= International Journal of K\
Molecular Sciences M D\Py
Review

Effects and Mechanisms of Low-Intensity Pulsed
Ultrasound for Chronic Prostatitis and Chronic Pelvic
Pain Syndrome

Guiting Lin !, Amanda B. Reed-Maldonado !, Maofan Lin 2, Zhongcheng Xin 2 and Tom F. Lue 1*

1 Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California,

San Francisco, CA 94143, USA; glin@urology.ucsf.edu (G.L.); amanda.reed-maldonado@ucsf.edu (A.B.R.-M.)
Department of Urology, Peking University First Hospital and the Institute of Urology, Peking University,
Beijing 100009, China;maofanlin8473@163.com (M.L.); xinzc@bjmu.edu.cn (Z.X.)

*  Correspondence: tlue@urology.ucsf.edu; Tel.: +1-415-476-3801

Academic Editor: William Chi-shing Cho
Received: 12 May 2016; Accepted: 27 June 2016; Published: 1 July 2016

Abstract: Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is one of the most common
urologic diseases, and no curative treatments have been identified. Low-intensity pulsed ultrasound
(LIPUS) has been successfully used in promoting tissue healing, inhibiting inflammation and pain,
differentiating stem cells, and stimulating nerve regeneration/muscle regeneration, as well as
enhancing angiogenesis. Very recently, LIPUS has been proven an effective approach for CP/CPPS.
This review summarizes the possible mechanisms responsible for the therapeutic effect of LIPUS
for CP/CPPS. To search publications relevant to the topics of this review, the search engine for life
sciences of Entrez was used. We reviewed the available evidence from 1954 through 2015 concerning
LIPUS for CP/CPPS. According to the literature, both transrectal and transperineal approaches of
LIPUS are effective for CP/CPPS.
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1. Introduction

Chronic Prostatitis (CP), one of the common urologic diseases, is frequently diagnosed in the field
of andrology [1]. The majority of patients experience chronic pelvic pain without any evidence of
infection; this is defined as Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) (category III
of CP). However, the etiologies and mechanisms related to the pathogenesis of CP/CPPS are currently
far from well understood, and no effective treatments have been successfully identified. Therefore, a
novel and effective therapeutic approach is needed. Very recently, low-intensity pulsed ultrasound
(LIPUS) has been successfully used in promoting tissue healing [2,3], inhibiting inflammation and
pain [4], differentiating stem cells [5] and nerve /muscle regeneration [6], as well as enhancing cardiac
angiogenesis [7] in other non-andrology fields. Since the first clinical application of ultrasound
for CP conducted by Karpukhin et al. in 1977 [8], LIPUS has been proven an effective therapeutic
approach for CP/CPPS in a randomized, double-blind, multi-center clinical trial [9]. Meanwhile,
well-conducted experiments demonstrated several biological effects from LIPUS, such as regulation of
cyclooxygenase-2 (COX-2) and monocyte chemoattractant protein 1 (MCP-1), which are responsible
for this therapeutic effect and provided fundamental support for the application of LIPUS on
CP/CPPS [10].
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2. Chronic Prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS)

According to the National Institutes of Health (NIH) consensus classification of prostatitis
syndromes, there are four clinical categories of prostatitis: (I) acute bacterial prostatitis; (II) chronic
bacterial prostatitis; (III) chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS); and (IV)
asymptomatic inflammatory prostatitis. It is worth noting that the majority of CP patients are type
III (about 90%—-95%), without evidence of infection but with chronic pelvic pain. Clinically, this type
of prostatitis is defined as chronic pelvic pain symptoms that last for at least three to six months
without causes related to urinary tract infection or other causes, such as malignancy disease. It may be
accompanied by urinary symptoms or sexual dysfunction, but organic or morphological local change
does not explain the chronic pain in these CP patients. In general, CP/CPPS is associated with many
symptoms, such as pelvic pain, irritative and obstructive voiding symptoms, and sexual dysfunction.
Worldwide, 2% to 14% of men may suffer the symptoms of CP/CPPS [1].

