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Abstract

Perceptual learning, the improvement in performance with practice, reflects plasticity in the adult 

visual system. We challenge a standard claim that specificity of perceptual learning depends on 

task difficulty during training, instead showing that specificity, or conversely transfer, is primarily 

controlled by the precision demands (i.e., orientation difference) of the transfer task. Thus, for an 

orientation discrimination task, transfer of performance improvement is observed in low-precision 

transfer tasks, while specificity of performance improvement is observed in high-precision transfer 

tasks, regardless of the precision of initial training. The nature of specificity places important 

constraints on mechanisms of transfer in visual learning. These results contribute to understanding 

generalization of practiced improvements that may be key to the development of expertise and for 

applications in remediation.
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 Introduction

Perceptual learning improves performance on visual tasks due to repeated practice or 

training (Fahle & Poggio, 2002). It occurs in visual search (Ahissar & Hochstein, 1996, 

1997), texture discrimination (Karni & Sagi, 1991, 1993), motion perception (Liu & 
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Weinshall, 2000), orientation discrimination of simple visual objects (Dosher & Lu, 1998, 

1999; Petrov, Dosher, & Lu, 2005), and many other tasks typical of intelligent perceptual 

agents (Fine & Jacobs, 2000; McKee & Westheimer, 1978; Saarinen & Levi, 1995; Yu, 

Klein, & Levi, 2004).

Perceptual learning achieved in one task often fails to transfer to other, related, tasks or 

stimuli. Lack of transfer of learned attributes, or specificity, is seen as one significant 

property of perceptual learning. Specificity has been reported for retinal position, 

orientation, size, spatial frequency, and motion direction (Ball & Sekuler, 1982, 1987; Crist, 

Kapadia, Westheimer, & Gilbert, 1997; Fahle & Poggio, 2002; Fiorentini & Berardi, 1980, 

1981; Schoups, Vogels, & Orban, 1995; Schoups, Vogels, Qian, & Orban, 2001). On the 

other hand, there are some situations in which perceptual learning may transfer quite well to 

other related tasks (Ahissar & Hochstein, 1997; Liu & Weinshall, 2000; Watanabe et al., 

2002).

So, the degree of specificity, or conversely transfer, can vary widely and depends on the 

specifics of the training and transfer tasks (see below). Transfer—at least appropriate 

transfer to related tasks—may have great value in normal circumstances and in applications 

of perceptual learning in rehabilitation of impaired or developmentally delayed populations 

(e.g., Huang, Zhou, & Lu, 2008). Understanding the determinants of specificity and transfer 

remains one of the large outstanding questions in field. This paper challenges existing views 

that transfer is controlled by the difficulty of the training tasks. Instead, we argue for a task 
precision theory of specificity and transfer and focus on the role of precision (e.g., extent of 

orientation difference) primarily in the transfer, not the training, task.

The major claim in the literature is that transfer, or specificity, depends on the ‘difficulty’ of 

the training task (Ahissar & Hochstein, 1997; Liu & Weinshall, 2000; Rubin, Nakayama, & 

Shapley, 1997). It has been postulated that training in an easy task is easily transferred to 

other related tasks, while training in a difficult task is not easily transferred. For example, 

Ahissar and Hochstein (1997) investigated the transfer in a visual search task in which 

targets and distractors were of different orientations. Nearly full transfer occurred between 

‘easy’ initial training and subsequent ‘easy’ transfer tests in which the orientations of targets 

differed from distractors by 30° and the orientations of targets and distractors were changed 

between the initial training and transfer tasks. In contrast, there was much less transfer, or 

more specificity, between two ‘difficult’ tasks in which the target and distractor orientations 

differed by 16°. In another example (Liu & Weinshall, 2000), learning transferred strongly 

from a training task to a transfer task, both requiring the discrimination between motion 

directions differing by 8°but in different general directions. There was almost no transfer 

from a training task to a transfer task that required the discrimination between motion 

directions differing by 4°. The claim in both cases was that the perceptual learning in an 

easy task is transferred, while perceptual learning in a difficult task is not.

Although these studies developed theories of transfer and specificity based on ‘task 

difficulty,’ the accompanying experiments in fact manipulated task precision (orientation 

difference). In a more general sense, we usually think of task difficulty as related to 

performance level—an easier task permits higher accuracy than a difficult one. Accuracy in 
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visual discrimination can be a function of many stimulus factors, including contrast, 

duration, eccentricity, or the presence or absence of masking noise. Performance accuracy is 

also a function of the training state or expertise of the observer. Here, we suggest that the 

important stimulus factor determining transfer is in fact the precision of discrimination—not 

task difficulty per se.

