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Abstract Localized studies of arsenic (As) in Bangladesh have reached disparate conclusions regarding
the impact of irrigation-induced recharge on As concentrations in shallow (�50 m below ground level)
groundwater. We construct generalized regression models (GRMs) to describe observed spatial variations in
As concentrations in shallow groundwater both (i) nationally, and (ii) regionally within Holocene deposits
where As concentrations in groundwater are generally high (>10 lg L21). At these scales, the GRMs reveal
statistically significant inverse associations between observed As concentrations and two covariates: (1)
hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge between predeveloped
and developed groundwater-fed irrigation periods. Further, the GRMs show that the spatial variation of
groundwater As concentrations is well explained by not only surface geology but also statistical interactions
(i.e., combined effects) between surface geology and mean groundwater recharge, thickness of surficial silt
and clay, and well depth. Net increases in recharge result from intensive groundwater abstraction for irriga-
tion, which induces additional recharge where it is enabled by a permeable surface geology. Collectively,
these statistical associations indicate that irrigation-induced recharge serves to flush mobile As from shallow
groundwater.

1. Introduction

Biogeochemical controls on aqueous arsenic (As) concentrations in very shallow (�50 m below ground
level) groundwater in the Bengal Basin have been studied extensively over the last two decades [Nickson
et al., 1998; McArthur et al., 2004; Zheng et al., 2005; Harvey et al., 2006; Mukherjee et al., 2008; Chowdhury
et al., 2012]. This research has primarily been based upon localized observations in Bangladesh and West
Bengal where As concentrations in shallow groundwater are generally high (exceeding the WHO standard
of 10 lg L21). The general consensus from this work is that As derives from the microbially mediated, reduc-
tive dissolution of iron-oxyhydroxide minerals in alluvial sediments [Bhattacharya et al., 1997; Nickson et al.,
2000; McArthur et al., 2004; Ravenscroft et al., 2009]. In addition to natural controls (e.g., sediment lithology,
mineralogy, geochemistry) on the spatial distribution of As concentrations in shallow groundwater, several
authors [Harvey et al., 2006; Klump et al., 2006; Neumann et al., 2010] assert that intensive pumping of
groundwater for irrigation has changed the spatial distribution of As concentrations by perturbing ground-
water flow systems in the Bengal Basin. They show that irrigation abstraction of groundwater for dry-season
Boro rice cultivation can mobilize As by inducing recharge laden with reactive organic carbon (OC) derived
primarily from surface sources (e.g., ponds) in Bangladesh. Using observational data and groundwater flow
modeling in a localized study area, Neumann et al. [2010, 2011] show that groundwater recharge from
anthropogenic ponds, rich in biologically available OC, produces groundwater elevated in arsenic, whereas
recharge derived from rice-field irrigation return flows gives rise to groundwater low in arsenic. The latter
mechanism is consistent with the assertion that recharge induced by groundwater pumping serves primar-
ily to flush mobile As from alluvial aquifers in the Bengal Basin [van Geen et al., 2003; Stute et al., 2007; Datta
et al., 2011; McArthur et al., 2011a; Reich, 2011].

With few exceptions [BGS and DPHE, 2001; Ahmed et al., 2004; Ravenscroft et al., 2005], published
research on the variation in As concentrations has been based on local-scale studies. These studies
provide a valuable aid to understanding but neglect the additional information that can be derived by
examining regional-scale variations in As concentrations (see Figures 1 and 2). Such regional-scale varia-
tions have previously been attributed to surface geology and underlying sediment characteristics [BGS
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and DPHE, 2001; Raven-
scroft, 2001; Ahmed et al.,
2004; McArthur et al.,
2008]. However, human
activity over the last four
decades has substantially
affected the shallow
groundwater system in
Bangladesh [Michael and
Voss, 2009; Shamsudduha
et al., 2009a]: shallow
groundwater abstraction
has induced greater
recharge in areas under-
lain by a permeable sur-
face geology but
reduced groundwater
storage elsewhere [Sham-
sudduha et al., 2011]. By
examining the regional
variation in As concentra-
tions and its relationship
with abstraction (taking
account of geological
and hydrological con-
trols), it becomes possi-
ble to extract large-scale
signals that complement
understanding derived
from local-scale studies.
Indeed, from the per-
spective of a policy-
maker, it is arguably the
large-scale and regional
structure that is more rel-
evant since local-scale
policy interventions are
difficult to implement.
Moreover, given the
complexity and variability

of the As mobilization process, it is possible that local-scale studies will not yield sufficient quantities
of data to identify genuine signals reliably: by performing a single integrated analysis of all available
observations, the amount of data is correspondingly increased so that signals are more easily identified
by ‘‘borrowing strength’’ from similar sites [e.g., Katz et al., 2003].

These considerations motivate us to examine statistical relationships between As concentrations in shallow
groundwater and a set of relevant large-scale hydrogeological and hydrodynamic factors that have been
associated with As concentrations [BGS and DPHE, 2001; Ravenscroft, 2001; Ahmed et al., 2004; Ravenscroft
et al., 2005; Harvey et al., 2006; van Geen et al., 2008; Shamsudduha et al., 2009b]. We construct generalized
regression models to explain the observed spatial variation in As concentrations in shallow groundwater
throughout the Bengal Basin of Bangladesh. This statistical analysis requires care because the As data set
[DPHE, 1999; BGS and DPHE, 2001] features: (1) a highly skewed (nonnormal) distribution, (2) many records
below detection limits, and (3) dependence between observations from neighboring spatial locations. We
use the constructed models to quantify the overall effects of critical hydrogeological and hydrodynamic var-
iables on As concentrations.

