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Aging, cytomegalovirus (CMV) and influenza vaccine responses
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ABSTRACT
Influenza vaccination is less effective in elderly as compared to young individuals. Several studies have
identified immune biomarkers able to predict a protective humoral immune response to the vaccine. In
this review, we summarize current knowledge on the effects of aging on influenza vaccine responses and
on biomarkers so far identified, and we discuss the relevance of latent cytomegalovirus (CMV) infection on
these vaccine responses.
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Influenza infection in the elderly

Influenza infection is associated with morbidity and mortality
in children �2 years of age, in individuals �65 years of age and
in those at risk for complications due to other co-morbidities
(immunodeficiency diseases, ischemic heart disease, cerebro-
vascular disease, and diabetes).1,2 It has been reported that
�90% of annual influenza-related deaths occur in individuals
�65 years of age.2 The complications of influenza infection
include secondary bacterial infections and exacerbations of
pre-existing medical conditions.3,4 Hospitalization and conse-
quent decline in physical activities has been described as a
major contributor to the development of disability in elderly
individuals5 and represent a significant economic burden due
to both direct (medical) and indirect costs (inability to work,
reduction in productivity).6

Infection with the influenza virus is initially controlled by an
antibody response which allows time for the CD8C and CD4C
T cell-mediated immune responses to develop. Available evi-
dence indicates that CD8C cells are more effective than CD4C
cells.7-10 Infection results in a localized pulmonary infection
and inflammation and elicits an influenza-specific CD8C T cell
immune response which is necessary for virus clearance.11-14

These CD8C T cells have been shown to be able to control the
infection by killing infected pulmonary cells. Clearance by the
virus-immune CD8C population has generally been considered
to require cognate interaction between cytotoxic T lymphocytes
and virus-infected target cells and occurs through different
mechanisms, which are perforin-14, Fas-14, and/or TRAIL-
mediated.15

Although antiviral drugs against influenza are available, vac-
cination is the most effective method to prevent influenza infec-
tion.16 The influenza vaccine induces an antiviral response in B
and T cells, resulting in humoral and cellular immunity, respec-
tively.17 The antibody response to the vaccine is the first line of
protection from subsequent infection. An essential step in the
generation of vaccine-induced antibody-secreting cells is the
interaction of vaccine-specific B cells and T follicular helper

cells to generate B cell proliferation, class switch recombination
(CSR) and somatic hypermutation (SHM).18,19 Secretory IgA
and IgM provide protection against the establishment of initial
infection, whereas IgG antibodies neutralize newly replicating
virus once infection has been established.20 Annual influenza
vaccinations help individuals to make protective levels of anti-
bodies against the currently circulating strains.21,22 Although
for long time a general consensus has existed that there is little
or no pre-existing immunity to newly emerging influenza var-
iants in humans,21,22 it has recently been demonstrated that
seasonal influenza vaccination can induce polyclonal hetero-
subtypic neutralizing antibodies which are cross-reactive with
both the swine-origin pandemic H1N1 virus and the H5N1
avian virus.23

Aging decreases influenza vaccine responses

The effects of influenza vaccination are different in individuals
of different ages24-28 and successive annual vaccinations
increase protection against influenza.29-31 In the case of sea-
sonal influenza vaccination there is evidence that elderly indi-
viduals who have routinely received the vaccine can still
contract the infection,32-34 likely due to decreased immuno-
competence of the elderly, generally referred to as ‘immunose-
nescence,’ as well as to a reduced ‘match’ of the vaccine with
seasonal viruses. Moreover, a mismatch between the virus
strain in the vaccine and the circulating virus strain, can also
cause reduced vaccine effectiveness.35 The fact that the influ-
enza vaccines prevent complications from influenza (e.g. pneu-
monia) strongly supports vaccination campaigns targeted to
improve immune functions in elderly individuals. Current
influenza vaccination campaigns are able to reduce hospitaliza-
tion rates,36 but hospitalizations due to influenza-related dis-
ease are still high [http://www.cdc.gov/flu/weekly/overview.
htm and31].