Several biological mechanisms have been reported for CP/CPPS, such as infection, immunological
abnormality, neurological dysfunction, psychosocial problems, and endocrine disorders. However,
the etiology and pathogenesis of CP/CPPS remain poorly understood [11]. Notably, organic or
morphological pathology does not explain the chronic pelvic pain, which is the dominant complaint
of CP/CPPS patients. Recently, it has been reported that central sensitization (CS) is also related
to CP/CPPS, and this may be the cause of chronic pain. CS is defined as an augmentation of
responsiveness of central cortical neurons to input from unimodal and polymodal receptors. Korkmaz
conducted a clinical experiment in 17 male patients diagnosed with CP/CPPS and 17 healthy male
controls and demonstrated that CS may be a possible etiological factor responsible for the pain
sensation in those patients. In the study, an electrical stimulus was applied with penile ring electrodes
for somatosensory evoked potentials recording, and latency of N50 was defined as the second negative
(upward) deflection of the W-shaped averaged cortical waveform. Results indicated that N50 latencies
were significantly shortened in the CP/CPPS patient group compared to the healthy controls (p < 0.001).
Therefore, normalization of transmission might be an important step in treatment of pain in patients
with CP/CPPS [12]. Updated research confirmed that LIPUS promoted nerve regeneration in vivo [6].

Importantly, in addition to the dominant chronic pelvic pain symptoms, CP/CPPS also negatively
impacts the quality of life of men in many aspects, such as erectile function. In the clinic,
erectile dysfunction (ED) is another major concern for CP/CPPS patients. ED is defined as the
persistent inability to attain and maintain a penile erection that is sufficient for satisfactory sexual
performance [13]. Though the underlying mechanisms are unclear, recent research suggested a link
between CP/CPPS and ED, which is related to the arterial stiffness or endothelial dysfunction, as well
as psychological factors including stress, depression, and anxiety.

It is worth noting that CP/CPPS is a complex clinical condition with wide criteria and currently
lacks well-validated diagnostic biomarkers [14]. Very recently, several biomarkers, including
Interleukin 8 (IL8), MCP-1, and macrophage inflammatory protein-1x (MIP-1x), have been proven
to be strongly correlated with CP/CPPS. IL-8 is related to several diseases, such as abdominal aortic
aneurysms, theumatoid arthritis, inflammatory bowel disease, gastritis, and lung disease [15,16].
Recently, it has been reported that the IL-8 value is strongly correlated with CP/CPPS (p < 0.001); the
patients with the worst symptoms have higher levels of IL-8 reported [15]. At the same time, MCP-1
and MIP-1« recruit monocytes and macrophages, which may also be responsible for CPPS as this
subtype of CP patients had statistically higher levels of MCP-1 and MIP-1« than the control group or
patients with benign prostatic hyperplasia.

Although several etiologies and mechanisms have been proposed for the pathogenesis of
CP/CPPS, the real cause of this disease remains unknown, and effective treatments have not yet
been identified. Therefore, available therapeutic options for CP/CPPS are far from satisfactory for
physicians or for patients. A novel, effective therapeutic approach is desperately needed [1].
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3. Therapeutic Ultrasound and Low-Intensity Pulsed Ultrasound (LIPUS)

The application of ultrasound in medicine has developed in two directions: the diagnostic imaging
modality and therapeutic approach in which energy is deposited into target organs and tissues to
induce biological effects that can be appreciated clinically. Recently, developments in the science of
ultrasound have improved the latter application and made ultrasound a possible therapy for various
diseases [17-20].

An ultrasound wave is a high-frequency wave that is generally 1-12 MHz. Ultrasound waves
transmit through body tissues where they induce molecular vibration and collisions leading to
biological responses and events at both cellular and molecular levels. According to the level
of ultrasonic energy, therapeutic ultrasound can be classified into two categories: high-intensity
ultrasound with peak intensities of 5000~15,000 W /cm? and low-intensity ultrasound with intensities
of 0.5-3000 mW /cm?.

Recently, LIPUS at low intensity (<0.1 W/cm?) and a constant frequency (1-1.5 MHz), which
reduces any significant thermal effect, has been widely utilized to promote tissue healing, inhibit
inflammation and pain, treat CP/CPPS, activate stem cell and nerve and muscle regeneration, and
enhance cardiac angiogenesis. However, the potential mechanisms producing the above biological
effects are still unclear and are under further investigation.