In addition, the previous claims about task difficulty in initial training as the determinant of 

transfer (Ahissar & Hochstein, 1997; Liu & Weinshall, 2000) were based on experiments 

that did not independently manipulate the ‘difficulty’ (precision) of the training and transfer 
tasks. (In this paper, the training task refers to the initially trained task, and the transfer task 

refers to the task that is trained after the task switch.) While the results of the previous 

studies were consistent with the theoretical claims of the authors, it is unclear whether the 

initial training task, the transfer task, or both, controlled the extent of specificity or transfer 

since they did not implement a full factorial design (i.e., such as Doane, Sohn, Alderton, & 

Pelligrino, 1996 for mental rotation tasks).

The current study independently manipulates task precision of the training and transfer 

tasks, keeping the task difficulty (performance accuracy) constant. Our observers make basic 

orientation discrimination judgments. The initial training and subsequent transfer tasks differ 

from each other both in base angle and in retinal position. This is a direct analogy to Ahissar 

and Hochstein (1997), in which the location of the targets and the orientations of targets and 

distractors both changed at the point of task transfer. In addition, we also manipulated the 

presence or absence of external (masking) visual noise in the displays. There is now 

extensive evidence that perceptual learning may express distinct learning mechanisms in 

high and low visual noise (Dosher & Lu, 1998, 2005; Lu, Chu, & Dosher, 2006). Testing in 

both noisy and noiseless displays allows us to evaluate whether the transfer results differ in 

these two regimes.

The independent manipulation of task precision in initial learning and in subsequent transfer 

turns out to be critical—while previous emphasis was placed on the difficulty of initial 

training, the required precision of the transfer task is the controlling factor in transfer, and 

this is so in both noisy and noiseless displays. We consider the implication of these results 

for the reweighting and representational retuning hypotheses of perceptual learning.

 Methods

 Participants

Fourteen naive observers participated in the high-precision transfer test conditions and 16 

naive observers participated in the low-precision transfer test conditions. One half of each 

group trained initially in the high-precision task and one half in the low-precision task. All 

subjects had normal to corrected-to-normal vision and provided written consent under the 

UC Irvine Institutional Review Board protocol.

 Materials

Figure 1 shows sample stimuli and the layout. The signal Gabor patch was 64 × 64 pixels (3° 

× 3° visual angle at a viewing distance of 58 cm):
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(1)

with angle θ of −35° ± 5° or +55° ± 5° (High Precision) or −35° ± 12° or +55° ± 12° (Low 

Precision), spatial frequency f = 2 cpd, standard deviation of the Gaussian envelope σ = 0.4 

degrees. The contrast c is the maximum contrast of the Gabor, and l0 is the mid-gray 

luminance. A 64 × 64 pixel noise image had individual 2 × 2 pixel noise elements with 

Gaussian-distributed contrasts about the mean value l0 and a standard deviation of 0.33 of 

100% contrast. Signal and noise images were combined via temporal integration (15 ms per 

frame). The Gabor frames were ‘sandwiched’ between noise (or blank) frames (Figure 1B). 

A total of 640 external noise images were generated offline with samples selected at random 

for each trial.

Stimuli were displayed on a 15″ color monitor using the internal 10-bit video card of a 

Power Macintosh G3/267 (refresh rate 67 Hz, resolution 640 × 480 pixels, or 22.5°by 30°). 

Luminance calibration was performed both with psychophysical matching judgments and 

measurement with a Tektronix Lumacolor J17 photometer. Lookup tables were used to 

divide the luminance range (from 1 cd/m2 to 35 cd/m2) into 127 equidistant levels for the 

noise frames and [−c, +c] into 127 finer gray levels for the Gabor targets. A chin rest 

stabilized the observer’s head.

 Procedure

Subjects discriminated between a Gabor tilted clockwise (“Right”) or counterclockwise 

(“Left”) from a reference angle of either −35° or +55° (Figure 1A). The implicit reference 

angles were fixed throughout each phase of the experiment. The stimuli could occur in one 

of four retinal positions in the NW, NE, SW, and SE corners of the screen, approximately 

5.67° of visual angle from fixation (Figures 1B and 1C). Each block of training involved 

only two diagonally opposite positions. If the first phase of training used the NW/SE 

diagonal, then the transfer tests used the NE/SW diagonal, and vice versa. The reference 

angle and presentation diagonal were randomly assigned to subjects for initial training (4 

sessions) and switched to the opposite reference angle and diagonal for the transfer tests (4 

sessions).

The Gabor targets in the high-precision condition differed by ±5°, or δ = 10°, in orientation; 

those in the low-precision condition differed by ±12°, or δ = 24°. These values may be 

compared to the physiological orientation bandwidth (25–30°) of neurons in early visual 

cortex (De Valois, Yund, & Hepler, 1982). In addition, the Gabors appeared in external 

masking noise or with no noise. The no noise and high noise conditions were randomly 

intermixed within each testing block.