Figure 1. As concentrations in very shallow (�50 m bgl) groundwater in Bangladesh sampled
under the National Hydrochemical Survey [DPHE, 1999; BGS and DPHE, 2001]. The Pre-Holocene
deposits (e.g., Madhupur Clay) are shown in green; the rest of Bangladesh is covered with Holo-
cene alluvium. The background image is a digital elevation model showing the hilly terrains sur-
rounding the Bengal Basin. Arsenic concentrations in a hydrogeological cross section along the
transect (A-B-C) are shown in Figure 2.
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Section 2 describes the groundwater As and covariate data sets as well as the modeling strategy. Model
outputs and interpretation of results are presented in section 3. Modeled associations between ground-
water As and key covariates and their relevance to groundwater use for irrigation are discussed in section 4.
The major outcomes of this study are summarized in section 5.

2. Methods and Data Sets

The aim of this work is to investigate the simultaneous effect of multiple factors upon shallow groundwater
As concentrations. It is conventional in statistics to refer to the primary variable of interest (groundwater As
concentration) as the ‘‘response variable’’ and to the potential influencing factors as ‘‘covariates.’’ In this sec-
tion, we describe the response variable and covariate data sets used in this study, outlining the issues that
must be addressed in order to produce a convincing outcome. This is followed by an explanation of the sta-
tistical methodology.

We construct generalized regression models (GRMs) at two spatial scales to explain the observed variation
in As concentrations in shallow groundwater. The first model, hereafter known as the ‘‘national-scale GRM,’’
explains the spatial variation in As concentrations nationally at 1643 locations that were surveyed [DPHE,
1999; BGS and DPHE, 2001] once during 1998 and 1999. Time series data of As concentrations cannot be
used here as they do not exist at the national scale [Fendorf et al., 2010]. A second model, hereafter the
‘‘regional-scale GRM,’’ addresses a potential bias in the national-scale GRM due to the inclusion of large
areas of north-central (Madhupur Tract) and northwestern (Barind Tract) Bangladesh (Figures 1 and 2)
where As concentrations are generally low (<10 lg L21). The comparative absence of As in these Plio-
Pleistocene aquifers of the Bengal Basin has been attributed to: (1) the flushing of mobile As under
increased groundwater flow induced by greater vertical hydraulic gradients that occurred naturally during
the Last Glacial Maximum (LGM) (20 ka) when sea levels were nearly 120 m lower than present [BGS and
DPHE, 2001; McArthur et al., 2008], and (2) the greater As-adsorption properties of brown (oxidized) sedi-
ments that comprise these Plio-Pleistocene aquifers [Radloff et al., 2011].

2.1. Groundwater Arsenic Data Set
We use a total of 2410 single observations of As concentrations in groundwater from wells with an intake
depth of �50 m bgl (Figure 1 and supporting information Figure S1). The observations were sampled under
the National Hydrochemical Survey (NHS) in Bangladesh conducted jointly by the British Geological Survey
(BGS), the Department of Public Health Engineering, Bangladesh (DPHE), and Mott MacDonald (UK) during

Figure 2. Hydrogeological cross section from north-central part of Bangladesh [Ravenscroft, 2003] shows the Plio-Pleistocene and Holo-
cene aquifers in the Bengal Basin. Shallow groundwater As concentrations observed in the National Hydrochemical Survey [DPHE, 1999;
BGS and DPHE, 2001] are plotted along the hydrogeological transect shown in Figure 1 (samples within a 10 km window from either side
of the transect are plotted).
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1998 and 1999 [DPHE, 1999; BGS and DPHE, 2001]. The coordinates for sampling locations were taken by
the hand-held Global Positioning System [BGS and DPHE, 2001]. Groundwater samples were analyzed for As
concentrations by two different techniques: hydride generation-atomic fluorescence spectrometry (HG-AFS)
and hydride generation-ICP AES (Inductively Coupled Plasma Atomic Emission Spectroscopy). The detection
limits of As concentrations for the HG-AFS and HG-ICP-AES methods were 0.5 and 6.0 lg L21 respectively.

The groundwater As data set features a number of important characteristics described below. The distribu-
tion of observed As concentrations in Bangladesh is highly (positively) skewed, with values ranging from
<0.5 to 1660 lg L21. The spatial distribution of groundwater As concentrations is also highly variable
throughout the country [Gaus et al., 2003; Yu et al., 2003; Shamsudduha, 2007]. However, higher As concen-
trations (>50 lg L21) are observed in most parts of southern Bangladesh [DPHE, 1999; BGS and DPHE,
2001]. Of the 2410 As measurements, 743 (31%) are reported as below analytical detection limits. In the sta-
tistical literature, such values are described as being ‘‘censored.’’ The presence of censored values requires
care in any statistical analysis. In environmental applications, nondetects in skewed data are most com-
monly handled by replacing each value with one-half of the detection limit and then using a logarithmic
transformation to normalize the distribution [Helsel, 2005]. However, this approach can lead to substantial
bias in estimates of descriptive statistics (i.e., mean, variance), and can also severely distort regression coeffi-
cients and their standard errors [Helsel, 2006; Antweiler and Taylor, 2008; Helsel, 2010]. Consequently, we cal-
culate the basic statistics of As data with censored observations using the Regression on Order Statistics
(ROS) and Kaplan-Meier (K-M) methods [Lee and Helsel, 2007]. Moreover, when building models to describe
the effect of multiple covariates upon As concentrations, we use methods that account explicitly for the
censoring (see section 2.3 below).

A further feature to consider is the potential presence of variations in As concentrations that arise, at
least in part, from local-scale hydrodynamical, geological, and geochemical controls that cannot be
incorporated explicitly into the analysis because the required data are not available at a national scale.
In statistical terms, the effect of these local-scale controls is to induce dependence between observa-
tions from neighboring sites that cannot be explained using the large-scale covariates that are the focus
of interest in this study. This dependence invalidates the usual standard errors and confidence intervals
for model parameters, which must therefore be adjusted to ensure a correct analysis [Chandler, 2005;
Helsel, 2005]. By carrying out such adjustments, the effects of local-scale influences on As concentration
are accounted for implicitly.

