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ABSTRACT
Cancer progression depends on stepwise accumulation of oncogenic mutations and a select group of
growth factors essential for tumor growth, metastasis and angiogenesis. Agents blocking the epidermal
growth factor receptor (EGFR, also called HER1 and ERBB1) and the co-receptor called HER2/ERBB2 have
been approved over the last decade as anti-cancer drugs. Because the catalytically defective member of
the family, HER3/ERBB3, plays critical roles in emergence of resistance of carcinomas to various drugs,
current efforts focus on antibodies and other anti-HER3/ERBB3 agents, which we review herein with an
emphasis on drug combinations and some unique biochemical features of HER3/ERBB3.
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Introduction

Despite significant progress in the development of new anti-
cancer drugs, more than 14 million new cases of cancer were
diagnosed globally in 2012, and approximately 8.2 million
patients died in 2012 due to their disease.1 Solid tumors are
characterized by stepwise accumulation of oncogenic muta-
tions, which present an immense pharmacological challenge.
However, tumor cell survival, migration and ability to attract
blood and lymph vessels depend on a multitude of growth fac-
tors, and some of these bind with cell surface localized receptor
tyrosine kinases (RTKs).2 Due to their accessibility and the abil-
ity to block the catalytic kinase function using small molecule,
tyrosine kinase inhibitors (TKIs), RTKs have become a sus-
tained source of attractive targets for cancer drugs.3 For exam-
ple, type 1 RTKs, a group containing the epidermal growth
factor receptor (EGFR, also called ERBB1) and the co-receptor
called HER2/ERBB2, is one of the most studied and targeted
groups of molecules in cancer therapy.4 Importantly, currently
available drugs target only 2 members of the HER/ERBB fam-
ily, namely EGFR and HER2. Nevertheless, many new agents
targeting HER3 are in various stages of clinical development,
and some mAbs are approaching phase 3 trials. Hence, it is
both timely and important to overview the large efforts invested
to develop novel pharmacological interceptors of HER3 (see
Fig. 1). This review provides a systematic description of the
biology of HER3 and its family members, and critically relates
to the multiple experimental interceptors, with an emphasis on
potentially effective drug combinations.

Targeted cancer therapy directed at the EGFR (HER/
ERBB) family

All members of the EGF family of growth factors, which
includes 11 ligands, bind with moderate or high affinity to
type 1 RTKs.2,4,5 The founding member of this first RTK

sub-family was discovered in 1982 by Stanley Cohen and
colleagues.6 Three similar receptors have later been charac-
terized. These are human EGFR 2, HER2 (also called
ERBB2), HER3 (ERBB3) and HER4 (ERBB4). All four
HER/ERBB proteins contain an extracellular ligand binding
domain, a transmembrane region and an intracellular
domain harbouring a catalytic tyrosine kinase function. The
extracellular portion consists of 4 subdomains, referred to
as domains I-IV, of which domains I and III (of EGFR) are
necessary for ligand binding (see Fig. 2A).7 Following ligand
binding, a relatively large structural conformation converts
an untethered, inactive form to a tethered/active form,
thereby enables homo- or hetero-dimerization with a simi-
lar or different member of the EGFR/ERBB family.8 In this
context, one of the favorite partners for dimer formation is
HER2, which binds no known EGF-like ligand and its con-
formation is constitutively tethered, ready for dimerization.9

Once dimerization occurred, receptor activation and phos-
phorylation initiate, leading to a cascade of phosphorylation
events, which activates 2 main signaling pathways, namely
the mitogen-activated protein kinase (MAPK/ERK) pathway
and the phosphatidylinositol 3-kinase (PI3K) to AKT path-
way (Fig. 3). These pathways control numerous cellular
responses, such as proliferation, cell cycle entry, survival, met-
abolic pathway activation, apoptosis and angiogenesis.5,10-14

Because EGFR is involved in survival of epithelial cells,
including cancer cells, and both EGFR and HER2 are frequently
overexpressed or mutated in cancer, several therapies have been
developed with the aim of intercepting their signaling, and
arresting tumor growth. Two major pharmacological strategies
have been developed, and they are concisely reviewed below:
these are low molecular weight compounds, called TKIs, which
target the intracellular domain of the receptor, and monoclonal
antibodies (mAbs) targeting the extracellular domain of the
receptor. Multiple TKIs have been designed to target the EGFR
family. These compounds inhibit the catalytic tyrosine kinase
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function by binding to the nucleotide-binding site of the target
receptor.15 Initially, mono-specific TKIs were developed. For
example reversible, ATP-competitive EGFR inhibitors (e.g.,
gefitinib/Iressa and erlotinib/Tarceva) were found to be selec-
tive to mutant forms of EGFR found in 10–40% of non-small
cell lung cancer (NSCLC).16-18 In addition to lung cancer, since
2005 erlotinib is used in combination with chemotherapy for
the treatment of metastatic pancreatic carcinoma.19 Unlike
erlotinib and gefitinib, lapatinib (Tykerb/Tyverb) is a dual tyro-
sine kinase inhibitor that forms relatively selective and unique
complexes with both EGFR and HER2.20 Several clinical trials

established lapatinib’s activity, together with chemotherapy, in
the treatment of patients with HER2-positive advanced breast
cancer previously treated with trastuzumab and chemother-
apy.21 Afatinib is the first clinically approved TKI of the second
generation of HER/ERBB inhibitors, designed to have more
potent inhibition of EGFR and to overcome the EGFR T790M
resistance mutation. Afatinib is an oral, irreversible PanHER
family blocker, which selectively and potently blocks signaling
from the 3 catalytically active HER-family receptors, and also
inhibits transphosphorylation of the inactive member, HER3/
ERBB3.22 In lung cancer patients with EGFR mutations,

Figure 1. An avalanche of HER3 studies. The histogram depicts the yearly number of HER3/ERBB3 reports, which became available through Pubmed since the early 1990s.
The timeline at the bottom identifies and dates some milestones in HER3 research since the discovery of the protein and transcript in 1989.

Figure 2. Key sites of HER3. (A) Shown are phosphotyrosine phosphorylation sites of HER3/ERBB3 able to dock binding proteins involved in MAPK (ERK) or PI3K/AKT sig-
naling pathways, such as SHC, GRB2 or the a subunit of PI3K. (B) Reported sites of mutations within HER3/ERBB3 reported in different types of tumors. Note that hot spot
mutations (red) are more frequently detected in cancer.
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afatinib has been associated with prolonged progression-free
survival, compared to chemotherapy. This led to approval of
oral afatinib, in 2013, for the first-line treatment of patients
with metastatic NSCLC who have tumors with EGFR muta-
tions.23 Third generation TKIs were developed to inhibit EGFR
T790M while sparring wild type EGFR, consequently they show
less toxicities. AZD9291,24 CO-1686 (also called rociletinib),25

and HM6171326 are under clinical development, and early
phase results are in general quite encouraging. An example is
given by rocetinib, which has been awarded breakthrough ther-
apy designation (BTD) by FDA and has been studied in phase
2 and 3.