4. Application of LIPUS for CP/CPPS

In 2013, Li et al. [9] evaluated the clinical efficacy and safety of transperineal ultrasonic therapy
with a Therapeutic Ultrasonic Device (GR-QLX, Beijing Guorui Huihuang Medical, Ltd., Beijing, China)
for CP by analyzing the National Institutes of Health Chronic Prostatitis Symptom Index (NIH-CPSI)
scores along with routine prostate examination and evaluation of expressed prostatic fluid. They
conducted a randomized, double-blind, multi-center trial on 96 CP patients. The patients were divided
into groups A (trial) and B (control) of equal number; the former were treated with transperineal
LIPUS and the latter with the same machine but no ultrasound waves. The treatment protocol was
10 min per treatment daily for two weeks. The therapeutic effect and safety were evaluated by
comparing the NIH-CPSI scores and counts of white blood cells (WBC) and lecithin corpuscles (LC) in
the prostate fluid between the two groups before and after treatment. Results demonstrated that the
total effectiveness rate was 70.83% in group A and 25% in group B (p < 0.01). The scores on prostate
pain, urinary symptoms, and quality of life, as well as the total NIH-CPSI score, were significantly
improved in group A as compared with pre-treatment (p < 0.05), and so were the prostate pain score
and total NIH-CPSI score in group B (p < 0.05). Statistically significant differences were observed
between the two groups in the scores on prostate pain and urinary symptoms and total NIH-CPSI
score after treatment (p < 0.05), but not in any of the NIH-CPSI scores before treatment (p > 0.05), nor
were there any significant differences in the counts of WBCs and LC either between the two groups or
within each group before and after treatment (p > 0.05).

Results demonstrated that transperineal ultrasonic therapy is highly effective for CP, especially in
relieving prostate pain. With its advantages of safety, easy operation, and high acceptability, LIPUS was
recommended for a wider clinical application. Transrectal LIPUS has also been previously reported to
be effective in improving clinical symptom of CP/CPPS [8].

4.1. Physical Mechanisms of LIPUS for CP/CPPS

When LIPUS is applied for therapeutic usage, the ultrasonic energy is absorbed at different rates
depending on the density of the tissue through which the ultrasound waves pass. The potential
biological actions of ultrasound are produced through two major physical mechanisms: thermal effects
and non-thermal effects, which include acoustic cavitation and mass transfer enhancement.
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4.1.1. Thermal Effect

During the application of LIPUS, the ultrasonic waves propagate though the body, and the
ultrasonic energy is absorbed according to the density of the tissue through which the waves pass
and the density of the target tissue. In general, the absorption of the ultrasound signal results in an
increase in the temperature of the target tissue. Although this thermal effect from LIPUS is rather
minor, some enzymes, such as MMP-1 and collagenase, are exquisitely sensitive to even extremely
minor changes of temperature [21] and function will be affected. Thermal deactivation is one of the
important mechanisms in the denaturation of enzymes induced by LIPUS.

4.1.2. Cavitation

One of the dominant non-thermal effects in target tissues from the ultrasound energy of LIPUS is
the cavitation phenomenon [22]. There are two different types of acoustic cavitations: stable cavitation
and transient cavitation. The stable cavitation produce bubbles which present for a great number of
acoustical cycles, and the radius of every bubble varies about an equilibrium value. On the other hand,
the transient cavitation forms bubbles which oscillate in an unstable manner and expand to two or
three times their resonant size before collapsing violently. Both types of cavitation are considered to be
main mechanisms for the biological effects on target tissues, while the transient cavitation actions are
responsible for the damage to intact cells.

4.1.3. Mass Transfer Enhancement

It is well known that ultrasound increases the movement of the liquid medium, precipitating mass
transfer and reaction rates, which also occurs in target tissue and cells treated with LIPUS. In general,
this happens in three main areas, including the cell membrane, the cytosol, and the boundary layer.
A micro-stream around an acoustic field is generated by the vibratory gas bubble and leads the
reagents to the active site of the enzyme or to the cell. Meanwhile, the biological products are released
into the medium, where the biological effect occurs.