2.2. Covariate Data Sets: Rationale and Description
Sixteen covariates were considered in the development of our statistical models (Table S1). We group these
covariates into four broad categories: (1) six geological and hydrogeological variables (Surface geology,
Thickness of surficial silt and clay, Hydraulic conductivity, Specific yield, Darcy flux, Well depth and its statis-
tical interaction with surface geology), (2) five hydrodynamic and groundwater recharge variables (Wet-sea-
son groundwater table, Groundwater-level trends, Mean groundwater fluctuation, Mean PGI recharge and
its statistical interaction with surface geology, Net changes in recharge), (3) four geographical and seasonal
variables (Latitude and Longitude, Surface elevation, Seasonality (sine 1 cosine of sampling dates)), and (4)
groundwater-fed irrigation (Irrigation trends (198521999)). This section provides a rationale for the inclu-
sion of these variables as well as details of their data sets and processing.

Previous studies [DPHE, 1999; BGS and DPHE, 2001; Ravenscroft, 2001; Ravenscroft et al., 2005] have examined
statistical relationships between groundwater As and both geological and hydrogeological factors in isola-
tion. A previous study [Ravenscroft, 2001] correlated As concentrations with mean groundwater levels and
found that low As concentrations (<10 lg L21) are associated with deepest groundwater levels. High As con-
centrations (>50 lg L21) in tubewells are associated with shallow (<3 m bgl) water table in aquifers [Sham-
sudduha et al., 2009b]. Several localized studies (Figure S2) [Ravenscroft, 2001; McArthur et al., 2004; Harvey
et al., 2006; Klump et al., 2006; Stute et al., 2007; Polizzotto et al., 2008; Neumann et al., 2010] relate the distri-
bution of As in groundwater with recharge to aquifers and long-term changes in recharge rates, yet it
remains unclear as to whether rises in groundwater recharge are associated with decreased or increased As
concentrations over time. Geological and geomorphological controls on the regional-scale distribution of
groundwater As have been suggested by several studies [DPHE, 1999; BGS and DPHE, 2001; Ahmed et al.,
2004; Ravenscroft et al., 2005; Stute et al., 2007; Aziz et al., 2008; van Geen et al., 2008]. Ravenscroft [2001]
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demonstrated associations between groundwater As, surface geology (see Figures S3 and S4), and geomor-
phology in Bangladesh through descriptive statistics and linear regression analysis.

The influence of soil permeability and properties of near-surface deposits on the spatial distribution of
groundwater As concentrations have also been examined previously [van Geen et al., 2006; Stute et al., 2007;
Aziz et al., 2008; van Geen et al., 2008]. These studies reveal that low As concentrations in groundwater are
associated with areas of highly permeable soils and near-surface geology. It is hypothesized that shallow
aquifers beneath sandy soils receive rapid recharge from rainwater (and surface water bodies) that flushes
As in groundwater by dilution. Recharge also supplies oxidants (dissolved oxygen and nitrate) that inhibit
the reductive dissolution of iron oxy-hydroxides and thus As mobilization in groundwater [Aziz et al., 2008].
In contrast, low-permeability surface geology is thought to inhibit vertical recharge to the underlying aqui-
fer where As is mobilized in groundwater under sustained reducing (iron oxyhydroxides) conditions. This
hypothesis is supported by a study [Stute et al., 2007] that showed that As concentration in very shallow
(<20 m bgl) aquifers is linearly correlated with groundwater residence time.

Each of the studies above considers the effect of a single factor or covariate in isolation. In reality of course,
As concentrations are influenced by many factors acting in combination. Moreover, some of the factors are
correlated (see Figure S5 for Pearson’s correlation matrices) so that there is a danger of misinterpreting
results if they are analyzed individually. The only way to ensure that the variation in As concentrations is
correctly apportioned is via an analysis that considers the simultaneous effects of all relevant factors; hence
the motivation for the present study, which attempts this for the first time.

2.2.1. Seasonal Groundwater Levels and Temporal Trends
We employ a newly compiled national database of shallow groundwater levels [Shamsudduha et al., 2009a].
Statistics of weekly groundwater levels (i.e., mean depth to dry and wet-season groundwater levels below
ground level; hereafter GWT-dry for dry-season and GWT-wet for wet-season water table) were calculated
for the period 1985–1999 at each monitoring site and interpolated nationally across Bangladesh. Wet-
season water levels determine the aquifer-full condition following annual recharge, which predominantly
takes place during the monsoon season [Shamsudduha et al., 2011]. The 1985–1999 time period is specifi-
cally chosen as it represents a period over which groundwater-fed abstraction for dry-season irrigation
developed throughout Bangladesh and could have influenced As concentrations in the tubewells during
the 1998/1999 sampling period [DPHE, 1999; BGS and DPHE, 2001]. The mean GWT-dry was found not to
add much information to the analysis due to a high degree of correlation (Pearson’s correlation 0.75) with
the mean GWT-wet. Therefore, the mean GWT-dry was not used in any of the subsequent modeling. In
addition to the mean GWT-wet, we use groundwater-level trends (198521999) to examine the effect of
long-term changes in groundwater levels on spatial variations in As concentrations in shallow groundwater
of Bangladesh. Values of mean GWT-wet and groundwater-level trends were extracted at each As sampling
point using standard Geographical Information System (GIS) procedures described below.

Covariate data sets, which are numerical point observations but do not specifically coexist at the same loca-
tion of As sampling, are interpolated and mapped nationally throughout Bangladesh. Values of each inter-
polated surface at each As location (n 5 2410) are extracted using the spatial extraction function within
ArcGIS (v. 9.3). For example, GIS maps for seasonal groundwater levels (GWT-wet) were constructed using
Ordinary Kriging with an appropriate model variogram. Small-scale spatial variations in groundwater levels
are expected to be smoothed due to spatial interpolation at the national scale, and there is inevitably some
uncertainty in the interpolated values (see supporting information Table S3). For example, the root mean
square error (RMSE) for the interpolated GWT-wet is 1.34 m whereas the mean and standard deviation of
GWT-wet are 1.5 and 2.0 m. The RMSE of the interpolated mean groundwater-level trends is 12 cm yr21,
whereas the mean and standard deviation are 23.74 and 16.7 cm yr21 (for similar statistics for other covari-
ates, see Table S3). Ideally, these interpolation uncertainties would be accounted for explicitly in our analy-
sis. Unfortunately, however, to do so is formidably difficult. Although various methods are available in the
statistical literature for tackling this problem in regression models (see Carroll et al. [2006], for a review), a
considerable amount of methodological and computational development is required to implement these
methods in the context of models that also account for censoring and for dependence between observa-
tions as we do here. We take a pragmatic approach; therefore, we do not explicitly account for the interpo-
lation uncertainty in our modeling, but we note that relationships between interpolated covariates and As
concentration will be weaker than those between true (unobserved) covariate values and As concentration.
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Thus, if we find statistically significant associations involving the interpolated covariates, we can be confi-
dent that there are genuine associations with the true covariates as well.