The first mAbs to EGFR were generated by Mendelsohn
and colleagues in the early 1980s.27 Sela and colleagues later
demonstrated that anti-EGFR antibodies can synergize with
platinum-based chemotherapy, when administered to tumor-
bearing animals.28 Mendelsohn’s murine antibody is the father
of cetuximab (ErbituxTM), a chimeric human/mouse mAb that
inhibits binding of EGF and downstream signaling.29 The anti-
body was clinically developed and eventually approved in 2004,
together with chemotherapy, for the treatment of metastatic
colorectal cancer (mCRC).30 Panitumumab (VectibixTM), a
fully human antibody, binds to the same site of EGFR. An
acquired mutation in EGFR (S492R) prevents cetuximab bind-
ing but retains panitumumab binding.31 Importantly, it was
noted that the effects of both panitumumab and cetuximab
were limited to patients with wild type KRAS tumors; antibody
treatment did not benefit patients whose tumors expressed a
mutant form of KRAS.32–35 Multiple determinants of resistance
to anti EGFR therapy have been described recently, among

them, mutation in the receptor itself - changing its interactions
with the drug molecule – or in downstream transducers and
deregulation of parallel signaling pathways.36 For example
recent data suggest that the mutation status of KRAS, NRAS,
BRAF and/or PIK3CA genes may be a signature for EGFR
dependency in CRC.37

Studying a mutant form of the rodent HER2 (also called
NEU), Greene, Weinberg and colleagues showed that ectopic
expression of the oncoprotein in rat fibroblast enabled them to
grow as tumors, but a corresponding mAb reverted this trans-
formed phenotype.38 Another murine antibody, 4D5, specifically
inhibited the growth of human breast tumor-derived cell lines
overexpressing HER2/ERBB2.39 Humanization of 4D5, the pre-
decessor of trastuzumab (HerceptinTM), along with genetic engi-
neering that enhanced binding affinity40 and recruitment of
killer lymphocytes to the human Fcg receptors (especially
FcgRIIIa), to augment antibody-dependent cell-mediated cyto-
toxicity (ADCC), readied the antibody for clinical trials. In the
pivotal clinical trials that applied trastuzumab on HER2-positive
advanced breast cancer, the mAb conferred significant improve-
ments in progression-free survival (PFS) and overall survival
(OS), which led to the approval of a combination of trastuzu-
mab and chemotherapy.41 Unlike trastuzumab, pertuzumab is a
mAb that inhibits heterodimerization of HER2 with other fam-
ily members.42 A large clinical trial that combined pertuzumab,
trastuzumab and chemotherapy43,44 demonstrated significant
improvement in patient outcome, along with serious adverse
events in 36% of patients who received pertuzumab, trastuzu-
mab, and docetaxel. These results led to the approval of a com-
bination of pertuzumab, trastuzumab and docetaxel for the

Figure 3. Regulation of HER3 and downstream signaling. HER3/ERBB3 adopts an active conformation following binding of a ligand, called neuregulin (NRG), in between
domains I and III of the extracellular domain. Since the tyrosine kinase domain is impaired, HER3/ERBB3 can undergo only weak auto-phosphorylation. In addition, HER3/
ERBB3 can form heterodimers with other receptor tyrosine kinases (RTKs), leading to efficient trans-phosphorylation of the cytoplasmic domain. The main dimerization
partner of HER3 is HER2/ERBB2 . Both the MAPK pathway (ERK, shown in purple) and the AKT pathway (gray) are activated when such heterodimers form. Nuclear translo-
cation of the downstream effectors of these pathways permits transcriptional and translational regulation of genes involved in numerous cellular responses, such as cell
cycle control, proliferation, survival, metabolism, apoptosis and angiogenesis. On its own, HER3 is regulated at different levels: 2 ubiquitin ligases, NEDD4 and NRDP1,
have been reported to mediate its ubiquitination and proteosomal degradation. The deubiquitinating enzyme USP8, which is regulated by AKT, negatively regulates
NRDP1. The activated androgen receptor (AR) also controls HER3 levels by binding to the NRDP1 promoter regions and activating NRDP1 transcription. In addition, several
miRNA molecules, such as miR205, miR125a and miR125b, have been reported to control HER3/ERBB3 expression.
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treatment of patients with HER2-positive breast cancer, whose
disease progressed during prior trastuzumab-based therapy.45

Because pertuzumab inhibits recruitment of HER3 to HER2,42

some side effects of the combination might be due to HER3
blockade. Another lesson from HER2 that might be applicable
to anti-HER3 antibodies is Trastuzumab-DM1 (T-DM1). This
is an antibody drug conjugate comprising trastuzumab and
emtansine (DM1), a tubulin polymerization inhibitor. Following
successful trials, which showed high efficacy and relatively mild
side effects,46,47 T-DM1 has been approved for the treatment of
HER2-positive metastatic breast cancer patients, who previously
received trastuzumab and chemotherapy.

HER3/ERBB3: How did the black sheep of the family
become a prime target?

The third member of the EGFR family, HER3, has been discov-
ered some 25 y ago (see Fig. 1).48,49 Initially, HER3, unlike
EGFR and HER2, has been considered an unsuitable target for
cancer treatments. This was due to an overall moderate expres-
sion levels in cancer cells, a catalytically impaired kinase
domain,50 a presumed lack of ability to form homodimeric
HER3-HER3 complexes, and an initial inability to detect onco-
genic mutations of HER3/ERBB3. Yet, it has been clear early
on that HER3-containing heterodimers, especially with HER2,
generate strong survival signals.51,52 Moreover, ablation of
HER3 uncovered one of its cellular roles, which is to couple
active HER2 to the phosphatidylinositol 3-kinase/protein
kinase B pathway (PI3K-AKT).53 More recent studies were able
to detect low but intrinsic tyrosine kinase activity of HER3,
which prompted a model suggesting that transient HER3-
HER2 hetero-interactions set the stage for signaling competent
HER3 homodimers.54 Another unique feature of HER3 relates
to its constitutive (ligand-independent) endocytosis.55,56 and its
up-regulation when the AKT pathway is inhibited.57 Unlike
CBL-mediated downregulation of the majority of growth factor
receptors, HER3 downregulation is mediated by a dedicated
cascade involving a deubiquitinating enzyme, USP8, and 2 E3
ubiquitin ligases, NRDP1 and NEDD4.58,59 In addition to regu-
lation by means of ubiquitination, several microRNAs are
reportedly able to modulate HER3 levels (see Fig. 3).60–63 As we
describe below, 2 major lines of evidence motivated the current
intensified interest in intercepting HER3 in human tumors:
First, oncogenic mutant forms have recently been identified in
approximately 10% of solid tumors and second, several studies
indicated that HER3 plays pivotal roles in several compensa-
tory processes that underlay emergence of resistance to certain
cancer drugs.64,65