4.2. Biological and Molecular Mechanisms of LIPUS for CP/CPPS

Extensive research demonstrates that LIPUS results in minor heat and other biological signaling in
the target tissues. Therefore, LIPUS may re-establish or normalize the effective metabolic temperatures
in prostatic tissue-healing regions [23]. Though this effect is subtle, its biological effect may be
profound. Furthermore, at interfaces of distinct densities, the energy of LIPUS is reflected and results
in complex gradients of acoustic pressure and biological response through the tissue. LIPUS stimulates
many biological events that may be of treatment benefit in CP/CPPS, including gene expression, cell
signaling transduction, enzymatic activity, cell proliferation and differentiation, cytokine secretion,
angiogenesis, anti-inflammation and acesodyne effect, and stem cell differentiation (Figure 1).
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Figure 1. Biological and molecular mechanisms of Low-intensity pulsed ultrasound (LIPUS) for the
therapy of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). Upward arrow: increase;
Downward arrow: decrease.

4.2.1. Cell Signaling Pathways Affected by LIPUS

Activation of Rho A/ROCK/ERK Pathway

In 2004, by applying LIPUS to primary human foreskin fibroblasts, Zhou et al. investigated the
effects of LIPUS at an intensity of 0.03 W/ cm? [24]. They noted that LIPUS activated Rho-associated
coiled—coil-containing protein kinase (ROCK)-dependent pathway. Furthermore, daily LIPUS
exposure resulted a two-fold increase in extracellular signal related kinase (ERK) 1/2 activation,
as well as triggered cell proliferation. Actually, the RhoA/ROCK is an upstream regulator of the
LIPUS-induced ERK pathway. LIPUS also triggered Src, which further regulates the ERK cascade.

Activation of FAK/PI3K/Akt Pathway

It is well known that the extracellular matrix is very important in maintaining a normal
morphology and function in both organs and tissues, especially of the prostate. In 2015, Zhang et al. [25]
explored the effect of LIPUS on another cell type, the human nucleus pulposus cells, and confirmed
that LIPUS significantly up-regulated expression of aggrecan, collagen-II, Sox9, and tissue
inhibitor of metalloproteinase-1 compared to the control group, but it inhibited secretion of matrix
metalloproteinase-3. The study further demonstrated that the up-regulation of aggrecan, collagen-II,
and Sox9 was related to the activation of FAK/PI3K/Akt pathway caused by LIPUS. Inhibition of
PI3K/ Akt significantly suppressed the special biological effect activated by LIPUS [25].

This effect was also confirmed by Cheng’s group [26]. They demonstrated the effect of LIPUS
on extracellular matrix (ECM) production via modulation of the integrin/focal adhesion kinase
(FAK)/phosphatidylinositol 3-kinase (PI3K)/Akt pathway. These authors showed that LIPUS may
affect the integrin-FAK-PI3K/ Akt mechanochemical transduction and alter ECM production.

4.2.2. Potential Genes Affected by LIPUS

With the high throughout microarray platform, the genes affected by LIPUS were extensively
studied. There are 38 genes upregulated and 37 genes downregulated by 1.5-fold or more, which were
identified in the cells after LIPUS treatment. It was reported that seventeen genes were validated by
real-time quantitative PCR assay. In addition to the up-regulated genes, many down-regulated genes
were also affected by LIPUS. Interestingly, this network contained the inhibitor of differentiation (Id)
genes, including Id1, Id2 and Id3, which belong to the helix-loop-helix (HLH) transcription factors
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that can form heterodimers among the basic HLH transcription factors. These genes are likely to be
involved in the acceleration of tissue healing induced by LIPUS.

Kobayashi [27] also applied cDNA microarray to assess the genes affected by LIPUS in vitro. Their
cDNA array results confirmed that LIPUS significantly stimulated the expression of growth factors,
including BMP2, FGF7, TGF 3 R1 EGFRF]1, and vascular endothelial growth factor (VEGF), and their
receptors. In 2008, Omi et al. [10] reported that LIPUS stimulates cell proliferation and proteoglycan
production in rabbit intervertebral disc cells and promotes the secretion of MCP-1 from macrophages.
However, they did not assess the dosage response. The possible application of LIPUS for biological
repair could be achieved based upon those biological effects, though the mechanisms involved are not
well understood. Therefore, in their experiment to evaluate the effect of LIPUS stimulation on cytokine
production, in vitro culture studies of nucleus pulposus cells and macrophages were conducted. After
culture and stimulation with LIPUS for seven days, the culture medium and the cells were analyzed
by cytokine array, RT-PCR, and ELISA. Results demonstrated that LIPUS stimulation significantly
up-regulated TIMP-1 in the nucleus pulposus and MCP-1 in macrophages compared to that in the
control. The result was confirmed by RT-PCR and quantitative evaluation of proteins by ELISA.

4.3. LIPUS Promotes Angiogenesis through VEGF

Several reports claimed an angiogenesis effect from LIUPS, which may promote resolution of
symptoms in CP/CPPS patients. To figure out the mechanism of this biological effect, Hanawa et al. [7]
assessed expression of VEGF in human umbilical vein endothelial cell (HUVEC). They confirmed that
LIPUS significantly up-regulated mRNA expression of VEGF in cultured human endothelial cells,
and this effect depended on the ultrasound cycles and the number of ultrasound waves in each pulse.
The peak occurred at 32 cycles. They also examined the in vivo effects of LIPUS in a porcine model of
chronic myocardial ischemia with reduced left ventricular ejection fraction (LVEF). Interestingly, the
results indicated that the capillary density in the ischemic region of heart was significantly improved
in the LIPUS group compared with the control group.

4.4. Effect of LIPUS on in Vitro Differentiation of Stem Cells

In 2013, Lv et al. [5] explored the effect of LIPUS on induced pluripotent stem cell-derived neural
crest stem cells (iPSCs-NCSCs) by checking the cell proliferation, cell viability, and differentiation of
iPSCs-NCSCs. Results indicated that LIPUS at 500 mW /cm? enhanced the viability and proliferation
of iPSCs-NCSCs after two days of LIPUS and up-regulated the expression of GFAP, 51003, Tujl,
and NE-M in iPSCs-NCSCs after four days of LIPUS. At seven days post LIPUS, only GFAP, NF-M,
and S100$3 were up-regulated. Their results demonstrated that the LIPUS could be an efficient and
cost-effective method to enhance cell proliferation, cell viability, and neural differentiation in vitro,
which may be of benefit for peripheral nerve tissue engineering. The same group confirmed this
beneficial effect in vivo in 2015 [6]. They applied the iPSCs-NCSCs as a bridge in rat transected sciatic
nerve and found treatment with 0.3 W/cm? LIPUS for two weeks and 5 min per day significantly
improved the sciatic functional index. Histological analysis also revealed new blood vessels and new
neurofilaments, and higher expression level of 3-1II tubulin (Tuj1) was noted in the experimental group
seeded with iPSCs-NCSCs and stimulated with LIPUS.

Further experiment demonstrated the effect of LIPUS on stem cells is related to ROCK-Cot/
Tpl2-MEK-ERK pathway. In 2014, Kusuyama found LIPUS can influence the multilineage
differentiation of mesenchymal stem and progenitor cell lines via ROCK-Cot/Tpl2-MEK-ERK
signaling pathway [28]. In this study, LIPUS was applied to adipogenic progenitor cell and
mesenchymal stem cell (MSC) lines to analyze how cell differentiation was affected. Impressively,
the adipogenic differentiation of both cell types was suppressed by LIPUS and was represented
by impaired lipid droplet appearance. In addition, expression of peroxisome proliferator-activated
receptor y2 (Pparg2) and fatty acid-binding protein 4 (Fabp4) were decreased in the LIPUS-treated
group. On the contrary, LIPUS promoted the MSC line differentiation into osteogenic cells by



Int. ]. Mol. Sci. 2016, 17, 1057 70f9

inducing the expression of runt-related transcription factor 2 (Runx2) and Osteocalcin. It was
also noted that LIPUS could induce the expression of phosphorylation of cancer Osaka thyroid
oncogene/tumor progression locus 2 (Cot/Tpl2) kinase and enhance the phosphorylation process of
mitogen-activated kinase kinase 1 (MEK1) and p44/p42 extracellular signal-regulated kinases (ERKSs).
This effect could be blocked by a Cot/Tpl2-specific inhibitor. Therefore, the LIPUS could suppress
adipogenesis and promote osteogenesis of MSCs through the signaling pathway of Rho-associated
kinase-Cot/Tpl2-MEK-ERK [28].