2.2.2. Mean Groundwater Recharge and Net Changes in Recharge
We use: (i) mean annual (net) groundwater recharge over the period of 1975–1980 known as ‘‘predeveloped
groundwater-fed irrigation (PGI)’’ [Shamsudduha et al., 2011]; and (ii) net changes in recharge between the
PGI period and developed groundwater-fed irrigation (DGI; period 1985–1999) as covariates in the GRM.
The required values have recently been estimated at the national scale in Bangladesh [Shamsudduha et al.,
2011] using the water table fluctuation method with distributed specific yield values. PGI mean recharge
(Figure 3) shows highest groundwater recharge along the River Brahmaputra and in some areas in north-
western Bangladesh. Variogram analysis reveals a strong spatial and directional dependence at the national
scale (see Figure S6). Lowest groundwater recharge in the PGI period is observed in northeastern and south-
ern Bangladesh.

We use the PGI mean groundwater recharge and net change in mean recharge between the PGI and DGI
periods as two covariates representing the effect of groundwater recharge on the variation of As concentra-
tions in the model. The PGI mean recharge is used to establish a ‘‘baseline’’ (i.e., groundwater recharge
under predevelopment or nil-pumping period) surface, and the ‘‘net change in recharge’’ then provides an

Figure 3. Map showing mean groundwater recharge for the predeveloped groundwater-fed irrigation period (PGI; 197521980) in Bangla-
desh [Shamsudduha et al., 2011]. Estimates of mean recharge at 177 locations throughout Bangladesh have been interpolated applying a
geostatistical interpolation method (Ordinary Kriging) with a modeled variogram.
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opportunity to explain anomalies from this baseline surface in terms of the human intervention that has
taken place in the last few decades [Shamsudduha et al., 2011]. The effect of the ‘‘net change in recharge’’
covariate thus provides insights into the real relationship between groundwater recharge and As concentra-
tions at a regional scale.

2.2.3. Surface Geology
Information on surface geology was extracted at each of the 2410 As sampling locations [DPHE, 1999; BGS
and DPHE, 2001] from the geological map of Bangladesh (see supporting information Figure S3) [Alam et al.,
1990]. The occurrence and spatial extent of shallow aquifers in Bangladesh follow the general distribution
of the surface geology. A detailed description of surface geology and the aquifer systems in Bangladesh can
be found in several studies [UNDP, 1982; MPO, 1987; BGS and DPHE, 2001]. Descriptive statistics of As con-
centrations within these geological units are summarized in Table S2. Mean groundwater As concentrations
are highest (>100 lg L21) in Chandina alluvium (‘‘as,’’ see Figure S3 for details), deltaic sand (‘‘dsd’’), deltaic
silt (‘‘dsl’’), and tidal deltaic deposits (‘‘dt’’); As concentrations vary with depth (Figures S3 and S7). Mean As
concentrations are lowest (<10 lg L21) in older alluvial fan (‘‘afo’’), bedrocks (‘‘br’’), Barind (‘‘rb’’), and Madhu-
pur clay residuum (‘‘rm’’) in Bangladesh.

2.2.4. Thickness of Surficial Silt and Clay (TSSC)
Shallow aquifers in Bangladesh are generally overlain by a silt and clay deposit, commonly known as the
surficial silt and clay unit, throughout the country [MPO, 1987]. The thickness of surficial silt and clay (TSSC)
ranges from <5 to 50 m [Shamsudduha et al., 2011]. In the alluvial fan deposits of northwestern Bangladesh,
the TSSC is low (<5 m) where fine sands occur at the surface. In contrast, shallow aquifers occur at greater
depths beneath the Madhupur and Barind Tracts, Sylhet depression, and the southern Ganges-
Brahmaputra-Meghna Delta where the TSSC is higher (>15 m).

2.2.5. Hydraulic Conductivity, Storage Coefficient, and Darcy Flux
At each sampling location, the hydraulic conductivity, storage coefficient (specific yield), and Darcy flow
velocity of the shallow aquifer are considered as numerical covariates in the statistical model. The Bangla-
desh Water Development Board [BWDB, 1989, 1994] conducted pumping tests in shallow aquifers through-
out Bangladesh and calculated horizontal hydraulic conductivity (Kh) and specific yield (Sy). Pumping-test
derived hydraulic properties of shallow aquifers have been compiled and GIS maps have been generated at
the national scale [Shamsudduha et al., 2011]. Values of hydraulic conductivity and specific yield at the 2410
As sampling locations were extracted using geostatistical methods, in the same way as for groundwater
covariates in section 2.2.1. In addition, groundwater flow velocity (Figure S8) (also known as the Darcy flux),
which is a function of hydraulic conductivity and groundwater-level gradient [Hiscock, 2005], has been cal-
culated using hydraulic parameters compiled in this study. Darcy flux (q) has been calculated (q 5 2Khi)
using the horizontal hydraulic conductivity [Shamsudduha, 2011] (Kh) and the groundwater head gradient
(i) [Shamsudduha et al., 2009a]. Values of Darcy flux at each of the As sampling locations have been esti-
mated using the same interpolation procedure as for other hydraulic parameters (see supporting informa-
tion Table S3 for interpolation errors). Similar comments apply here as previously, regarding the effect of
interpolation errors on the conclusions from the analysis; there are, moreover, likely to be errors in the
pumping test results which will have the same effect.