Aberrant HER3 in human cancer

According to a recent report, somatic mutations exist in »11%
of colon and gastric cancers (Fig. 2B).66 Moreover, when tested
in vitro, the mutants were able to transform colonic and breast
epithelial cells in a ligand-independent but HER2-dependent
manner. In addition, co-expression of HER2 and HER3 is com-
monly detected in breast cancer.67 In fact, a large fraction of
human mammary tumors present an overexpressed HER3.68

Although initially controversial, according to recent meta-

analyses, relatively high expression levels of HER3 might asso-
ciate with shorter survival of patients with breast, colorectal,
melanoma, pancreatic, head and neck, and ovarian cancer.69

Once again, co-expression of HER2 appears to strengthen this
clinical association with poorer survival.

Roles for HER3 in drug resistance

Unlike primary resistance, tolerance to HER/ERBB-intercept-
ing drugs emerges in the majority of patients while under treat-
ment with TKIs or with mAbs.70,71 Mechanisms underlying
resistance often involves compensatory pathways that pre-
empt pharmacological intervention. Two features of HER3
make this receptor especially competent to launch such bypass
loops, namely the ability to strongly stimulate the PI3K-AKT
pathway and its propensity to form heterodimers not only with
HER2 and EGFR but also with MET and IGF1-R. Figure 4
presents the major interaction partners of HER3, as well as
drugs that target these partners, either alone or in combination
with HER3. For example, HER3 expression is substantially
increased after long-term exposure of breast cancer cells to tras-
tuzumab.72 Similarly, upregulation of HER3 accompanies inhi-
bition of EGFR and HER2 using TKIs, such as gefitinib,
erlotinib and lapatinib.73,74 Yet another indirect effect underlies
resistance of lung cancer to gefitinib; this involves focal amplifi-
cation of MET, which confers resistance by driving HER3-
dependent activation of PI3K.75 HER3 has also been implicated
in development of resistance to cetuximab: resistant NSCLC
and HNSCC cancer cells manifested strong activation of HER2,
HER3 and MET, along with coupling to PI3K-AKT.76 Interest-
ingly, IGF1-R inhibition in liver cancer cells evokes an analo-
gous EGFR-dependent mechanism that involves HER3.77 The
roles of HER3 in evolving resistance extends to chemotherapy,
such as resistance of HER2-overexpressing breast cancer cells
to paclitaxel65,78 and acquisition of resistance to tamoxifen by
luminal B breast cancer.79

Signature of HER3 activation and use as a biomarker

As aforementioned, HER3 is trans-activated by its dimerization
partners. This activation leads to phosphorylation of some of
the 14 tyrosine residues located at the C-terminal tail of HER3
(Fig. 2A).80 Several studies have identified phospho-sites able to
dock SH2 (Src homology region 2) and PTB (phosphotyrosine-
binding) domains of proteins involved in signaling pathways,
such as SHC, GRB2 or the PI3K complex. Importantly, unlike
EGFR and HER2, HER3 contains multiple phosphotyrosine
binding sites for the regulatory subunit of PI3K complexes.81

This unique feature of HER3 might explain HER2s action in
breast cancer, such as inflammatory breast tumors overexpress-
ing HER2.82 In such patients, coexpression of pHER2 and
pHER3 in tumors seems to predict for a favorable response to
lapatinib, a HER2-specific TKI. Moreover, resistance of HER2-
overexpressing breast cancer cells to lapatinib might be due to
autocrine stimulation of HER3 by neuregulin and consequent
transactivation of EGFR and the PI3K pathway.83 In conclu-
sion, the phosphorylated form of HER3, or a relevant phospho-
protein signature,84,85 might serve as a biomarker enabling
patient selection.
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Indirect Strategies Targeting HER3/ERBB3

Several structural and functional features inherent to HER3
present a pharmacological challenge: attempts to intercept the
protein must take into account its very low kinase activity.50 In
addition, HER3 seems to act as an auxiliary subunit of driver
oncogenes, such as HER2/ERBB2 and EGFR, rather than a
bona fide driver. Yet another feature, which is less understood,
is the ability of HER3 to instigate compensatory feedback regu-
latory loops that adapt and compensate for inhibition of other
receptors of the HER/ERBB family. Presumably, engagement of
HER3 upon pathway inhibition involves multiple mechanisms,
such as complex formation, de-phosphorylation, trans-phos-
phorylation and translocation to the plasma membrane, along
with feedback regulation of the PI3K-AKT pathway, the major
downstream effector of HER3.74 Specific elements of the HER3
promoter might also be involved.86 It is therefore conceivable
that pharmacological elimination of HER3 would be accompa-
nied by indirect side effects. Although immunological
approaches have dominated the field of HER3 targeting, several
additional strategies, which we briefly review below and in
Figure 5, might be effective by their own, or they might assist
other strategies.

HER3 strategies involving ligand targeting

The potential of NRG targeting to inhibit tumorigenicity and
metastasis of breast cancer has been first demonstrated by
Tsai and colleagues, who applied an NRG-based antisense

scenario.87 Later approaches employed monoclonal antibodies
to NRG. Some of the mAbs show synergy with chemotherapy
on lung cancer cells.88 Notably, because NRG1 binds both
HER3/ERBB3 and HER4/ERBB4, and the latter receptor is
expressed in cardiac and neural tissues, toxicity might become
an issue when targeting NRGs. Another way to target the
ligands is a decoy receptor strategy. This entails a recombinant
fusion protein linking the Fc domain of human IgG1 to the
truncated extracellular domains of EGFR and ERBB4/HER4.89

This decoy molecule showed an ability to inhibit tumor
growth and metastasis in several cancer models. Finally, an
original strategy based on HER3 restricted ability to autophos-
phorylate was developed by Jay and colleagues, who made use
of bivalent ligands.90 In principle, the engineered ligands lock
HER3/ERBB3 in a homodimeric conformation, thereby pre-
vent HER3 from forming powerful heterodimers, such as
HER2-HER3 or EGFR-HER3.