4.5. Anti-Inflammatory Effect from LIPUS through TLR4 and COX2

In 2014, with a LPS-induced inflammation model, Nakao et al. [4] explored the effect of LIPUS to
determine its mechanism of action. In their experiment, LPS induced the expression of CXCL1, CCL2,
and CXCL10, while LIPUS treatment significantly inhibited the expression of CXCL1 and CXCL10
induced by LPS. For the mechanism, LIPUS significantly decreased the phosphorylation of ERKs,
p38 kinases, MEK1/2, MKK3/6, IKKs, TBK1, and Akt induced by LPS as well. Meanwhile, LIPUS
inhibited the transcriptional activation of NF-kB responsive element and interferon-sensitive response
element (ISRE). Additionally, in an experiment of transient transfection, LIPUS significantly inhibited
the formation of TLR4-MyD88 complex. Therefore, the anti-inflammatory effect from LIPUS was
through inhibiting TLR4 signal transduction in the target cells.

An in vivo experiment also confirmed the anti-inflammatory effects from LIPUS in MRL/Ipr
mice [29]. It has been reported that stimulation with pro-inflammatory cytokines significantly
promoted cell proliferation, which was significantly decreased in the LIPUS exposure group. In this
in vivo experiment, LIPUS treatment resulted in a significant reduction of histological damage in
MRL/Ipr mice compared to that in control. Impressively, the Cox-2-positive cells were markedly
decreased in the animals treated with LIPUS. The study demonstrated that LIPUS treatment might be
an effective therapy for inflammatory diseases, such as CP.

4.6. Acesodyne Effects from LIPUS for CP/CPPS

The dominant symptom of CP/CPPS is chronic pelvic pain. It is well known that inhibition of
COX-2 can provide relief for inflammation and pain. In 2014, to determine the effect of LIPUS on the
expression of COX-2 and related mechanisms, Iwabuchi et al. [30] used the articular chondrocytes
primarily derived from porcine mandibular condyles after the treatment of interleukin-13 (IL-13) and
treated with LIPUS for 20 min. The conditioned medium was changed to a fresh one without IL-13
post-LIPUS, and the cells were cultured for 0 to 24 h. The expression of COX-2, p-integrin 31, and
phosphorylated extracellular signal-related kinase (p—ERK%) were checked with real-time PCR and
Western blot. The results indicated that LIPUS significantly decreased the COX-2 mRNA level induced
by IL-1B. Furthermore, phosphorylation of integrin  and expression of p-ERK1 were also inhibited by
LIPUS significantly. Therefore, COX-2 expression could be inhibited by LIPUS through a mechanism
of the integrin 31 receptor followed by the phosphorylation of ERK%. This demonstrated that LIPUS is
a potential candidate as a therapeutic approach for CP/CPPS.

5. Prospective

LIPUS is regarded as effective clinical procedure for the treatment of CP/CPPS for many reasons.
LIPUS is a non-invasive treatment with anti-inflammatory, acesodyne effects through pathways
including regulation of gene expression, cell signaling transduction, impacts on enzymatic activity,
cell proliferation and differentiation, cytokine secretion, angiogenesis, and stem cell differentiation.
Overall, LIPUS is safe for both the operator of the equipment and patients treated [31].

Both transrectal and transperineal approaches are effective. With more basic and clinical research,
the mechanism of LIPUS for its biological effects will be further clarified and optimal clinical energy
dosage and therapeutic protocols will be established. This will extensively enhance the clinical
outcomes for patients with CP/CPPS treated with LIPUS.
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