2.2.6. Linear Trends in Groundwater-Fed Irrigation
The Bangladesh Agricultural Development Corporation (BADC) has maintained a database of annual
groundwater abstraction for irrigation since 2001. This database is recorded at the Thana/Upazila (third
administrative unit in Bangladesh) level. However, no systematic record for irrigation existed before 2000
though groundwater-fed irrigation in Bangladesh started during the early 1970s. Several studies [UNDP,
1982; MPO, 1987, 1991; WARPO, 2000] estimated groundwater abstraction for irrigation for some years (e.g.,
1986, 1991, and 1996) at the national scale using information on number of irrigation pumps, discharge
capacity, and pumping hours, or from agro-climatic records [BADC, 2003; Ravenscroft, 2003]. This study has
compiled all available data sets on groundwater abstraction for irrigation using shallow (<100 m bgl)
groundwaters in Bangladesh and calculated linear trends (rate of change in annual irrigation) for the period
of 1985–1999. An interpolated spatial map (Figure S9) shows linear trend slopes in groundwater-fed irriga-
tion at the national scale, and values are extracted at each of the 2410 As sampling locations. At the
national scale, magnitude of groundwater-fed irrigation follows a similar pattern as the long-term trends in
irrigation (i.e., quantity of groundwater-fed irrigation-water and irrigation trends are highly correlated,
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Pearson’s correlation 0.79). Due to this high degree of correlation, the magnitude of groundwater-fed irriga-
tion does not add much information to the analysis.

2.2.7. Geographical, Altitudinal, and Seasonal Effects
Geostatistical analyses of the groundwater As data set in Bangladesh reveal that concentrations tend to
increase from north to south following a decreasing gradient in surface elevation [Shamsudduha, 2007;
Shamsudduha et al., 2009b]. To capture this systematic regional variation, we use surface elevation as a
covariate, along with Legendre polynomial transformations [Chandler, 2005] of the geographic coordinates
of As observations. The degree of polynomials is restricted to a maximum of two, because we judge that
this is adequate to capture any regional-scale variation in As concentrations that is not explained by other
covariates such as geology (there will, of course, be local-scale variation as well, but this is accounted for
elsewhere as described in section 2.3.3 below). Elevation information at each As location was derived from
a digital elevation model of 300 m spatial resolution [Shamsudduha et al., 2009b]. Additionally, to adjust for
any potential seasonal variations in groundwater As concentrations since sampling was conducted over a
period from January 1998 to December 1999, sampling date is incorporated into the analysis via Fourier
covariates [see Chandler and Scott, 2011, section 3.2], specifically cos(2p 3 day of sampling/365) and sin(2p
3 day of sampling/365). Although no clear seasonal variation in As concentration has been reported in Ban-
gladesh [Dhar et al., 2008], there is a possibility that seasonality may arise due to dependence on one or
more seasonally varying factors that are not considered in our analysis. Our inclusion of these Fourier covari-
ates is intended to account for any such effects if they exist, thus eliminating any potential bias that could
arise due to differences in sampling dates in different regions of the country.

2.3. Generalized Regression Model for as in Groundwater
To investigate the simultaneous effect of the preceding factors upon groundwater As concentration at the
national scale, we develop a statistical model that can be regarded as a generalized regression technique.
In the first instance, this requires careful consideration of the distribution of the As concentration data. In
applied literature, it is common to analyze the logarithms of the data under the assumption of normality
[Lee and Helsel, 2007]—this procedure effectively assumes that the original data values are drawn from log-
normal distributions. In the statistical literature, however, this kind of approach has been superseded by the
development of the generalized linear model (GLM) which avoids the need for any data transformation.
GLMs [McCullagh and Nelder, 1989] extend the classical linear regression model to relate the expected value
of a response variable, considered to be generated from some family of probability distributions, to a linear
combination of covariates. In this framework, the most common candidate distribution for modeling a
skewed data set like the groundwater As concentrations in Bangladesh is the gamma [Chandler, 2005; Yan
et al., 2006]; however, it is computationally intensive to handle censored data correctly in this case [Chandler
and Wheater, 2002]. A third possibility is to use the Weibull family of distributions, which is much more trac-
table [Aiken and West, 1991] and widely used in many other applications where censoring is a problem [e.g.,
Klein and Moeschberger, 2003]. For practical purposes, the three distributional families (lognormal, gamma,
and Weibull) are hard to distinguish empirically and will usually yield similar results so that the precise
choice is relatively unimportant in terms of substantive conclusions [see, e.g., Yan et al., 2006]; although, of
course, it is necessary to check that the chosen family of distributions does indeed fit the data (see McCul-
lagh and Nelder [1989], for more discussion of these issues). As part of our exploratory analyses, we consid-
ered both lognormal and Weibull distributions to model As in groundwater and found that results are
indeed comparable (results are not shown but modeling codes and data sets are provided as supporting
information). In view of this, coupled with the need to handle censoring efficiently, our subsequent model-
ing is based on the Weibull distribution. We refer to our model as a ‘‘generalized regression model (GRM)’’
rather than a GLM because, strictly speaking, the Weibull falls outside the class of distributions for which
GLMs may be defined [Faraway, 2006]; in terms of interpretation however, the distinction is purely seman-
tic. Since the ideas are relatively unfamiliar in water research, we now present them in some detail.

2.3.1. Modeling Framework
The problem of censoring is not unique to environmental applications: it often occurs in the biomedical scien-
ces as well. For example, one might be interested in the age at onset of a particular disease but an individual
may already have the disease at the start of a study. In this case, and in the absence of further information,
we know only that the age of onset is less than the individual’s current age. This is directly analogous to an
As observation recorded as ‘‘below detection limits’’: in both cases, although the exact value is unavailable we
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know it is less than some threshold, and this information can be exploited in the analysis. Survival regression
models [Aitkin and Clayton, 1980] are designed for use in this type of situation: the terminology comes from
the fact that the methods were originally developed for the modeling of lifetimes, although they are generally
applicable to any situation involving censored data. Models that exploit features of the Weibull distribution to
handle censoring are used widely in the biomedical sciences, although they have not yet been used widely in
environmental applications [Helsel, 2006; Ryberg and Vecchia, 2006].