Tyrosine kinase inhibitors preventing HER3 auto- and
trans-phosphorylation

An important approach to target HER3/ERBB3 entails inacti-
vation of its own, very weak, kinase activity, as well as the cat-
alytic activity of it dimerization partners, such as EGFR and
HER2/ERBB2. As mentioned previously, tumors exhibiting
hyper-activation of EGFR or HER2/ERBB2 often develop
resistance following treatment with reversible TKIs, such as
erlotinib, gefitinib or lapatinib, and this might involve up-reg-
ulation of HER3/ERBB3. PanHER inhibitors, which target all

Figure 4. Drugs targeting HER3s interaction partners. Listed are the main protein partners of HER3. Clinically approved drugs targeting HER3 partners are underlined.
Other than afatinib, no drug targeting both HER3 and a direct partner (lower part of the table) has so far been approved. Asterisks indicate drugs and resistance mecha-
nisms that might involve HER3.
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members of the HER/ERBB family, have been developed, as a
default strategy that potentially overcomes this adaptive reac-
tion. For example, afatinib (BIBW2992, Gilotrif), dacomitimib
(PF299804), AZD-8931,91 CI-103392,93 and several other
PanHER TKIs are in different phases of clinical develop-
ment.94 Among these, dacomitinib and afatinib.22 are particu-
larly well advanced, and they possess novel features, such as
irreversible binding to the target receptors and prevention of
downstream signals. However, it has not been clearly docu-
mented in the clinic that panHER TKIs directly impact HER3
function. Specifically, IGF1-R, MET or other growth factor
receptors might activate the HER3 signaling pathway and
bypass inactivated EGFR or HER2.

Others indirect strategies

Entinostat (SNDX-275), a specific inhibitor of class I histone
deacetylases (HDACs), appears capable of targeting HER3 at
the transcriptional level. HDACs are involved in the de-acetyla-
tion of core nucleosomal histones, a process involved in aber-
rant cancer gene expression. Entinostat recently received BTD
from FDA due to exciting data from Phase 2b data, showing a
significant improvement of overall survival in patients with ER/
PR positive breast cancer. Entinostat downregulates HER3 and
HER2 via induction of specific microRNAs (miR-125a,
miR125b, and miR205) in HER2-overexpressing breast cancer

cells.63 Likewise, several antisense oligonucleotides or micro-
RNAs seems able to downregulate HER3, such as a locked
nucleic acid (LNA)-based HER3 antisense oligonucleotide
called EZN-3920,95 which improves the anti-tumor activity of
TKIs, and miR-450b-3p, which inhibits proliferation of breast
cancer cells.60 Targeting mRNAs with LNA EZN-3920 pro-
vided promising preclinical strategy but further development
remains a challenge. Another indirect strategy is the use of
HSP90 inhibitors, such as tanespimycin (17-AAG). The Heat
Shock Protein 90 (HSP90) assists conformational maturation
and refolding of various proteins, including the HER/ERBB
family, IGF1-R and MET.96 Inhibiting HSP90 reduces stability
of these proteins and arrests subsequent signaling pathways. A
phase 2 clinical trial showed efficacy of an HSP90 inhibitor
when combined with trastuzumab in the treatment of HER2-
overexpressing metastatic breast cancer.97 Nevertheless, the
HSP90 approach has been in development for over a decade in
patients with advanced breast cancer without clear evidence of
clinical efficacy. A30, an RNA aptamer specific to the extracel-
lular domain of HER3, is able to inhibit NRG-induced signal-
ing.98 Likewise, a peptidomimetic molecule that binds HER2s
domain IV and reduces HER2 dimerization with HER3 might
inhibit HER2-HER3 signaling.99 Lastly, Ren and associates
recently re-purposed Perhexiline, an anti-anginal drug that
inhibits mitochondrial carnitine palmitoyltransferase I (CPT1),
as a promoter of HER3 internalization and degradation, as well
as an inhibitor of breast cancer in an animal model.100

Figure 5. Direct and indirect inhibition of HER3. The last decade has witnessed the introduction of several experimental strategies able to target HER3/ERBB3. (1) The
ligand trapping strategy consists of developing recombinant decoys (aka TRAP).89 or anti-NRG antibodies,88 thereby avoiding ligand-induced activation of HER3. (2) Since
HER3 homodimers are weakly active compared to the heterodimers HER3-HER2 and HER3-EGFR, a recombinant bivalent-NRG has been developed that locks HER3 in the
homodimeric conformation and restricts its ability to form heterodimers.90 (3) Several monoclonal and multispecific antibodies have been developed to target HER3 and
its dimerization partners, leading them to degradation or/and avoiding their phosphorylation.172 Some of these antibodies are able to trigger CDC or ADCC. For example,
the glycoengineered mAb RO5479599 causes enhanced ADCC, due to higher affinity to the human Fc-gamma receptor RIIIa expressed on the surface of immune effector
cells. Antibodies competing with NRG and avoiding ligand-induced phosphorylation of HER3 have also been reported.137,156 (4) Tyrosine kinase inhibitors (TKIs) have
been widely used to inactivate the tyrosine kinase activity of HER3s partners, and several panHER TKIs (targeting all EGFR family members) have been developed, leading
to inactive heterodimers.94 (5) HDAC inhibitors (such as entinostat) can inhibit HER3 at the transcriptional level by inducing several miRNAs, such as miR125a, miR125b
and miR205.63 (6) Several other nucleotide-based drugs, such as the locked nucleic acid (LNA) called EZN-3920 and miR-450b-3p, might downregulate HER3. (7) Inhibiting
the heat shock protein 90 (HSP90), and consequently HER3 maturation and refolding, is another way to reduce HER3 stabilization.97 (8) HER3 can be targeted by small
RNA aptamer molecules, which bind with the extracellular domain of HER3 and inhibit downstream signaling.98 (9) Using a peptidomimetic molecule binding HER2 and
mimicking HER2-HER3s dimerization site is another way to prevent HER3 activation.99 (10) Recently, screening of approved drugs for their ability to selectively internalize
and degrade HER3, identified an anti-anginal drug, perhexiline, as an agent that can target HER3.100
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Monoclonal Antibodies Targeting HER3