On each trial (Figure 1D), the participant fixated on a small cross at the center of the screen. 

An onset cue (beep) occurred 250 ms after the fixation cross. Another 250 ms later, the 

stimulus sequence (a noise frame, Gabor frame, and new noise frame, each for two refresh 

cycles) appeared for a total of 90 ms (15 ms/refresh). In no noise conditions, neutral clear 
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frames replaced the white noise frames in the displays. A precue appeared 400 ms after 

fixation for the low-precision transfer groups; subsequent collateral testing indicated 

performance was unaffected by the precue. A negative feedback tone was presented after 

each error. The next trial began 750 ms after the key press response.

Observers completed 8 sessions of 1248 trials each, plus practice trials, or almost 10,000 

trials. Two practice trials preceded the beginning of the staircase measurements, except for 

sessions 1 and 5, which had ten practice trials. Contrast thresholds were tracked through the 

remaining trials using randomly interleaved adaptive staircases (see below; Levitt, 1971). 

Each session had 4 blocks separated by brief rest periods.

 Staircases

Two interleaved adaptive staircase procedures (Levitt, 1971) were used to estimate contrast 

thresholds for the Gabor orientation judgments. Signal contrast levels were reduced by 10% 

after either 3 or 2 consecutive correct responses and increased by 10% after each incorrect 

response. The 3/1 and 2/1 staircases track accuracies of 79.3% and 70.7% correct, 

respectively. Separate staircases for all stimulus parameters (including retinal position) were 

interleaved. There were 168 and 144 trials, respectively, for the 3/1 and 2/1 staircases for a 

total of 312 in each block. Reversals in staircase direction were determined from the 

sequence of responses. Threshold contrast levels were computed by averaging an even 

number of reversals for each staircase sequence, excluding the first four or five. Eliminating 

the beginning of the staircase excludes the early ‘level-finding’ trials that could bias the 

threshold estimates either low or high depending on the relation of the starting values to the 

true thresholds. Averaging an even number of reversals balances high- and low-point 

reversals, which also reduces bias. Based on examination of all staircase traces, a somewhat 

larger number of reversals were eliminated in blocks 1 and 5 in some individuals to deal 

with additional trials of range finding. An overall contrast threshold corresponding to 75% 

correct was estimated by averaging the thresholds of all staircases every two blocks for a 

total of 16 data points per observer. In addition to the explicit practice trials, the staircase 

estimation often began after about 100–120 trials over all interleaved staircases in the first 

session of the initial training task and the first session of the transfer task. This extent of 

general practice prior to calculation of the thresholds limits the contamination by early task 

familiarization.

 Results

 Threshold measures of perceptual learning

Perceptual learning is indexed by the improvements in thresholds as a function of practice 

for all conditions averaged over observers and retinal positions on one diagonal and over 

every two blocks of practice. The thresholds are also averaged over 3/1 and 2/1 staircases 

corresponding to 79.3% or 70.7% correct, yielding an expected asymptotic accuracy of 75% 

correct. After averaging, there are two measured thresholds in each external noise condition 

per session.
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Figure 2A first shows the 75% contrast threshold data for the two groups of observers who 

transferred to a low-precision task and Figure 2B shows the data for the two groups who 

transferred to a high-precision task, and finally Figure 2C shows all four groups together.

The thresholds of each pair of two groups randomly assigned to the same initial learning 

conditions during the training phase were indistinguishable (all p > 0.2). This is expected, as 

the conditions were identical, only differing in the subjects randomly assigned to the groups. 

Although learning in low-precision, no-noise conditions appear to differ, these differences 

are not significant (over observers) either here (F(1,13) = 1.97, p ≈ 0.2) or in a series of 

independent validation tests.

Perceptual learning, i.e., reductions of contrast thresholds, occurred during initial training 
(four days, 8 threshold points) for all conditions; the magnitude of learning was larger in 

high external noise and/or for high-precision tasks. Learning in the initial phase of practice 

was tested using a paired t-test that compared the first threshold with the last threshold value 

prior to the task switch. Learning was significant for training in the low-precision task in no 

noise (t(6) = 2.73, p = 0.03, t(7) = 2.38, p = 0.05) and in high noise (t(7) = 5.97, p < 0.001, 

t(6) = 3.52, p = 0.01). Similarly, learning was significant in the high-precision task in no 

noise (t(6) = 2.71, p = 0.04 and t(7) = 7.99, p < 0.001) and in high noise (t(7) = 7.28, p < 

0.001, t(6) = 8.680, p < 0.001). So, each initial training condition exhibited learning that 

could lead to subsequent transfer.