Similar to the gamma distribution, the Weibull distribution is a two-parameter continuous probability distri-
bution with parameters a and k representing ‘‘shape’’ and ‘‘scale,’’ respectively. The probability density func-
tion (PDF) of the distribution is

f ðy; a; kÞ5 a
k

y
k

� �a21
� e2

y
kð Þa when y � 0; a; k > 0 (1)

and the corresponding cumulative distribution function (CDF) is

Fðy; a; kÞ512e2
y
kð Þa when y � 0; Fðy; a; kÞ50 when y < 0 (2)

The mean and variance of the Weibull distribution are l5kCð11a21Þ and k2Cð112=aÞ2l2, respectively,
where Cð•Þ denotes the gamma function.

In the statistical modeling framework used here, the groundwater As observations, represented by y1; :::; yn,
are all considered to be generated from Weibull distributions with a common shape parameter a [Yan et al.,
2006]. The common shape parameter implies that the As observations are all drawn from distributions with
a common coefficient of variation. The scale parameters are however covariate dependent: the scale param-
eter for the ith observation is ki

i so that yi � Weiða; kiÞ.

Suppose a groundwater As concentration at each location, yi , is to be predicted from values of J covariates
by fxiðjÞ : j51; :::; Jg. It is common practice in Weibull regression [Klein and Moeschberger, 2003] to use a
logarithmic link between the covariates and the mean, li , of the distribution:

log li5b01
X

j

bjxiðjÞ (3)

where fbjg are model coefficients. The use of a logarithmic link is adopted primarily as a convenient device
to guarantee that expected As concentrations {li} are positive according to the model [Yan et al., 2006]. It
also ensures that the model coefficients are easily interpretable since ebj is the average multiplicative effect
of a unit increase in the jth predictor upon the expected groundwater As concentration.

A convenient feature of the Weibull model is the tractable expression in equation (2) for the CDF. Given the
parameters of the distribution, it is easy therefore to calculate the probability of any observation falling
above or below a particular threshold. In particular, the probability of an observation being censored (i.e.,
falling below the relevant detection limit) can be calculated.

Let di be an indicator variable taking the value 1 if the As observation at the ith location is uncensored, and
0 if it is censored. Moreover, let si be the detection threshold for the observation. Then, if the groundwater
As observations are mutually independent, the likelihood function (L) for the model parameters is

L5
Yn

i51

½f ðyiÞ�di ½FiðsiÞ�12di (4)

Maximum Likelihood (ML) estimation of the model parameters (i.e., the coefficients {bj} in equation (3)) can
now be carried by maximizing the logarithm of equation (4) numerically [Aitkin and Clayton, 1980]; standard
large-sample theory can be used to calculate standard errors for the parameters and to test hypotheses
about them. In reality, however, groundwater As observations from neighboring spatial locations are
unlikely to be independent: the approach to deal with this difficulty is described in section 2.3.3. In this
study, model fitting has been done using routines for survival analysis in the ‘‘R’’ environment (version
2.10.0) [R Development Core Team, 2009]; specifically, the survreg () function within the ‘‘survival’’ package
[Therneau et al., 1990; Therneau, 2009] and the psm () function from the ‘‘rms’’ package [Harrell, 2001, 2012].
Our R codes and data sets are provided in supporting information.
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A further potential difficulty with the development of our GRM is that several of the covariates are highly
correlated: for example, covariates relating to irrigation intensity will be strongly related to hydraulic con-
ductivity for the simple reason that permeable soils require more irrigation. This correlation makes it difficult
to disentangle the effects of the individual covariates: specifically, it reduces the precision with which any
individual model coefficient can be estimated [Fox, 2002]. However, this is automatically accounted for in
the calculation of standard errors for the coefficient estimates. By considering all of the relevant factors
simultaneously, the GRM provides a realistic representation of the uncertainty that accrues from correlation
between covariates: thus, we can be confident that the associations revealed by the GRM are genuine.

2.3.2. Model Checking and Testing
To check the fit of the GRM and to assess the appropriateness of the Weibull distribution assumption, stand-
ardized deviance residuals [McCullagh and Nelder, 1989; Therneau et al., 1990] are computed. Under the
assumed model, the deviance residuals should be roughly normally distributed around a mean of 0 and
with a standard deviation of 1; thus, approximately 95% of them should lie between 22 and 12 [Chandler,
2005], although heavy censoring (31%) in the data set can distort the normal approximation [Davison and
Gigli, 1989].

Statistical significance of covariates is tested with a log likelihood ratio (LR) test (similar to the ANOVA test)
[Chandler and Scott, 2011], adjusted for intersite dependence as described below. The adjusted LR test com-
pares two models where one is a special case of the other (obtained, for example, by deleting a term or a
block of terms); the test yields a P value for testing the hypothesis that the data were generated from the sim-
pler of the two models. Additionally, the psm() function for GRM provides a generalized R2 statistic commonly
applied in the survival analysis to measure the proportion of variation in the response variable explained by
the fitted model [Nagelkerke, 1991; Harrell, 2001]. Competing models are often compared using information
criteria such as AIC (Akaike Information Criterion) and BIC (Bayesian Information Criterion). These criteria are
not, however, valid in the present context because they assume that the likelihood function used to fit the
models is correct. At an operational level, our adjusted LR test can be regarded as similar in spirit to the use of
AIC and BIC but has the advantage that it accounts explicitly for unmodeled intersite dependence.