Monospecific antibodies to HER3

The first monoclonal antibody specific to human HER3 was gen-
erated in our lab in 1996,101 but many more antibodies were gen-
erated later, following the understanding that HER3 acts as a
partner of HER2/ERBB2 and serves as a node responsible for
resistance to several cancer drugs. Table 1 lists reagents specifi-
cally targeting HER3. By now, several antibodies have reached
clinical trials (see a list in Table 2). The first fully human anti-
body has been patritumab (U3–1287/AMG888).102–104 Patritu-
mab inhibits ligand-induced phosphorylation of HER3, as well
as downstream signaling to AKT and ERK. In phase 1 trials pat-
ritumab was well tolerated, and showed some evidence of disease
stabilization.105 It is notable that clinical tests of patritumab and
other anti-HER3 drugs in phase 1 and phase 2 studies has been
conducted in unselected patient populations. Hence, lacklustre
results are not surprising. When applied to lung and head and
neck carcinoma, the antibody enhanced efficacy of radiation
therapy.106 It might also prevent cetuximab resistance in colorec-
tal cancer.107 This mAb is currently being tested in phase 2 trials
on newly diagnosed HER2-positive metastatic breast cancer, in
combination with trastuzumab and paclitaxel. Based on results
of the HERALD trial108 showing a statistically significant differ-
ence in PFS over placebo in NRG-high patient with advanced
NSCLC, patritumab in combination with erlotinib is currently
tested in trials that recruited patients with locally advanced and
metastatic lung cancer.

MM-121(SAR256212, seribantumab) is a fully humanized
IgG2 mAb that inhibits ligand –induced signaling by compet-
ing with NRG for binding to HER3. MM-121 decreases forma-
tion of HER2-HER3 dimers.109,110 When singly applied,
MM-121 decreased growth of pancreatic tumor cells (AsPC-
1),111 ovarian cancer cells (OVCAR8)112 and also cisplatin-
resistant cancer cells.113 Multiple combinations of MM-121
with others drugs have been studied. Notably, the combination
MM-121 and trastuzumab has been tested on a tumor xeno-
graft model established from trastuzumab-resistant breast can-
cer cells, and dramatically inhibited tumor growth by activating
apoptosis.114 In combination with erlotinib, MM-121 inhibits
growth of pancreatic ductal adenocarcinoma by abolishing

AKT pathway activation.112 Henry and colleagues examined
the benefit of combining MM-121 and either a PanPI3K inhibi-
tor (SAR245408) or a microtubule inhibitor (cabazitaxel), while
treating lung (A549, NSCLC) and gastric cancer cells (N87,
HER2-overexpressing), respectively. In both cases mAb-
induced downregulation of HER3 enhanced the inhibitory
activity of the other drug.115 In the same vein, Curley and col-
leagues showed that MM-121 can re-sensitize estrogen receptor
(ER) positive breast cancer to letrozole, an oral non-steroidal
aromatase inhibitor.116 Finally, the combination of MM-121
and cetuximab has been reported to inhibit head and neck
tumors, in animals.117 As reported in Table 2, several clinical
trials currently examine safety and efficacy of these and addi-
tional combinations of anti-HER3 antibodies. Based on results
reported in conferences, the safety of MM-121 combined with
several chemotherapies (platinium or taxol)118 or cetuximab
and irinotecan119 have been confirmed. The results from phase
2 trials in NSCLC (MM121 C Erlotinib),120 or in ovarian can-
cer (MM121 C Paclitaxel),121 showed the importance of patient
selection, with improved PFS compared to TKI or chemother-
apy alone, especially in a subgroup of patients who were NRG
positive.

LJM716 is a fully human mAb that can lock HER3 in an
inactive conformation by binding with an epitope localized in
between domains II and IV of HER3. It has been reported to
inhibit both ligand–dependent and ligand–independent HER3
activity in vitro, and prevent tumor growth in both NRG-
dependent and HER2-driven cancer models. Importantly, this
mAb does not inhibit NRG binding, and it acts synergistically
with anti-EGFR (cetuximab) and anti-HER2 (trastuzumab)
antibodies.122 The result of a phase 1 clinical trial testing the
safety LJM716 in combination with trastuzumab in HER2 posi-
tive patients (breast and gastric cancer), show mild to moderate
adverse effects and some encouraging case of partial response
(6%) and stable disease (36%).123 In combination with BYL719
(a PI3K inhibitor), either alone or with trastuzumab, LJM716
showed promising results on HER2-positive breast cancer
cells.124 These data prompted additional clinical trials, which
are currently ongoing (see Table 2).

Another interesting mAb is AV-203, a humanized IgG1
directed to HER3.125,126 AV-203 inhibits both NRG-induced

Table 1. Experimental pharmacological agents specifically targeting HER3/ERBB3, along with their respective binding sites.

Names Binding sites Blocking of NRG binding

Antibodies (in clinical trials) MM-121 (Seranbitumab) Unknown Yes
U3-1287 (Patritumab) Unknown Unknown
LJM716 Between domains II-IV No
AV-203 Unknown Yes
REGN1400 Unknown Yes
GSK2849330 Domain III Yes
RG7116 (Lumretuzumab) Domain I Yes

Other antibodies TK-A3 and TK-A4 Domain II / Unknown Yes / Yes
MP-RM-1 (EV-20) Unknown No
9F7-F11 and 16D3-C1 Domain I / Domain I No / Yes
NG33 Unknown Yes
A5/F4 Domains I and III Yes

LNA EZN-3920 ERBB3/HER3 mRNA -

miRNAs miR-450b-3p ERBB3/HER3 3’ UTR -
miR-205 -

RNA aptamers A30 HER3 ECD No

582 N. GABORIT ET AL.



Table 2. Anti-HER3/ERBB3 antibodies currently in clinical trials.

Anti-HER3 mAbs Target Phase Combination with Cancer Types CT Number Recruitment

MM-121 HER3 1 Alone Refractory Advanced Solid Tumors NCT00734305 Completed
(SAR256212, 1/2 Erlotinib Advanced Non-Small-Cell Lung (NSCLC) NCT00994123 Completed
Seribantumab) 2 Paclitaxel Platinum Resistant/ Refractory Advanced Ovarian

Cancers
NCT01447706 Completed

1 Gemcitabine or carboplatin or
pemetrexed or cabazitaxel

Solid Tumors NCT01447225 Completed

1 Cetuximab and irinotecan Colorectal Cancer/Head and Neck Squamous Cell
Carcinoma (HNSCC) /NSCLC/Triple Negative
Breast Cancer/ More

NCT01451632 Completed

1 SAR245408 Solid Tumors NCT01436565 Completed
2 Exemestane Locally Advanced or Metastatic ERC and/or PRC

HER2 Negative Breast Cancer
NCT01151046 Completed

2 Paclitaxel HER2-Negative Breast Cancer NCT01421472 Completed

Patritumab HER3 1 Alone Solid Tumors NCT01957280 Completed
(U3-1287, 1 Alone Advanced Solid Tumors NCT00730470 Completed
AMG888) 1/2 Trastuzumab and paclitaxel Newly Diagnosed Metastatic Breast Cancer NCT01512199 Ongoing

1/2 Erlotinib Advanced NSCLC NCT01211483 Completed
3 Erlotinib Locally Advanced or Metastatic NSCLC NCT02134015 Ongoing
1 Cetuximab and platinum HNSCC NCT02350712 Ongoing

LJM716 HER3 1/2 BYL719 Previously Treated Esophageal Squamous Cell
Carcinoma (ESCC)

NCT01822613 Ongoing

1 BYL719 and trastuzumab Metastatic HER2 plus Breast Cancer NCT02167854 Ongoing
1 Trastuzumab HER2 Overexpressing Metastatic Breast or Gastric

Cancer
NCT01602406 Completed

1 Alone HNSCC, or HER2 plus Breast or Gastric Cancer NCT01598077 Completed
1 Alone Advanced Solid Tumors NCT01911936 Completed

AV-203 HER3 1 Alone Solid Tumors NCT01603979 Completed

REGN1400 HER3 1 Erlotinib or cetuximab Unresectable or Metastatic Tumors (without brain
metastases)

NCT01727869 Completed

GSK2849330� HER3 1 Alone HER3 Positive Solid Tumors NCT01966445 Ongoing
1 Alone HER3 Positive Solid Tumors NCT02345174 Ongoing

RG7116�

RO5479599
HER3 1 Alone, or with cetuximab, or

erlotinib
Metastatic and/or Locally Advanced Malignant

HER3-Positive Solid Tumors
NCT01482377 Completed

(GE-huMab-HER3,
Lumretuzumab)

1 Carboplatin and paclitaxel Advanced or Metastatic NSCLC of Squamous
Histology

NCT02204345 Suspended

1 Pertuzumab and paclitaxel Metastatic Breast Cancer Expressing HER2 and HER3 NCT01918254 Ongoing

Bispecific Abs Target Phase Combination with Cancer Types Number CT Recruitment

MM-111 HER2
HER3

1 Alone HER2 Amplified Solid Tumors / Metastatic Breast
Cancer

NCT00911898 Completed

1 Trastuzumab Advanced HER2 Amplified, Heregulin Positive Breast
Cancer

NCT01097460 Completed

1 Cisplatin, capecitabine, trastu,
lapatinib, paclitaxel,
docetaxel

HER2 Positive Cancer NCT01304784 Completed

2 Trastuzumab and paclitaxel HER2 Positive Carcinomas of the Distal Esophagus,
Gastroesophageal (GE) Junction and Stomach

NCT01774851 Completed

MEHD7945A EGFR 1 Alone Locally Advanced or Metastatic Epithelial Tumors NCT01207323 Completed
(Duligotuzmab,
RG7597)

HER3 1 Cisplatin and 5-FU or paclitaxel
and carboplatin

Recurrent/Metastatic HNSCC NCT01911598 Completed

2 Alone Recurrent/Metastatic HNSCC NCT01577173 Completed
2 FOLFIRI KRAS Wild-Type Metastatic Colorectal Cancer NCT01652482 Completed
1 Alone Locally Advanced or Metastatic Cancers With Mutant

KRAS
NCT01986166 Ongoing

MM-141 IGF-IR
HER3

1 Alone, or with everolimus or
abraxane and gemcitabine

Advanced Solid Tumors NCT01733004 Ongoing

2 Nab-paclitaxel and gemcitabine Metastatic Pancreatic Cancer NCT02399137 Ongoing

� Glycoengineered mAbs
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and HER2-dependent activation of HER3, and it acts as a
potent inhibitor of downstream signaling pathways by prevent-
ing HER2-HER3 dimerization. This mAb appears to be effec-
tive when tested in several cancer models, such as breast and
pancreatic tumors; its safety has been successfully tested in a
phase 1 clinical trial on patients with metastatic or advanced
solid tumors.127 TK-A3 and TK-A4 (aka, A3 and A4) are
humanized IgG1 mAbs that inhibit NRG-dependent phosphor-
ylation of HER3 and promote HER3 internalization and degra-
dation. These mAbs showed an ability to decrease growth of
several tumor types, especially melanoma, in animal models.
TK-A3 recognizes the dimerization loop in domain II of
HER3s extracellular domain.128 According to recent reports,
TK-A3 and TK-A4 can reduce melanoma resistance to BRAF/
MEK inhibitors.129

MP-RM-1 and its humanized form, EV-20, is a weak affinity
anti-HER3 mAb, which is able to inhibit NRG-induced activa-
tion of HER3 and downstream pathways, by promoting HER3
degradation and inhibiting HER2-HER3 dimers. Notably, the
antibody cannot displace HER3-bound NRG, yet able to
decrease tumor growth in several animal models.130,131

REGN1400 is a fully human IgG molecule directed to HER3
and able to inhibit NRG binding.132 In combination with anti-
EGFR antibodies, REGN1400 can synergistically promote
regression of HNSCC (FaDu) and colorectal cancer (LIM1215)
models in animals. The safety of REGN1400 in combination
with erlotinib or cetuximab has been tested in a phase 1 trial,
showing an acceptable safety profile. Stable disease cases have
been reported when used in combination with cetuximab
(23%) or with erlotinib (18%). An expansion cohort is planned
in HNSCC and CRC.133 SGP1 is another mAb that competes
with NRG binding and cooperates with trastuzumab when
tested in vitro on breast cancer cells (SKBR3 and MDA-MB-
361).134

Lazrek and colleagues generated mouse antibodies direc-
ted to domain I, III and IV of HER3. Although some of
their mAbs do not inhibit NRG binding, they are still able
to diminish tumorigenic growth in nude mice xenografted
with epidermoid (A431), pancreatic (BxPC3), or triple-nega-
tive breast cancer cells (MDA-MB-468). Mech-anistically,
these mAbs arrested cells at the G1 phase of the cell cycle
and induced apoptosis, while reducing HER2-HER3 dimers
and AKT-induced phosphorylation of MDM-2, XIAP and
FOXO1.135 It was further reported that the combination of
anti-HER3 mAbs and trastuzumab effectively inhibited
growth of xenografts expressing relatively low HER2 levels
(e.g., A431 and A549 cells). Similarly, a combination of per-
tuzumab and an antibody to HER3 (denoted 9F7-F11)
enhanced pancreatic tumor inhibition in mice, in line with
an added benefit of antibody mixtures containing mAbs to
both HER3 and HER2.136

Glycoengineered mAb to HER3

RG7116, also called RO5479599 (GE-huMab-HER3),137 is a
humanized glycoengineered IgG1 directed to domain I of
HER3. This antibody prevents ligand binding and receptor het-
erodimerization, thereby blocks receptor phosphorylation and
prevents downstream activation ok AKT.138 Remarkably, the

engineered glycosylation within the antibody’s Fc region repre-
sents a novel feature allowing very high affinity recognition of
the human Fc-gamma receptor RIIIa of immune effector cells.
Hence, this mAb is expected to strongly trigger ADCC. Consis-
tent with this attribute, RG7116/RO5479599 effectively inhib-
ited NSCLC mouse models. RG7116s efficacy was tested in
combination with an anti-EGFR (RG7160) or anti-HER2 (per-
tuzumab) mAbs in an animal model of HNSCC (FaDu), or in a
subcutaneous patient-derived tumor xenograft model, respec-
tively.138 Several clinical trials are currently ongoing to test
safety of RG7116/RO5479599, either alone or in combination
with other drugs (Table 2). According to initial reports,
RG7116 was well tolerated when used alone to treat patients
with metastatic HER3 positive tumors.139

GSK2849330140 is an IgG1/IgG3 chimeric, glycoengineered
humanized monoclonal antibody directed against domain III
of HER3s extracellular domain and presenting enhanced ability
to mediate ADCC and complement dependent cytoxicity
(CDC) due to high binding affinity to human Fc-gamma recep-
tor RIIIa and to human complement protein C1q, respectively.
This mAb can block NRG binding, receptor dimerization and
activation. It is currently being tested in phase 1 clinical studies.

In summary, despite encouraging preliminary results, glyco-
engineered mAbs against HER3 are still in an initial phase of
clinical development. It is worthwhile, however, referring to a
similar EGFR-targeting strategy, which yielded moderate effi-
cacy and increased skin toxicity.141 Hence, further clinical
development has been discontinued.142

Antibodies engaging 2 non-overlapping epitopes of HER3

Extensive animal studies observed synergistic anti-tumor
effects of combining 2–3 anti-HER2 antibodies able to recog-
nize distinct portions of HER2,143-145 including a dimerization-
inhibitory mAb.146 In vitro, the more effective mAb mixture
was also more effective than the respective single mAbs in
inducing receptor degradation147 and ADCC.145 Synergistic
anti-tumor effects were confirmed, as well as associated with
receptor degradation, using another set of mAbs.143 As afore-
mentioned, a mixture of 2 mAbs to HER2, trastuzumab and
pertuzumab, in combination with chemotherapy, significantly
prolonged OS of breast cancer patients whose tumors overex-
press HER2 compared to a mixture of placebo and trastuzumab
combined with chemotherapy:148,149 The median overall sur-
vival was 56.5 months in the group receiving the pertuzumab
combination, as compared with 40.8 months in the group
receiving the placebo combination. Surprisingly, clinical data
did not support combination of T-DM1, a drug-conjugated
analog of trastuzumab, and pertuzumab. Nevertheless, future
mAb combinations might be identified by systematic selections
of cooperating anti-HER2 antibodies that can improve efficacy
relative to the trastuzumab/pertuzumab combination.150 In
analogy to anti-HER2 combinations, we noted that certain
pairs of anti-EGFR antibodies could accelerate EGFR degrada-
tion144 and they synergized in terms of inhibiting tumorigenic
growth of triple negative breast cancer cells.151 Sym004, a thera-
peutic antibody mixture comprising several mAbs targeting
EGFR, was shown to elicit superior cancer cell inhibition and
has already completed safety trials.152 Using cellular models, it
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was shown that Sym004 might overcome acquired resistance to
cetuximab.153 In line with this, preclinical154 data supported
tumor dependency on EGFR signaling. Moreover, recent clini-
cal data provide evidence of clinical activity in patients with
mCRC whose disease progressed while on anti-EGFR
therapies.155

Whether or not anti-HER3 antibodies can collaborate when
administered in mixtures of 2 or more antibodies is still an
open question. When studying in vitro mixtures of 2 mAbs to
HER3/ERBB3, involving one mAb, which inhibits NRG bind-
ing, we observed clear benefit of combining 2 anti-HER3 mAbs
in terms of inhibition of several cancer cells types. However,
this cooperative effect was minimal in an animal model of pan-
creatic tumors.156 In the same vein, D’Ouza and colleagues
developed a bispecific molecule, called A5/F4, comprising 2 sin-
gle chain variable fragments (ScFv) directed to HER3s domains
I and III.157 They later showed that the bispecific molecule, bet-
ter than each mAb alone, inhibited cell proliferation in vitro.
This result was extended to an in vivo model of gastric cancer,
but no comparison to single mAbs was presented. In conclu-
sion, combining 2 or more mAbs to EGFR and HER2 holds
promise in terms of anti-tumor efficacy. Yet, not all antibodies
targeting non-overlapping epitopes of EGFR or HER2 provide
improved efficacy in preclinical studies, and the value of com-
bining 2 or more anti-HER3 mAbs is still questionable.

Multispecific antibodies targeting HER3 and one of its
direct partners

In line with the above-described antibody combinations, sev-
eral bispecific and multispecific molecules have been developed
in the past 5 y MEHD7945A is a 2-in-one human IgG1 mole-
cule targeting both EGFR and HER3 with significantly different
affinities to these receptors. By inhibiting EGFR, as well as sig-
naling downstream to HER2-HER3 dimers, MEHD7945A
strongly inhibited cancer cell growth in vitro and in vivo (cell
lines NCI-H292, BxPC3, A431), especially in combination with
chemotherapy (gemcitabine).158 In later studies, MEHD7945A
was shown to inhibit proliferation of cells that were resistant to
anti-EGFR drugs, such as erlotinib and cetuximab,159 and it
could synergize with PI3K inhibitors in preclinical models of
triple negative breast cancer.160 Several clinical trials testing
MEHD7945A alone, or in combination with chemotherapeutic
agents, are currently in progress (see Table 2). In phase 1 trials,
MEHD7945A showed pharmacodynamic evidence supporting
target inhibition, as well as anti-tumor activity in 25% of evalu-
able patients with head and neck squamous cell carcinoma
(HNSCC; n D 3), mCRC (n D 6), and NSCLC (n D 3). How-
ever, these results were associated with grade 3 gastro-intestinal
toxicities.161 In addition, clinical data from randomized phase 2
studies failed to provide evidence of improved efficacy in
patients with advanced HNSCC162 or in patients with meta-
static CRC (NCT01652482).163

