0856 shown with peptides from ProtCID cluster, after 

superposition of T0856 model and experimental structure onto closest structure in ProtCID 

cluster shown in (A).
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