2.3.3. Intersite Dependence
In section 2.3.1, we explained how model parameters can be estimated using ML under the assumption
that observations in the data set are independent. In reality, however, unmodeled local-scale controls are
likely to produce dependence between neighboring locations as described in section 2.1. One possible
approach to this problem is to model the dependence explicitly and to incorporate it into the ML fitting
procedure. The computational burden of such an approach is formidable, however, and most existing tech-
niques for this type of problem [e.g., Banerjee et al., 2004] are designed for use when the response variable
is normally distributed, which is not the case here. A further drawback is that the approach can produce
biased estimates of the regression coefficients, particularly (but not exclusively) if the intersite dependence
structure is misspecified [Pepe and Anderson, 1994; Park and Kim, 2004; Qu and Song, 2004]. By contrast,
‘‘independence’’ ML estimates are unbiased in the presence of unmodeled dependence—although it is nec-
essary to adjust their standard errors, along with likelihood ratios for comparing models [Chandler, 2005].
We adopt this here as a pragmatic, but theoretically defensible, approach to the problem.

The required adjustments to the standard errors can be calculated in a relatively straightforward manner if
the As observations can be separated into a large number of distinct subsets that can be considered as
independent [Chandler and Bate, 2007]. To achieve this, we fitted a preliminary model similar to that dis-
cussed below, and plotted a variogram of the residuals from this model (see section 3). This variogram indi-
cated that spatial dependence was relatively localized and that sites separated by more than �25 km could
be considered as effectively independent. We therefore sought a means of grouping the sites into a large
number of subsets, in such a way that no two sites in different subsets are within 25 km of each other. To
attempt this manually is infeasible; instead, we used a hierarchical clustering algorithm based on the geo-
graphical site coordinates. Ideally, we would like to obtain subsets that are geographically as widely sepa-
rated from each other as possible; thus, a single-linkage algorithm was used in the first instance so as to
maximize the smallest distance between sites in distinct subsets [Romesburg, 2004]. However, some of the
subsets generated by this procedure were very large due to the effect known as ‘‘chaining’’ [Hartigan, 1981].
To deal with this, subsets containing more than 50 sites were further split by running the Ward-linkage
method which tends to create subsets of more uniform size. Finally, sites within 25 km of another subset

Water Resources Research 10.1002/2013WR014572

SHAMSUDDUHA ET AL. VC 2015. The Authors. 694



were removed one at a time until nearly all subsets were separated by at least 25 km. In this process, 767
sites were removed in total: these were not used for model calibration but were retained for subsequent
validation. Data from the remaining 1643 sites (calibration data set), forming a total of 212 independent
subsets (Figure S10), were used to fit the model. The theory described in Chandler and Bate [2007] was then
used to adjust standard errors and likelihood ratios for the within-subset dependence in the calibration
data. A brief summary of the theory is provided in Appendix A of the supporting information.

2.3.4. Statistical Interactions
Covariates may interact with each other so that the effect of one covariate upon the response variable may
depend on the values of others. For example, previous studies [DPHE, 1999; Ravenscroft, 2001] examined
statistical associations between aquifer’s hydraulic properties and groundwater As concentrations and sug-
gested that the relationship varies within different geological units in Bangladesh. As another example, con-
sider two geological units, one containing Fe-oxyhydroxide minerals whose dissolution would lead to the
mobilization of As in groundwater and the other containing no such minerals. In this case, one might expect
groundwater As concentrations to show a significant association with aquifer recharge in the first unit, but
not necessarily any association in the second. Thus, the association between groundwater recharge and As
concentration varies between geological units, resulting in a statistical interaction.

The presence of interactions can have important implications for the interpretation of statistical models [Aiken
and West, 1991]. Moreover, they are easily handled within any regression framework, including the survival
regression models considered here. All that is required is the addition of an extra term to the model, which is a
product of the interacting covariates [Chandler and Wheater, 2002]. In the present study, several statistical inter-
actions are included between covariates along with their main effects to explain variability in As observations.
Exploratory analyses reveal substantial variations in relationships between groundwater As concentrations and
mean annual recharge (PGI period) within different geological units in Bangladesh (Figure S11). Similar relation-
ships exist between groundwater As and sampling depths (Figure S12), and between groundwater As and the
thickness of surficial silt and clay (TSSC) (Figure S13). Therefore, the covariates (mean groundwater recharge for
PGI period, well depth, and TSSC) and their interactions with the surface geology are considered in the model.

3. Results

3.1. Model Fitting
Fitting a generalized regression model (GRM) with the Weibull distribution involves choosing the covariates
and estimating the corresponding parameters. Table S3 summarizes the basic statistics of covariates used
in the GRM. Model building was done in stages, starting with a basic model including functions of spatial
location (latitude, longitude, and surface elevation) along with sine and cosine functions of sampling date
to represent any potential seasonal variation. Additionally, the variation in As concentrations with sampling
depth was represented by the intake depth of each surveyed well. Subsequently, the factors representing
surface geology, hydrogeology, groundwater dynamics, recharge processes, and abstraction were sequen-
tially added to the model together with the associated statistical interaction terms. To represent the effect
of the distinct geological units upon As concentrations within the fitted GRM, it is necessary to regard the
surface geology (K 5 15) as a categorical covariate [Davison, 2003]. The effects of such covariates can be rep-
resented using a separate coefficient for each of the K levels; however, only K21 of these coefficients are
identifiable [Hardy and Reynolds, 2009]. It is therefore conventional to impose a constraint to overcome this
problem and for software to report only K21 of the coefficients. Here, we have constrained the coefficients
to sum to zero in the fitted model; the effect is that all of the other terms can be interpreted as representing
‘‘overall average’’ relationships across the whole of Bangladesh. All terms were added to the model, and the
model fit was assessed by examining the standardized deviance residuals. At this stage, all the covariates
listed in supporting information (see Table S3) have been added regardless of their apparent statistical sig-
nificance: the resulting (comprehensive) model is deliberately overfitted. The comprehensive, national-scale
GRM has a total of 16 covariates and 3 statistical interactions. Subsequently, adjusted log likelihood ratio
(LR) tests were applied to assess the significance of these covariates in explaining the overall As variation in
groundwater. The LR test for individual covariates was performed by (1) fitting a simpler model in which the
corresponding term(s) (including any statistical interactions) were omitted, and (2) comparing the adjusted
log likelihoods of the full and simplified models. Lastly, we develop a final, national-scale GRM after system-
atically discarding a number of covariates and their associated terms from the comprehensive model; this is
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done sequentially, so that after deleting each term or group of terms the statistical significance of the
remaining terms is reassessed by LR test (see section 3.3). The resulting final GRM, which has a total of 10
covariates and 3 statistical interactions, is simpler and outcomes are easier to interpret.