For many years, functional alterations in T cells have been
considered to be the most significant for immunosenescence
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and sufficient per se to explain the age-related decrease in anti-
body responses to vaccines observed in elderly individuals.
However, a large amount of work has been done more recently
showing that defects in other components of the innate and
adaptive immune systems also occur with age and contribute to
the increased frequency and severity of infectious diseases in
the elderly. Systems vaccinology approaches have recently been
successfully employed to investigate innate and adaptive
immune responses to influenza as well as other vaccines.37,38

Several studies have clearly demonstrated that the age-depen-
dent differences in the response to influenza vaccination may
be due to age-related differences in the innate and adaptive
immune systems. These include decreased T cell function39-42

and loss of CD28 expression,39 decreased memory B cells43-48

and reduced specificity and class of antibody produced,49,50

reduced natural killer cell cytotoxicity on a per cell basis,51 and
reduced number and/or function of dendritic cells in
blood.42,52,53 In addition cytomegalovirus (CMV) positivity is
increased with age.54,55

A recent study has shown that the length of telomeres is an
indicator of the robustness of B and T cell responses of elderly
individuals to the influenza vaccine.56 In particular, B cells
from individuals with protective titers to the influenza vaccine
had significantly longer telomeres than those with a poor anti-
body response, whereas monocyte-derived antigen-presenting
cells of both short and long telomere groups induced similar
expansions of influenza-specific CD8C T cells. Vaccination-
specific CD8C T cells that underwent more expansions had sig-
nificantly longer telomeres than cells with fewer divisions.

We will summarize below published results on the effects
that the age-related changes in T cells, B cells, dendritic cells
and monocytes may have on influenza vaccine responses.

T cells

The reduced response of the elderly to influenza vaccination
has been correlated with a reduction in na€ıve T cells and,57 an
accumulation of late-differentiated memory CD4 and CD8 T
cells with a loss in CD28 expression,39,58-60 increased CMV
seropositivity (see below).55 It has recently been shown that
aging is significantly correlated with a significant loss of naive
CD8, more than na€ıve CD4 T cells, and this loss is not associ-
ated with an increase in memory T cells and is not affected by
CMV seropositivity.61 Conversely, the loss of na€ıve CD4C T
cells is associated with an increase in effector/effector memory
CD4 and CD8 T cells and is observed only in CMV seropositive
individuals. These findings demonstrate that aging and CMV
have both distinct and joint influence on peripheral T cell
homeostasis in humans but the mechanisms for these are still
not determined.

CD28 is a costimulatory molecule required for the produc-
tive activation, proliferation, and differentiation of effector
function in T cells.62 The irreversible loss of CD28 expression
due to chronic immune activation of human T lymphocytes in
long term culture is one of the signatures of replicative senes-
cence60 and even in young individuals this has been associated
with persistent infections, autoimmunity and inflammatory
conditions.63-66 CD28-mediated costimulation is crucial for the
formation of germinal centers (GCs) and the generation of

effective B cell responses and antigen-specific high-affinity anti-
bodies. In response to immunization, defective T helper-cell
function has been indicated in contributing to antibodies not
being hypermutated and without SHM.67,68 It has been shown
that the lack of antibody production following influenza vacci-
nation is associated with increased frequency of CD8CCD28-
T cell clones, which express effector cell markers and are mostly
CD45RAC. When isolated and stimulated with anti-CD3 or
autologous cells, these clones do not proliferate, but produce
IFN-g, suggesting that in elderly individuals a change in the
polarization of the immune system occurs and this may be
responsible for the development of age-related immune defi-
ciencies.59 Others have confirmed and extended these results
showing that the frequencies of CD8CCD28- T cells can be
useful biological markers of compromised immune compe-
tence, identifying individuals at risk for insufficient antibody
responses, whereas the size of the CD4CCD28- T cell subsets
has been shown to have no effect on the ability to mount effec-
tive antibody responses.39

It has recently been shown that terminally differentiated
(CD27-CD28-) CD4C T cells utilize an intracellular signaling
pathway for the activation of the p38 MAPK that senses
changes in intracellular levels of glucose as well as genotoxic
stress and spontaneously engages the metabolic master regula-
tor AMPK to trigger autophosphorylation of p38. Signaling
through this pathway inhibits telomerase activity, T cell prolif-
eration and the expression of key components of the TCR sig-
naling machinery, and has been proposed to drive the
senescence of human T cells.69 These results are in line with the
hypothesis that aging is powerfully influenced by alterations in
nutrient sensing and metabolism.70

Although aging is associated with increased inflammation,71-74

increases in the anti-inflammatory response can also occur, and
the increased production of IL-10 and the decreased IFN-g:IL-
10 ratio in influenza-stimulated lymphocyte cultures has been
shown to be associated with reduced cytolytic capacity of CD8C
T cells which clear influenza virus from infected lungs.8 More-
over, IL-10 suppresses CTL responses and down-regulates the
expression of costimulatory molecules on antigen-presenting
cells,75 and together with the down-regulation of IFN-g produc-
tion leads to reduced stimulation of T cell memory and poorer
responses to influenza vaccination in the elderly.8,76