MM-111 is an engineered antibody fusion molecule directed
to both HER2 and HER3. This bispecific antibody demon-
strated an ability to decrease tumor growth in preclinical mod-
els of HER2-overexpressing cancer cells (cell lines BT474,
breast cancer and N87, gastric carcinoma), especially when
combined with lapatinib or with trastuzumab (see Table 2).164

The safety of MM-111 combined with several drugs, such as
chemotherapy (taxol, platinium) or anti-HER2 therapies (TKI
or mAbs), has been demonstrated in a phase 1 trial performed
with patients with HER2-positive cancer.165 Similarly, MM-141
is a tetravalent bispecific antibody harbouring 4 high-affinity
binding sites, 2 are specific to the insulin-like growth factor 1
receptor (IGF1-R) and 2 to HER3.166 Notably, MM-141 displa-
ces both NRG and IGFs (I and II) from their respective recep-
tors. This bispecific antibody could potentiate anti-tumoral
effects of chemotherapy in animal models. Similarly, MM-141
potentiated the activity of everolimus (an mTOR inhibitor) in
Caki-1 xenografted mice. Presumably, MM-141s efficacy is due
to suppression of signaling downstream to both HER3 and
IGF-1 receptors.166

FL518 and CRTB6 are tetraspecific antibodies that recognize
EGFR, HER2, HER3 and VEGF.167 They were made out of 2 2-
in-one antibodies, namely MEHD7945A, directed against
EGFR and HER3 (as described above) and bH1–44, which
binds both VEGF and HER2. Importantly, these tetraspecific
molecules are able to strongly impact the crosstalk between
HER proteins and the MET pathway. Accordingly, they were
more effective, both in vitro and animals, than the correspond-
ing bispecific antibodies in terms of inhibiting growth of drug-
resistant cancer cells exhibiting elevated activation of MET.
Similarly, Tab6 is a tetravalent antibody made out of trastuzu-
mab and MM-121 (see above). Consequently, Tab6 binds both
HER3 and HER2. So far, Tab6 was used in vitro, either alone or
in combination with lapatinib, and showed an ability to
decrease proliferation of breast cancer cells overexpressing
HER2.168

Sym013 (Pan-HER) is a mixture of 6 mAbs, comprising 3
pairs of synergistic mAbs, each targeting EGFR, HER2 and
HER3.169 The mixture has been reported to effectively inhibit
growth of lung (NSCLC) and head and neck (HNSCC) cancer
models in vitro and in vivo. Sym013 triggers degradation of
EGFR, HER2 and HER3, prevents ligand binding to EGFR and
HER3, and strongly inhibits subsequent activation of the AKT
and MAPK/ERK pathways. Similarly, our team, recently dem-
onstrated anti-cancer effects of a combination of 3 mouse
mAbs directed to EGFR, HER2 and HER3.170 The mixture was
able to decrease tumorigenic growth of 2 lung cancer models
expressing mutant forms of EGFR, which are resistant to erloti-
nib (PC9-ER and H1975 cell models). Importantly, when
applied alone, anti-EGFR antibodies induced a feedback com-
pensatory loop that up-regulated both HER2 and HER3, and
resulted in robust activation of the ERK pathway. Importantly,
the triple antibody mixture nullified compensatory activation
of ERK and, accordingly, strongly inhibited tumorigenic
growth of lung cancer models both in vitro and in animals.

Epilog and the power of drug combinations

While it is presently difficult predicting the true clinical poten-
tial of HER3 interceptors, experience gained in other domains
of molecular targeted cancer therapy provide a glimpse of the
future.171 Thus, following the example of trastuzumab, which
targets the major partner of HER3 and is commonly combined
with paclitaxel for the treatment of patients with metastatic
breast cancer overexpressing HER2,41 it seems safe predicting

HUMAN VACCINES & IMMUNOTHERAPEUTICS 585



that anti-HER3 agents, especially mAbs, will likely be combined
with chemotherapy. It is also predictable that HER3 intercep-
tors will induce growth arrest rather than blatant apoptosis or
other types of cell death. The frequent involvement of HER3 in
tumor recurrence following emergence of drug resistance raises
another prediction: HER3 blockers might be especially effective
in delaying onset of drug resistance in the context of genetically
aberrant forms of HER/ERBB family members. Other than
drug efficacy and emergence of resistance, application of the
new drugs and especially their combinations, is expected to
elicit mild or moderate adverse clinical effects. In similarity to
other HER/ERBB-targeting agents, and in line with the pheno-
types of HER3-ablated mice, side effects are expected to involve
primarily skin, gastrointestinal tract, cardiac and neural tissues.
In fact, serious gastrointestinal toxicities were reported when
simultaneously targeting EGFR and HER3.161 Nevertheless, the
very large number of experimental drugs targeting EGFR and
HER2, along with their manageable toxicities, promise that
HER3 targeting will greatly expand the armamentarium avail-
able for therapy of patients with relatively hard to treat solid
tumors.

Abbreviations

ADCC Antibody-Dependent Cell-mediated Cytotoxicity
ADC Antibody Drug Conjugate
AKT Protein kinase B
BTD Breakthrough Therapy Designation
EGF Epidermal Growth Factor
EGFR Epidermal Growth Factor Receptor
FDA Food and Drug Administration (USA)
MAPK Mitogen-activated Protein Kinase
HDAC Histone Deacetylase
HER Human EGF Receptor
HGF Hepatocyte Growth Factor
HNSCC Head and Neck Squamous Cell Cancer
HSP90 Heat Shock Protein 90
IGF Insulin-like Growth Factor
IGF1-R Insulin-like Growth Factor 1 Receptor
IgG Immunoglobuline G
mAb Monoclonal Antibody
mCRC Metastatic Colorectal Cancer
MET Hepatocyte Growth Factor Receptor
NRG Neuregulin
NSCLC Non-Small Cell Lung Cancer
PFS Progression-Free Survival
PI3K Phosphatidylinositol 3-Kinase
RTK Receptor Tyrosine Kinase
TKI Tyrosine Kinase Inhibitor
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