In addition, as expected, high-precision discriminations (±5°, δ = 10°) consistently had 

higher contrast thresholds than the corresponding low-precision discriminations (±12°, δ = 

24°). The thresholds were higher at the beginning of training (average contrast of 0.65 

versus 0.37 averaged over external noise, F(1,58) = 20.40, p < 0.0001) and transfer (average 

contrast of 0.48 versus 0.20, F(1,58) = 32.133, p < 0.0001) and were also significant for each 

external noise level individually. Also, as expected, external noise conditions required higher 

average contrast thresholds than no-noise conditions in initial training tasks (initial contrasts 

of 0.68 versus 0.34, F(1,58) = 33.30, p < 0.0001 averaged over precision) and in subsequent 

transfer tasks (initial contrasts of 0.48 versus 0.19, F(1,58) = 32.87, p < 0.0001) and were 

also significant for each precision level individually. These increases in contrast threshold 

for high-precision tasks and for external noise conditions validate the effectiveness of both 

manipulations.

 Performance on the transfer task

Most importantly and surprisingly, the thresholds in the transfer task depended only on the 

precision of the transfer task. Statistical tests evaluated whether the two groups assigned to 

the same precision task during transfer, but following different initial training experiences, 

differed from one another. For the low-precision transfer task in no noise, F(1,14) = 2.323, p 
≈ 0.15 (ns); for the low-precision transfer task in high noise, F(1,14) = 0.680, p ≈ 0.42 (ns); 

for the high-precision transfer task in no noise, F(1,12) = 0.033, p ≈ 0.86 (ns); and for the 

high-precision transfer task in high noise, F(1,14) = 0.065, p ≈ 0.83 (ns). The tests show that 

the two groups that differ in the initial training task but transfer to the same task precision do 

not differ significantly. This, in turn, indicates that the controlling factor in transfer 

performance is the precision of the transfer task.
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Not only were performance thresholds during the first block of transfer equivalent regardless 

of the previous training but also the subsequent improvements with practice on the transfer 

task were the same regardless of the nature of the training task (see power function model 

below). The equivalence of the performance thresholds following initial training with 

different precision tasks is remarkable. These results clearly rule out models of transfer in 

which the precision of the initial training task determines the extent of transfer.

 Specificity

Specificity to a stimulus attribute or location reflects the extent to which performance in the 

transfer phase is independent of performance in the training phase. High degree of transfer is 

equivalent to low specificity, and vice versa. In this section, we consider typical specificity 

indices that compare the performance at the beginning of the transfer phase to the 

performance during the initial training phase.

The index we used, based on Ahissar and Hochstein (1997), was

(2)

The values  and  are the contrast thresholds for the first and last blocks of the initial 

training phase for a given precision (i) and external noise (j) condition. The value  is the 

contrast threshold for the first block in the transfer task. This measure, which estimates the 

portion of the initial learning that is transferred, is the measure most often used in the 

literature (Equation 2). An S of 0 indicates full transfer. This occurs when the threshold of 

the first block of the transfer phase is equal to the final block of the initial training phase. An 

S of 1 indicates full specificity, or no transfer. This occurs when the first block of the transfer 

phase starts at the same threshold as the first block of the initial training phase.

This specificity index requires that we compare like-precision tasks at initial training and 

transfer. This applies in experiments such as the current one where it is sensible to assume 

that the performances in the two tasks would have been the same without prior practice. We 

used the average of the two groups with the same precision and external noise level to 

estimate the first and last block thresholds for the initial training phase. It is necessary to use 

between-group definitions for the low-precision initial training to high-precision transfer 

task and for the high-precision initial training to low-precision transfer task. For consistency, 

we also used the average of the transfer point over the two same transfer conditions in all 

cases. This led to four specificity indices, one each for precision and noise conditions (Table 

1). Within-observer comparisons are possible for the subset of groups who transferred from 

low-precision to low-precision or from high-precision to high-precision tasks; these values 

are quite close to those reported here. We examined several other closely related specificity 

indexes, but the results were substantially the same.

Our results (Table 1) indicate low specificity (high transfer) to the low-precision transfer 

tasks of 15% and 21% specificity (85% and 79% transfer) in high and no external noise, 

Jeter et al. Page 7

J Vis. Author manuscript; available in PMC 2016 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively. The specificity scores, where within-individual comparisons are possible, were 

significantly below 1 (t-tests, p < 0.05 or p < 0.01) and not significantly above 0 (t-tests, p > 

0.16). We characterize this as high transfer. In contrast, we observed higher specificity 

(lower transfer) to the high-precision transfer task of 65% and 38% specificity (35% and 

62% transfer) in high and no external noise, respectively. For the conditions where within-

individual comparisons are possible, the high-precision transfer conditions were all 

significantly above 0 (t-tests, p < 0.01) and significantly below 1 (t-tests, p < 0.05 or p < 

0.01). We characterize this as partial specificity and partial transfer. Our transfer and 

specificity results are consistent with previous data for transfer between two low-precision 

(‘easy’) tasks and between two high-precision (‘difficult’) tasks (Ahissar & Hochstein, 1997; 

Liu & Weinshall, 2000) but go beyond them by examining cross-precision transfer 

conditions.