B cells

Our laboratory has shown that age-related intrinsic B cell
defects also occur, generating sub-optimal antibody responses
to vaccines.44,46,77,78,79 Some of the B cell defects we have identi-
fied include a reduction in activation-induced cytidine deami-
nase (AID), the enzyme necessary for class switch
recombination (CSR) and SHM; E47, a key transcription factor
regulating AID80; and the ability to generate higher affinity
antibodies to a new antigen. In the last 5 influenza vaccine sea-
sons (2009–2013), we have measured the antibody response to
the seasonal and pandemic influenza vaccines in serum and we
have associated this response with the B cell response after vac-
cination to the vaccine in vitro. In vivo and in vitro B cell
responses have been measured respectively by the hemaggluti-
nation inhibition (HAI) assay and by AID mRNA expression
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by qPCR after B cell re-stimuation with the vaccine. AID is a
measure of CSR and of B cell function which we have previ-
ously established to reflect the generation of specific IgG and to
associate with other mechanistic markers such as E47,81

encoded by the E2A gene, which transcriptionally activates
AID,80 which is crucial for all processes generating antibody
diversity, such as V(D)J recombination, CSR and SHM.82-86

Our published results have shown that the specific response of
B cells to vaccination in vivo and in vitro are both decreased
with age and are significantly correlated.44,46, 87, Moreover, the
percentages of switched memory B cells and CpG-induced AID
before vaccination are both good B cell biomarkers that are
reduced in elderly as compared to young individuals and are
significantly correlated with the in vivo antibody response to
the vaccine.44,46 Therefore, we have proposed these as predic-
tive biomarkers of optimal vaccine-induced antibody
responses.44,46

Polymerase chain reaction (PCR)-based spectratyping anal-
yses of the lengths of the complementarity determining region
(CDR)3, used to assess repertoire diversity, have shown age-
related changes in the relative proportions of large clonal popu-
lations of both T cells and B cells (reviewed in88). In particular,
it was shown that a significant proportion of elderly individuals
have a dramatic collapse in their B cell repertoire diversity and
that the extent of loss in B cell diversity correlates with their
health status.89 Additionally, a study in which influenza and
pneumococcal vaccines were administered to 6 young and 6
elderly individuals showed that the vaccine-induced expansion
of B cells with short and hydrophilic IgH CDR3 regions was
lower in older individuals.90 Moreover, elderly individuals had
impaired IgM and IgA anti-pneumococcal antibody responses,
which correlated with features of the spectratypes for their IgM
and IgA expressing B cells (baseline repertoire with larger
CDR3 regions than in the younger group). Another study has
used high-throughput long read sequencing to perform immu-
nogenomic characterization of human antibody repertoires in
the context of influenza vaccination.91 This analysis of the
clonal structure and mutational distribution of individuals’ rep-
ertoires has shown that elderly individuals have decreased
numbers of lineages but increased pre-vaccination mutation
load in their repertoire and that some of these individuals have
an oligoclonal repertoire in which the diversity of the lineages
is greatly reduced as compared to young individuals, consistent
with earlier reports on contraction of B cell repertoires in the
elderly.92 These findings could help to explain the impaired
vaccine responses observed in the elderly.

B cells are significantly affected by inflammation. B cells
themselves express innate immune receptors which recognize
exogenous pathogens or the adjuvants used to induce an
immune response. B cells can either promote immune
responses by acting as antigen-presenting cells or they can reg-
ulate immune responses by secreting immunoregulatory cyto-
kines. Published data have shown that B cells from mice
infected with T. gondii, H. polygyrus or P. carinii can secrete
pro-inflammatory cytokines such as TNF-a.93-95 Data from our
laboratory have shown that unstimulated B cells from elderly
individuals make significantly higher levels of TNF-a than
those from young subjects, and these are positively correlated
with serum TNF-a. Importantly, levels of TNF-a before

stimulation are negatively correlated with the response of the
same B cells after in vitro stimulation which is measured by
AID.77 In line with these results, an anti-TNF-a antibody was
found to significantly increase the response in cultured B cells
from elderly individuals, providing a proof of principle that it is
possible to improve class switch in elderly individuals by coun-
teracting autocrine TNF-a.77 These findings may help to
explain the reduced antibody response of elderly individuals to
vaccines and also provide biomarkers for good responsiveness
and crucial targets for development of more effective vaccines.
Results from this study indeed identify TNF-a as another B
cell-specific biomarker, which can help to predict the quality of
in vivo and in vitro B cell responses.