3.2. Model Diagnostics
It is necessary to check the fit of any statistical model before interpreting the result. Checks of statistical
models primarily involve (i) diagnostics of the model structure, (ii) examination of the assumed probability
distribution, and (iii) assessment of the predictive ability [Chandler and Wheater, 2002]. In addition to these
standard checks, for spatial models it is often informative to construct a variogram of the model residuals to
assess the strength of intersite dependence. Figure S14 shows the spatial distribution of the standardized
deviance residuals from the fitted GRM, whereas the variogram in Figure S15 shows their spatial depend-
ence. It is evident from these plots that there is little spatial organization in the residuals except for intersite
dependence up to a distance of 0.25� (�25 km). Results show that approximately 96% of the deviance
residuals fall between 22 and 2, as expected under the model.

It is also necessary to ensure that the probability structure (i.e., the Weibull distribution assumption in the cur-
rent context) of the fitted model is correct since this is used to compute the likelihoods upon which inferences
are based [Chandler and Wheater, 2002]. In survival regression, in the presence of censoring, the assumption
for the Weibull distribution in the fitted model is generally checked visually by plotting log ½2log ð12FðsiÞÞ�
against log ðsÞ [Kleinbaum and Klein, 2005; Therneau, 2009]; a straight line plot (Figure S16) indicates that the
choice of Weibull distribution is reasonable here. Although a few points in the lower tail of the distribution fall
slightly away from the straight line, these lie within the 95% uncertainty envelopes on the plot: this indicates
that the departure from linearity is within the expected magnitude of sampling variation.

The predictive ability of the resulting model has also been checked using the 767 As observations that were
not used in model calibration. The validation of the fitted model yields comparable residuals with the mean
of 20.16 and standard deviation of 1.15. Few standardized deviance residuals (2.6%; 20 locations) are larger
than 2 of which the average observed As concentration is high (mean As concentrations of 267 lg L21 from
20 observations). Additionally, the spatial distribution of the deviance residuals for the validation data set
(Figure S14) compares well with that of the calibration data. Similar to the calibration model, a log-log plot
(Figure S16) shows that the assumption for the Weibull distribution is valid. Overall, these diagnostic analy-
ses indicate that the modeling results are reproducible.

3.3. Model Outputs and Interpretation
The GRM describes the variation in As concentrations and its relationship with surface geology, and hydro-
geological processes that can influence As mobilization in shallow groundwaters. The resulting national-
scale GRM has a total of 16 covariates and 3 statistical interactions among surface geology and other covari-
ates resulting in 76 model terms. Key model results are summarized in Tables S4 and S5 for the national-
scale and regional-scale GRMs respectively. Because the GRM uses a logarithmic link between covariates
and As concentrations (equation (3)), each exponentiated model coefficient (ebj ) is the average multiplica-
tive effect of a one unit increase in the value of the corresponding covariate upon the mean As concentra-
tion. For example, the coefficient of 20.023 associated with hydraulic conductivity implies that an increase
in hydraulic conductivity of 1 m d21 is associated with a multiplicative change of exp(20.023) 5 0.977 (or,
equivalently, a 2.3% decrease) in mean As concentration. The interpretation of model coefficients for the
thickness of surficial silt and clay (TSSC) and mean groundwater recharge is different, however, because
these covariates have interaction terms with surface geology so that their effects are geology specific. Their
multiplicative effects on mean As concentration must therefore be calculated using both ‘‘main effect’’ and
interaction coefficients. For example, in the deltaic sand (deltaic sand or ‘‘dsd’’; see supporting information
Figure S3 for full names of geological units) unit, an increase of TSSC by 1 m implies a proportional increase
of mean As concentration by exp(20.025 1 0.148) or 13% when all other covariates remain unchanged. By
contrast, in the valley alluvium/colluvium (‘‘ava’’) unit, the corresponding proportional change is
exp(20.025 2 0.1136): here then, the same increase of TSSC implies a 13% decrease in mean As concentra-
tion. Detailed model outputs are provided in the supporting information (Tables S4 and S5).

Results from the national-scale GRM show that surface geology, hydraulic conductivity, mean groundwater
recharge, recharge trends, and groundwater-fed irrigation trends all influence the spatial variation in
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groundwater As concentrations. The most important factors in the model are surface geology and its statis-
tical interactions with well depth, PGI mean groundwater recharge, and TSSC. Based on a generalized R2

value (see section 2.3.2), these factors alone explain �43% of the spatial variation in groundwater As con-
centrations. In contrast, aquifer’s specific yield, Darcy velocity, and seasonal groundwater levels are the least
important factors.

To assess the importance of individual covariates or groups of covariates in describing As variations in shallow
groundwater, simpler models have been fitted in which individual terms or groups of terms were omitted from
the full, national-scale GRM; the explanatory power of the omitted terms was then assessed using an adjusted
likelihood ratio (LR) test of the full versus reduced models. A summary of the LR test statistics for each model fac-
tor is given in Table 1. Recall, from section 2.3.2, that the null hypothesis for the LR test is that the data were gen-
erated from the reduced model: a low P value, leading to rejection of this hypothesis, can therefore be taken as
evidence that the omitted terms are necessary and hence that the associated covariates are genuinely associ-
ated with variations in As concentrations. These results show that dropping some factors can significantly reduce
the predictive capacity of the fitted model, whereas for others there is no significant change. For example, sur-
face geology and its statistical interactions with TSSC, well depth, and mean PGI recharge are the most signifi-
cant (LR-test P value close to 0, see Table 1) factors explaining As variations. Likewise, the predictive power of
the fitted GRM reduces when hydraulic conductivity, groundwater-level trends, net changes in recharge and irri-
gation trends are omitted. Dropping other covariates such as specific yield, