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We developed an Australian database for the identification of Aspergillus, Scedosporium, and Fusarium species (n � 28) by ma-
trix-assisted laser desorption ionization�time of flight mass spectrometry (MALDI-TOF MS). In a challenge against 117 isolates,
species identification significantly improved when the in-house-built database was combined with the Bruker Filamentous
Fungi Library compared with that for the Bruker library alone (Aspergillus, 93% versus 69%; Fusarium, 84% versus 42%; and
Scedosporium, 94% versus 18%, respectively).

Rapid, accurate mold identification is important due to the
widening spectrum of pathogens and species-specific differ-

ences in antifungal susceptibility (1–3). Matrix-assisted laser de-
sorption ionization�time of flight mass spectrometry (MALDI-
TOF MS) has proven useful, but mold identification remains
challenged by the limited access to validated purpose-built data-
bases that are necessary because of small species and strain repre-
sentations in commercial libraries (4–16).

Given the prior poor performance of the Bruker Filamentous
Fungi Library v1.0 (Bruker Daltonics, Bremen, Germany) for
mold identification using the manufacturer-recommended
broth-based protein extraction methods (in our laboratory �50%
of isolates were not identified; internal data) and because the geo-
graphic generalizability of in-house-built databases is not yet
known, we hypothesized that a MS library of molds relevant to our
region (17–21) will improve identification. Here, we constructed
an in-house database containing 117 strains (see Table S1 in the
supplemental material) covering 28 species of Aspergillus, Sce-
dosporium, and Fusarium encountered in Australia. Challenge iso-
lates (also n � 117; 21 species) comprising 55 Aspergillus, 45 Fus-
arium, and 17 Scedosporium clinical strains (Table 1) were then
used to assess the performance of the Bruker library alone versus
that of the Bruker library supplemented with the in-house library
for species identification.

All isolates were identified using phenotypic methods (22) with
definitive identification by DNA sequencing of the internal tran-
scribed spacer (ITS) (all isolates), �-tubulin (Aspergillus and Sce-
dosporium spp.), and partial elongation factor-1alpha (EF-1�) (to
identify Fusarium to the species complex level) gene regions (23–
26). Sequence data were analyzed against the Centraalbureau
voor Schimmelkultures (http://www.cbs.knaw.nl/Collections
/BioloMICSSequences.aspx?file�all), International Society for
Human and Animal Mycology ITS (http://its.mycologylab.org/),
and Fusarium-ID (http://www.fusariumdb.org/index.php) data-
bases, and species were assigned using published criteria (27).

Protein extraction for MALDI-TOF MS was performed as pre-
viously described (11). The Bruker bacterial test standard (Bruker
Daltonics) was used for calibration and Aspergillus ustus CBS
261.67T scoring of �2.00 was required for quality extraction and

spectra acceptability (11). The in-house database was constructed
using published protocols (11, 28) with 20 to 25 quality spectra
required for mass spectral profile (MSP) creation using default
Biotyper settings (Bruker Daltonics).

For challenge isolates, spectra were acquired in technical trip-
licates using established protocols (11) and queried against (i) the
Bruker library and (ii) the Bruker library combined with the in-
house database. Manufacturer-recommended cutoff values (for
species, log score of �2.00; for genus, score of �1.70 to �1.99)
were maintained. Median values and interquartile ranges (IQR) of
log scores obtained by the two database sets were calculated for all
isolates and then by genera and selected species using SPSS v21
software (SPSS Inc., Chicago, IL). The Wilcoxon signed-rank test
was used to compare the median scores and Friedman’s two-way
analysis of variance to compare the distributions of scores (Fig. 1).
McNemar’s test was used to compare the frequencies of paired
log score data at cutoffs of �2.00 versus �1.70 and �2.00 versus
�1.80.

Given the importance of protein extraction for acquiring qual-
ity spectra, we used a well-validated method (11) to develop our
database. All isolate-specific spectra were reproducible and
matched well with their corresponding MSP. Comparison of the
extraction method used here with another proposed agar-based
method (13) for spectra quality may be of clinical interest.
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The Bruker library correctly identified 54% (63/117) of the
challenge isolates to the species level and an additional 22% (26/
117) to the genus level; all of the 18 isolates not identified were of
species not represented in the library (Table 1). When the library
was supplemented with the in-house database, identification im-
proved significantly (at a level of � � 0.01) with 90% and 96.8% of
isolates identified to the species and genus levels, respectively. The
median of log scores of the supplemented Bruker library was sig-
nificantly higher (� � 0.01) as was the distribution of scores for
individual genera (selected species are represented in Fig. 1). Re-
ductions in the IQRs of scores were evident except for Aspergillus
fumigatus and Fusarium oxysporum. Various proportional in-
creases in species identifications of molds after supplementation
of commercial libraries with in-house-built databases have been
reported (5–13); Schulthess et al. noted an increase from 52.4% to
79% after supplementation of the same Bruker library (v1.0) (28).