Dendritic cells (DCs)

Defects in cytokine production by dendritic cells (DCs) from
elderly individuals have also been associated with poor influ-
enza vaccine responses. DCs are professional antigen-present-
ing cells that play a key role in the linkage between innate and
adaptive immunity. Human DCs, classified as myeloid DCs
(mDCs) or plasmacytoid DCs (pDCs), have distinct functional
activities: mDCs produce IL-12 and induce Th1 and CTL
responses, whereas pDCs produce IFN-a/b in response to bac-
teria and viruses.96,97 The mDCs from elderly individuals are
significantly impaired in their capacity to secrete TNF-a/IL-6/
IL-12 (p40) in response to TLR1/2, TLR2/6, TLR3, TLR5,
TLR8 stimulation. The pDCs from elderly individuals are also
functionally impaired and produce less TNF-a/IFN-a in
response to TLR7 and TLR9 stimulation.53 These defects have
been associated with poor antibody response to the influenza
vaccine. It shoud be noted here that the induced inflammatory
response to a pathogen is positive for the host and only the
chronic inflammatory response previously presented is deleteri-
ous for the elderly population.

Monocytes

Monocytes from elderly individuals have also been shown to be
impaired in their capacity to secrete the pro-inflammatory
cytokines TNF-a and IL-6, but not the anti-inflammatory cyto-
kine IL-10 in response to influenza vaccination.98 These results
are the first to show that dysregulation of IL-10 production by
monocytes is associated with impaired influenza vaccine
responses in elderly individuals.

CMV and influenza vaccine responses

CMV is a b-herpes virus which latently infects a large propor-
tion of the human population and this proportion increases
with age.99 Once infected with CMV, the immune system is not
able to eliminate the virus resulting in latent CMV infec-
tion.99,100 The infection is asymptomatic in immunocompetent
individuals, but may cause severe diseases in immunocompro-
mised hosts. CMV has been postulated to be one of the driving
forces of immunosenescence. CMV infection is associated with
premature mortality and is a component of the immune risk
phenotype, which predicts remaining longevity in the very
elderly.101 CMV infects fibroblasts, epithelial, endothelial,
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stromal, smooth muscle cells,102 which present CMV antigens
with MHC class I. CMV induces the production of a variety of
pro-inflammatory mediators which in turn induce CMV reacti-
vation.103 In particular, in vitro studies have shown that CMV
induces rapid translocation of NF-kB in HeLa cells from the
cytoplasm to the nucleus, promoting the production of TNF-a
which leads to further activation of latent CMV and up-regula-
tion of the inflammatory response,104 as TNF-a is a powerful
stimulator of the promoter/enhancer of the human CMV virus
leading to further upregulation and exacerbation of the sys-
temic inflammatory response.104 This positive feedback loop
drives inflammaging more effectively in CMVC elderly than in
young individuals, causing deleterious effects in the immune
system of the individual.

CMV seropositivity has been shown to have a negative effect
on influenza vaccine-specific antibody responses. CMV has
been associated with poor humoral response to influenza vacci-
nation in the elderly58,105 as well as the young78 and with the
presence of CD27-CD28-CCR7-CD45RAC or with CD28-
CD57C T cells, both identified as late differentiated/exhausted
T cells which produce pro-inflammatory cytokines and have
therefore a significant role in age-related immune
pathologies.58,105

Also in young individuals, CMV has been associated with
the induction of CD27-CD28-CD45RAC T cells and conse-
quent suboptimal influenza vaccine responses, suggesting that
this virus may underlie rudimentary aspects of immunosenes-
cence even in chronologically young individuals.106

CD4 T cell responses specific for influenza core proteins are
absent in half of the CMV seropositive elderly, but present in
those not infected with CMV, which respond as well as young
individuals, suggesting that advanced chronological age plays a
role in reducing the CD4 responses to influenza but only in
concert with CMV infection.107

The effect of CMV infection on influenza vaccine responses
has been controversial with many studies showing a negative
effect of CMV58,78,105,107, and others showing no effect at all.108

It has recently been shown that CMV infection enhances the
response to the influenza vaccine in young but not aged mice
and humans.109 In particular it has been shown that CMV-
seropositive young individuals exhibited enhanced in vivo anti-
body responses, increase in the circulating levels of Th1 and
Th2 cytokines and stronger CD8C responses as compared with
CMV-seronegative individuals. In parallel experiments, mice
infected with murine CMV (MCMV) showed improved T cell
responses to influenza virus challenge and significantly lower
influenza virus titers and this effect was IFN-g-dependent,
demonstrating that CMV can boost the immune response of
young individuals and therefore shows features of a mutualistic
agent confering benefits to the host.

CMV seropositivity also induces the expansion of polyfunc-
tional CD8C T cells (CD8CCD57C). These cells produce mul-
tiple cytokines (IFN-g, TNF-a) and degranulate in response to
stimulation, and are therefore crucial for the generation of opti-
mal responses to infections and vaccines.110 Polyfunctional T
cells also make more cytokine per cell than monofunctional
cells.111,112 Published results have indeed shown that higher
numbers of polyfunctional T cells are correlated with better
prognosis during HIV infection111 and better responses to

vaccination,112 suggesting that the efficiency of the response is
associated with the capacity to produce several cytokines as a
marker of quality. Moreover, the late differentiated/exhausted
memory T cells which are expanded in elderly individuals are
specific for previously encountered CMV antigens and their
presence correlates with the ability to mount robust pro-
inflammatory responses against major CMV antigens and are
therefore positively associated with longer survival in elderly
individuals, suggesting that these cells are at least partially func-
tional and necessary for further protection to subsequent
infection.113

Our group has recently demonstrated for the first time a
negative association between CMV seropositivity and the B cell
predictive biomarkers of optimal vaccine responses previously
characterized in our laboratory.78 These biomarkers are
switched memory B cells and AID in CpG-stimulated B cell
cultures, which are positively correlated with the serum
response to the vaccine. We think that this CpG response
reflects the inability of B cells from elderly individuals to stimu-
late AID to an external stimulus and this response in PBMC is
consistent with that in the elderly GCs in which B cells are gen-
erating a vaccine response, i.e. it accurately reflects the decre-
ment of the aged in vivo B cell response. Moreover, we found
CMV seropositivity associated with increased levels of systemic
and B cell-intrinsic inflammation and this may be one of the
mechanisms through which CMV down-regulates the B cell
antibody response. We have proposed that one mechanism
through which CMV decreases B cell function may be an
increase in systemic TNF-a which induces B cell-derived TNF-
a which in turn activates the promoter/enhancer of CMV and
pro-inflammatory cytokine production.104 In addition to this
mechanism directly acting on B cells, CMV may also down-reg-
ulate the antibody response to the influenza vaccine indirectly
through the induction of terminally differentiated T cells and
accumulation of senescent T cells,58,105 which lead to reduced
generation of memory T cells.8,76

Using high-throughput DNA sequencing of IGH gene rear-
rangements to study the BCR repertoires over 2 successive
influenza vaccine seasons, it has been shown that V,D,J usage is
comparable in young and elderly individuals, V mutation levels
are associated with CMV-seropositivity and frequencies of
highly mutated IgM and IgG sequences are increased in B cells
from elderly as compared to young individuals and are also
associated with CMV seropositivity whereas persistent clonal B
cell expansion is associated with EBV.114 The presence of these
persistent clones in the blood of elderly individuals suggests
that progressive antigenic exposure has induced both B cell
proliferation and Ig gene mutation, leading to the accumulation
of highly mutated IGHV genes over the course of human life-
span. The specificity of these clones however is unknown.
These studies would support (repeated) vaccination in adults
before depletion of their capacity in old age.

CMV seropositivity induces significant changes in NK cells.
In particular, the CD56dimCD57CNKG2CC NK subset
expands in CMV seropositive individuals115 and this subset is
responsible for degranulation, IFN-g and TNF-a secretion in
response to cross-linking of CD16 or natural cytotoxicity recep-
tors, but responds poorly to pro-inflammatory cytokines, sug-
gesting that these cells may be less sensitive to IL-2 produced
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by antigen-specific CD4 T cells and to IL-12/IL-18 produced by
DCs and macrophages.116 To our knowledge, there is only one
published study on the effect of CMV seropositivity on NK cell
responses to the influenza vaccine.117 This study has shown
impaired in vitro NK responses to the H1N1 influenza vaccine
antigens, such as reduced IFN-g production and degranulation,
decreased cytokine responsiveness and decreased cytokine
receptor expression.

Concluding remarks

Yearly influenza epidemics can seriously affect the human pop-
ulation, with high risks of complications occurring in young
children (�2 years) and in individuals over 65 y of age). Annual
influenza vaccinations help the population to make protective
antibodies against the currently circulating viral strains, but the
effects of vaccination decrease with age, mainly due to
decreased immunocompetence. Evidence exists that infection
with CMV leads to accelerated aging of the immune system
and contributes to poor responsiveness to influenza vaccination
in the elderly. However, studies summarized in this review have
shown that aging and CMV have both independent and joint
effects on immune cells. The results presented here may also
apply to other routine vaccination programs (e.g., hepatitis B)
as well as to vaccines delivered to worldwide travelers (e.g. yel-
low fever).
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