Although perceptual learning often exhibits relatively high observer variability, the 

consistency of this pattern of specificity/transfer can be seen in the individual observer data. 

Figures 3 and 4 show individual observer data in the initial training and initial transfer point 

for no-noise conditions (Figure 3, panels A–D) and high-noise conditions (Figure 4, panels 

E–H) for low- and high-precision tasks. The contrast thresholds for the low-precision and 

high-precision tasks are graphed in opposite directions (low precision to the left of midline, 

high precision to the right) to facilitate the comparison of like tasks, especially in the 

crossed-precision groups. These graphs show that the individual observer data were 

generally consistent with the aggregate data. They show initial learning (gray bars lower 

than white bars); and they show most transfer point thresholds for the high-precision task are 

between the two, indicating partial transfer and partial specificity, and closer to full transfer 

for the low-precision task.

 Power function models of transfer

The classic approach to the measurement of specificity and transfer, reported in the previous 

section, focuses on proportional benefit in contrast threshold for the transfer task at the first 

block after the switch. In this section, we instead evaluate the data and aspects of transfer 

using a power function model of the learning process, of transfer, and of subsequent training 

on the transfer task. The value of the power function approach is that it characterizes the 

learning in the initial task, the learning in the transfer task following the task switch, as well 

as providing an alternative estimate of the extent of transfer. Importantly, it describes and 

offers an explanation for why learning in the transfer task (following the task switch) is 

visibly slower than learning in the initial training phase.

The power function is often cited as the primary ‘law of practice’ in speeded cognitive tasks 

(Anderson, 1982; Heathcote, Brown, & Mewhort, 2000) and has recently been shown to 

provide a good account of the functional form of contrast threshold learning curves averaged 

over observers (Dosher & Lu, 2007). Within the power function framework, transfer is 

measured by estimating the block-equivalent benefit of prior training on the transfer task. 

This also allows the estimation and characterization of learning rates and of the perceptual 

learning that occurs with practice following the switch to the transfer task.
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An elaborated power function model was used to fit the perceptual learning contrast 

threshold data:

(3a)

The model fits a learning function with a lower minimum threshold α achieved after 

extended practice, an initial incremental threshold λ, and a learning rate ρ as a function of 

practice blocks, t, with τ indicating prior experience (Equation 3a).

The model we fit included an estimated τ for the transfer conditions but equated all the other 

parameters with the corresponding initial training conditions. The value of τ is set to zero for 

the initial training, which simplifies to

(3b)

A lattice of models with different numbers of parameters was explored. In the most complex 

(“fuller”) model, each curve in each phase was fit by an independent set of parameters 

(Equation 3a). In the end, a remarkably simple power function model with few parameters 

provided an excellent account of the entire pattern of contrast threshold data (Figure 2). This 

model estimated λ, α, and ρ values for the low-precision task and for the high-precision task 

within each external noise level; these are identical for the two groups in each pair. The 

initial training thresholds and the transfer thresholds were fit with identical parameter values, 

differing only in the experience factor τ estimated for the transfer task data. The value of τ 

was set to 0 for the initial training phase data (Equation 3b).

Parameter estimates for this model are shown in Table 2. The best-fitting model in no noise 

had an r2 of 0.874 and used 8 parameters (2λ, 2α, 2ρ, 2τ, one of each for low and high 

precision). The best-fitting model in high noise had an r2 of 0.963 and also used 8 

parameters. For no external noise data, the 8-parameter model fit was similar to that of a 24-

parameter full model with an r2 = 0.925 (F(16, 40) = 1.739, p = 0.08). The 24-parameter 

model (8λ, 8α, 8ρ) has separate parameters for low and high precision in the training and in 

the transfer stage, corresponding to independent descriptions of each curve. For high 

external noise data, the 8-parameter model again was similar to the 24-parameter full model 

(F(16, 40) = 1.688, p = 0.09), which has an r2 = 0.978. (Note that, because τ = 0 in the fuller 

model, the reduced model is not strictly nested within the full model. We cite these F-tests to 

assist in the comparison.)

The simple model (Table 2) differs in quality of fit from the full model primarily by fitting 

the two statistically equivalent low noise initial training curves by a single averaged curve as 

opposed to fitting two independent curves, which is the primary cause for the reduction in r2.

The parameter α could have been set without loss to 0. However, the contrast threshold even 

at extensive practice should still exceed zero; more practice measurements would be needed 

to more accurately estimate the asymptotic performance levels.
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One property of the power function is that the relative learning rate is fastest in the early 

stages and diminishes throughout practice (Heathcote et al., 2000), corresponding to the 

appearance of most rapid improvements early in practice. The elaborated power function 

with transfer, τ > 0, provides a direct account of the apparently slower rate of learning 

through practice in the transfer phase—the new switched task inherits the reduced relative 

learning rate along with improved thresholds via transfer. It is as though the transfer task 

starts up at some point τ along the initial learning curve.

Of the 8 practice blocks in the initial training, the model estimated that about 3.5–4.5 

practice blocks worth of benefit transferred to low-precision tasks, while about 1–2 practice 

blocks worth of benefit transferred to high-precision tasks. These estimates are analogous to 

the standard specificity indices—with more transfer and less specificity for low-precision 

transfer tasks (regardless of training task) and small estimated transfer and higher specificity 

for high-precision transfer tasks. The relative proportions of specificity and transfer are 

different because the power function estimates of transfer are in units of practice blocks and 

so scale differently due to the power form. A specificity score S of 0.5 will correspond to 

transfer of less than 50% of the number of initial training blocks because of the rapid 

improvements early in practice.

The elaborated power function offers a good, and relatively complete, account of the data, 

including converging estimates of the extent of transfer after the task switch. The results are 

straightforward: The specificity depends on the precision of the transfer task, not the training 

task. This leads to quite a different theoretical understanding.

 Discussion

Previous studies concluded that “…This [perceptual] learning is specific to the stimuli used 

for training… the degree of specificity depends on the difficulty of the training conditions” 

(Ahissar & Hochstein, 1997, p. 401). Our new experiment and results require a 

reformulation of these claims and lead to a new precision-dependent framework for 

understanding the specificity of perceptual learning.

 Task precision versus task difficulty

Task difficulty is usually associated with the accuracy of performance achievable in a task: a 

task leading to 70% accuracy is more difficult than one leading to 90% accuracy. As 

discussed earlier, many factors could in principle affect performance accuracy and so the 

corresponding task difficulty. The first major goal of this study was to document effects of 

precision on transfer, isolated from changes in performance accuracy. Staircases estimated 

contrast thresholds that on average tracked 75% correct.

We showed that task precision affected specificity and transfer even when task difficulty 

(accuracy) was held constant both between tasks and across the course of learning. The 

current results imply that precision is a major, and perhaps the major, controlling factor in 

transfer and specificity. Previous studies (Ahissar & Hochstein, 1997; Karni & Sagi, 1993; 

Liu & Weinshall, 2000) estimated thresholds through constant stimulus methods with 

changing sets of values, which probably yielded at best an approximate equivalency of 
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accuracy during and across training and transfer conditions. Still, we interpret their results in 

support of the precision-dependent transfer framework.

By controlling for performance accuracy throughout learning, our results clearly identify 

precision as a core determinant of performance in a transfer task, following the task switch. 

Precision must account for the current results because difficulty is controlled. We believe 

that it accounts for almost all of the related prior results as well. The current procedure does 

not, however, experimentally evaluate the effects of difficulty during training on transfer. 

While the difficulty during training clearly will have implications for the speed of learning, 

we suspect that the independent effects of task difficulty on proportional transfer to the new 

task would be negligible. We believe that these too would be dominated by task precision. A 

full experimental evaluation of these intuitions would require an extensive new set of 

experimentation and theoretical development and testing.

 Specificity depends on precision of the transfer task, not the training task

The second major goal of this study was to investigate the role of task precision during 

initial training and during transfer separately as controlling determinants of the transfer or 

specificity of perceptual learning. The experiment employed a fully crossed design in which 

the required precision of the initial training and subsequent transfer tasks was varied.

Our results show that the extent to which perceptual learning in one task transfers—or fails 

to transfer—to another similar task depends on the precision of the task to which learning is 

transferred. Although initial training in some form is critical, the transfer does not appear to 

depend strongly on the precision of the initial training task. The task precision of both the 

initial training task and the subsequent transfer task had a large and systematic effect on 

contrast threshold and on the absolute magnitude of learning. Yet the extent of transfer 

following training on high- and low-precision discriminations is essentially the same. It is 

likely that the remarkable equivalence of the effects of the low- and high-precision initial 

training on both immediate transfer and subsequent transfer training performance as learning 

continues is preconditioned upon equating both the amount of training and the achieved 

accuracy during that initial phase.

These conclusions hold for both no and high external noise conditions. The no-noise and 

high-noise conditions use very different stimulus contrasts and have been shown in related 

work to represent at least partially dissociable mechanisms of training (Dosher & Lu, 1998, 

1999, 2005; Lu et al., 2006).

Our new framework for transfer makes new theoretical claims but subsumes previous 

empirical observations of transfer from the literature (Ahissar & Hochstein, 1997; Liu & 

Weinshall, 2000). Prior claims focused on the role of difficulty of the training task in 

controlling specificity at transfer. The vast majority of previous observations in support of 

the prior claims are consistent both with our observed data and with the changed theoretical 

emphasis on the transfer task in specificity of perceptual learning.

In the Ahissar and Hochstein (1997) experiments, for example, a target was an odd-

orientation element in a 7 × 7 array of otherwise like-oriented elements. In their ‘easy’ (low-
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precision) condition, observers learned to detect a target element in two known locations that 

differed by 30°from the background elements and showed high transfer to a swap of 

locations and orientations. The orientations differed by 16° in their ‘difficult’ (high-

precision) condition and showed specificity with partial transfer. These are analogs to our 

observations for our low-precision to low-precision group with ±12° (24° difference) and 

our high-precision to high-precision group with ±5° (10°difference). Our other two crossed 

conditions show, however, that the critical factor is the precision of the transfer task, not the 

precision of initial training.

Other conditions in the Ahissar and Hochstein data pose a further question, however. The 

orientation difference leading to full transfer was 90° and the orientation difference leading 

to partial specificity was 30° if the target could be at any location in the display. This 

observation—that the precision yielding transfer or specificity seems to depend on other 

factors in the task—highlights an obvious but previously unasked question: What level of 

precision causes learning to be specific? We offer several speculations below.

 Channel segregation and transfer

What makes one orientation difference sufficiently low precision that perceptual learning 

transfers, and another difference sufficiently high precision that it does not? Previous 

researchers did not address this question. We speculate that the task-precision transfer 

boundary may be related to the channel segregation of the discrimination. Specificity is 

more likely when the precision demands of the task fall within the estimated bandwidth of a 

particular population of units relevant to the discrimination, here orientation difference.

Low-precision tasks discriminate stimuli separated by about the bandwidth (or more) of 

units tuned to the dimension of discrimination with relatively good channel segregation. 

High-precision tasks discriminate stimuli that both fall within a single channel bandwidth. In 

this case, orientation bandwidths are cited at about 25–30° (De Valois et al., 1982). We 

suggest that the orientation bandwidth sets important limitations in the mode of optimal 

learning, and hence opportunities to transfer. Ahissar and Hochstein’s (1997) unremarked 

observation that larger orientation differences are required for transfer if the target may 

occur in any one of a large number of locations suggests to us that either decision 

uncertainty (Graham, 1989; Shaw, 1980) or pooling (Parkes, Lund, Angelucci, Solomon, & 

Morgan, 2001) operations create an aggregate response whose bandwidth is wider, 

representing aggregation noise, and so requires higher orientation differences to yield 

segregated representations.

In computational neural networks, diagnostic neural input representations are selected by 

learning the weight structure that statistically optimizes discrimination performance through 

perceptual practice (Dosher & Lu, 1998, 1999; Petrov et al., 2005, 2006, see also Mollon & 

Danilova, 1996). The stimulus, including any external noise, is processed through early 

visual filters to produce a distributed set of activities over representational units, for 

example, units tuned to spatial frequency and orientation. The weights from these inputs to 

decision form the perceptual template(s) for the task. Initial training in the low- and high-

precision tasks is similar insofar as they share locations, spatial frequencies, and generally 

similar orientations around the implied reference angles (i.e., the 55° of the 55° ± 5° or 55° 
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± 12°). This first-order similarity of weights after low- and high-precision training, together 

with the equalized accuracy of response, may help explain why initial training in either 

precision leads to a similar level of initial transfer to the new task.

Learning the high-precision task requires further optimization of weights beyond the 

learning for the low-precision tasks. We suggest that this further optimization may be 

analogous to common mode rejection in engineering or noise cancellation in electro-sensory 

models (Montgomery, 1984), which consider the effects of correlated noise in two pathways. 

The closer the to-be-discriminated targets are, the more likely the templates are to respond in 

a similar way, including the response to external noise. Common mode rejection refines 

weights so as to effectively balance (or subtract) the correlated response to shared noise.

So, learning the high-precision tasks requires more extensive optimization of weights than 

learning low-precision tasks. We speculate that only the relatively coarse weights common 

to low- and high-precision tasks transfer. This coarse information is insufficient to optimize 

the high-precision transfer task. This capacity or precision limitation in transfer accounts for 

why specificity of learning is predominantly controlled by the demand of the transfer task. 

Other cases of full transfer, e.g., between eyes, may reflect a common level of coding and/or 

learning or may reflect the relatively coarse demands of the tasks.

 Conclusions

This new experiment leads to several new conclusions and several claims. First, task 

precision rather than task difficulty per se limits transfer of perceptual learning. Second, 

transfer of perceptual learning depends primarily on the precision of the transfer task not the 

precision of the initial training task. More transfer and less specificity is observed when 

switching to a low-precision task, while less transfer and more specificity is observed when 

switching to a high-precision task. These conclusions follow directly from the critical tests 

in the experiment. Our results suggest a task-precision framework to account for transfer and 

specificity. We propose that the task-precision boundary between transfer and specificity 

may correspond to the bandwidth of the relevant feature being discriminated. Finally, only 

the relatively coarse weights common to low- and high-precision tasks transfer, insufficient 

to optimize the high-precision transfer task. We conclude that transfer may in general be 

capacity or precision limited. Further experimentation will be useful in testing the 

boundaries of this framework and other possible factors.
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Figure 1. 
Sample stimuli and a trial sequence for the perceptual learning tasks. (A) Low-precision and 

high-precision Gabor targets were tilted ±12° or ±5°, respectively, from an implicit reference 

angle (−35° or +55°). (B) The display sequence included a fixation, a precue, and display 

sequence of external noise (if present) and the target, at 5.67° eccentricity. In this sample 

trial, the target, in high noise, is tilted clockwise of a +55°reference angle. Dotted squares 

represent frames over time. (C) On each trial, a target occurred in one of two diagonally 

opposite screen positions, selected randomly. If the first phase of training used the NW/SE 
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diagonal, then the transfer tests used the NE/SW diagonal, and vice versa. (D) For each trial, 

the participant was presented with a fixation, followed by an onset cue (beep) 250 ms later, 

then followed by a “precue” arrow 400 ms and the target sequence. Responses were 

followed by auditory feedback on error trials.
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Figure 2. 
Perceptual learning measured as reductions in average contrast threshold at 75% correct 

during practice on an initial training task and during a subsequent transfer task. (A) 

Thresholds for the two groups that transferred to a low-precision task (±12°) following 

initial training on a low-or a high-precision training task for (top) no noise and (bottom) high 

external noise. (B) Thresholds for the two groups that transferred to a high precision task 

(±5°) for (top) no noise or (bottom) high noise. (C) All groups together (Black: Low → Low 

Precision, Orange: High → Low Precision, Red: Low → High Precision, Blue: High → 

High Precision). Error bars are two standard deviations of the mean, estimated using Monte 

Carlo simulations based on standard deviations from the mean reversals for each subject at 

each data point resampled 1000 times. Smooth curves are power function estimates for each 

condition and group.
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Figure 3. 
Individual subject data for no-noise conditions (panels A–D) for low- and high-precision 

tasks. Contrast threshold data for the first day of training (white bars), last day of training 

(gray bars), and the initial transfer point (black bars) are shown for all observers in each 

condition. Thresholds for low-precision tasks are graphed projecting to the left of the 

vertical midline; thresholds for high-precision tasks are graphed projecting to the right of the 

midline. Group means are presented in the middle panel, which provide direct comparisons 

for the transfer stages. Conditions are (A) low to low precision, (B) low to high precision, 

(C) high to low precision, and (D) high to high precision. The individual observer data were 

generally consistent with the aggregate data. Observers show learning in the initial training 

task (gray bars lower than white bars), while most transfer point thresholds are between the 

two, indicating partial transfer and partial specificity.
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Figure 4. 
Individual subject data for high-noise conditions (panels E–H) for low- and high-precision 

tasks. Contrast threshold data for the first day of training (white bars), last day of training 

(gray bars), and the initial transfer point (black bars) are shown for all observers in each 

condition. Thresholds for low-precision tasks are graphed projecting to the left of the 

vertical midline; thresholds for high-precision tasks are graphed projecting to the right of the 

midline. Group means are presented in the middle panel, which provide direct comparisons 

for the transfer stages. Conditions are (E) low to low precision, (F) low to high precision, 

(G) high to low precision, and (H) high to high precision. The individual observer data were 

generally consistent with the aggregate data. Observers show learning in the initial training 

task (gray bars lower than white bars), while most transfer point thresholds are between the 

two, indicating partial transfer and partial specificity.
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Table 1

Specificity indices as a function of task precision and external noise for the average data.

High precision Low precision

No noise High noise No noise High noise

0.38 0.65 0.21 0.15
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