The Bruker library alone identified 69% (38/55) of Aspergillus
isolates, including all A. fumigatus sensu stricto and Aspergillus fla-
vus; however, 1/7 Aspergillus terreus (represented in the library)
and most uncommon species, including Aspergillus lentulus (spec-
tra not represented) were not identified (Table 1). The combined
database identified 93% of the isolates to the species level except
for one (50%) Aspergillus sydowii and both Aspergillus viridinutans

strains. Failure to identify isolates or inaccurate identification (see
below) resulted from the absence or limited number of relevant
spectra in the Bruker database.

Notably, the largest (5-fold) improvement in identification af-
ter database supplementation was for Scedosporium (Table 1) with
species identification for 94% (16/17) isolates, including all seven
Scedosporium aurantiacum strains (versus 18% [3/17] by the
Bruker library alone). Although Scedosporium prolificans is repre-
sented in the Bruker library, only 1/4 isolates was identified to the
species level. Scedosporiosis is the second most common non-
Aspergillus mold infection in Australia with 24% of infections due
to S. aurantiacum (19, 21, 29). Adoption of our database in other
Australian centers has the potential to remove reliance on molec-
ular approaches to identify Scedosporium to the species level, over-
coming the limitations of other dedicated Scedosporium databases
that utilize different software, thus limiting their wider applica-
tion (8, 12, 30).

The supplemented Bruker library also identified 2-fold as
many Fusarium isolates to the species complex level (84% versus
42%; significant at � � 0.01) (Table 1). While the Bruker library
performed well for the Fusarium dimerum complex, it identified
only 33 to 50% of the Fusarium solani and Fusarium oxysporum
complexes, the most common causes of fusariosis (31, 32). The

TABLE 1 Performance according to genera and species of the Bruker library and the Bruker library supplemented with the customized in-house
database when evaluated against a set of challenge clinical isolatesa

Organism (no. isolates)

No. (%) isolates of its genus or species correctly identified by the specified log score value

Bruker library alone Bruker library plus in-house database

�2.00 �1.70 �1.70 (no ID) Mis-ID �2.00 �1.70 �1.70 (no ID) Mis-ID

Aspergillus spp. (55) 38 (69) 43 (78) 8 (14.5) 4 (7.2) 51 (93) 52 (95) 2 (3.6) 1 (1.8)b

Aspergillus alliaceus (2) 0 (0) 0 (0) 2 (0) 0 (0) 2 (100) 2 (100) 0 (0) 0 (0)
Aspergillus creber (2) 0 (0) 0 (0) 0 (0) 2 (100)b 2 (100) 2 (100) 0 (0) 0 (0)
Aspergillus flavus (5) 5 (100) 5 (100) 0 (0) 0 (0) 5 (100) 5 (100) 0 (0) 0 (0)
Aspergillus fumigatus (14)c 14 (100) 14 (100) 0 (0) 0 (0) 14 (100) 14 (100) 0 (0) 0 (0)
Aspergillus lentulus (3) 0 (0) 0 (0) 3 (100) 0 (0) 3 (100) 3 (100) 0 (0) 0 (0)
Aspergillus nidulans (6) 6 (100) 6 (100) 0 (0) 0 (0) 6 (100) 6 (100) 0 (0) 0 (0)
Aspergillus niger (9) 7 (78) 9 (100) 0 (0) 0 (0) 8 (89) 9 (100) 0 (0) 0 (0)
Aspergillus terreus (7) 3 (43) 6 (86) 1 (14.2) 0 (0) 7 (100) 7 (100) 0 (0) 0 (0)
Aspergillus versicolor (3) 3 (100) 3 (100) 0 (0) 0 (0) 3 (100) 3 (100) 0 (0) 0 (0)
Aspergillus viridinutans complex (2) 0 (0) 0 (0) 2 (100) 0 (0) 0 (0) 0 (0) 2 (100) 0 (0)
Aspergillus sydowii (2) 0 (0) 0 (0) 0 (0) 2 (100)b 1 (50) 1 (50)b 0 (0) 1 (50)b

Fusarium spp. (45) 19 (42) 38 (84) 7 (15.5) 0 (0) 38 (84) 45 (100) 1 (2.2) 0 (0)
Fusarium chlamydosporum complex (4) 0 (0) 4 (100) 0 (0) 0 (0) 2 (50) 4 (100) 0 (0) 0 (0)
Fusarium dimerum complex (3) 3 (100) 3 (100) 0 (0) 0 (0) 3 (100) 3 (100) 0 (0) 0 (0)
Fusarium fujikuroi complex (13) 10 (77) 13 (100) 0 (0) 0 (0) 13 (100) 13 (100) 0 (0) 0 (0)
Fusarium incarnatum-equiseti complex (4) 0 (0) 2 (50) 2 (50) 0 (0) 2 (50) 4 (100) 0 (0) 0 (0)
Fusarium oxysporum complex (9) 3 (33) 7 (78) 2 (22.2) 0 (0) 8 (89) 9 (100) 0 (0) 0 (0)
Fusarium solani complex (12) 6 (50) 9 (75) 3 (25) 0 (0) 10 (83) 11 (92) 1 (8.3) 0 (0)

Scedosporium/Pseudallescheria spp. (17) 3 (18) 8 (47) 3 (0) 6 (35.3) 16 (94) 17 (100) 0 (0) 0 (0)
Scedosporium apiospermum (5) 2 (40) 3 (60) 2 (40) 0 (0) 4 (80) 5 (100) 0 (0) 0 (0)
Scedosporium aurantiacum (7) 0 (0) 1 (14) 0 (0) 6 (85.7)d 7 (100) 7 (100) 0 (0) 0 (0)
Scedosporium boydii (1) 0 (0) 1 (100) 0 (0) 0 (0) 1 1 0 (0) 0 (0)
Scedosporium prolificans (4) 1 (25) 3 (75) 1 (25) 0 (0) 4 (100) 4 (100) 0 (0) 0 (0)

Total (117) 63 (54) 89 (76) 18 (15) 10 (9) 105 (90) 113 (97) 3 (3) 1 (�1)
a n � 117. ID, identification; mis-ID, misidentification.
b Misidentified as Aspergillus versicolor.
c All A. fumigatus sensu stricto.
d Misidentified as Scedosporium apiospermum.
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combined database identified all but one F. solani strain, while two
isolates each of Fusarium chlamydosporum and Fusarium incarna-
tum-equiseti complex had log scores between 1.7 and 1.99 but with
correct identification. The challenge of acquiring reproducible
spectra for Fusarium spp. is noteworthy (5, 9, 26); one study (6)
identified only 1/6 F. solani complex when interrogated against the
same Bruker library (v1.0).

While analyzing Fusarium isolates to the species complex level,
rather than to the individual species level may be a limitation,
higher species-level discrimination may be unnecessary because
susceptibility differences between members of the same species
complex do not appear to be clinically relevant (26, 33). Species
delineation of Fusarium necessitates multilocus gene sequence

typing (MLST) incorporating at least four loci, and different
MLST schemes are recommended for different species complexes
(3, 34). Triest et al. (26) built a database of 40 Fusarium species
where species identification was achieved for 82.8% and 91% of
isolates using log scores of �2.00 and �1.80, respectively, with
97% identified to the species complex level (versus 84% herein).

Lowering the log score cutoff to �1.80 for species identifica-
tion significantly improved identification (69.2% versus 54% of
isolates at �2.00; � � 0.01) by the Bruker library; this difference
was significant also for Fusarium (42% to 73.3%; � � 0.01). While
there was also improvement in proportional identification for the
combined database, no statistical significance was demonstrated
for any of the three genera at the cutoff of �1.80 (Fusarium; 84%

FIG 1 Box and whisker plots illustrating the median mass spectral log scores and interquartile range of scores for Aspergillus fumigatus (A), Scedosporium
prolificans and Scedosporium apiospermum (B) and Fusarium oxysporum and Fusarium incarnatum-equiseti complex (C). Scores achieved when challenged
against the Bruker library alone are shown in gray shaded boxes, and those achieved by the combined Bruker library and in-house database are shown in the open
boxes. The numbers on the y axis represent MALDI-TOF MS log scores.
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to 95.6%; Aspergillus, 93% to 95%; and Scedosporium, 94% to
100%). Improvements in mold identification have been reported,
including at cutoffs of �1.70 (26, 28) and as low as �1.40 using
customized databases (12). The modest improvement in species
identification observed in our study at a cutoff of �1.80 (and even
at �1.70; data not shown) suggests that the representation of lo-
cally relevant spectra in a database, rather than lowering the
threshold is more important for test performance.

Twelve isolates (one Scedosporium apiospermum, seven Fusar-
ium, and four Aspergillus) (Table 1) were not identified to the
species/species complex level by the combined database but eight
had correct identifications at log scores of �1.70 to �2.00. Of 10
isolates called as misidentifications by the Bruker library, two each
were Aspergillus creber and Aspergillus sydowii (misidentified as
Aspergillus versicolor) and six were S. aurantiacum (as S. apiosper-
mum). The combined library called one A. sydowii strain as A.
versicolor. It is possible that identification errors exist in the Bruker
database. While we “challenged” the combined database with only
21/28 species with in-house-built spectra, evaluation of other spe-
cies is ongoing.

In summary, we have developed a clinically relevant database
containing 28 species of Aspergillus, Fusarium, and Scedosporium.
This library is portable across diagnostic laboratories within Aus-
tralasia to supplement the Bruker library.
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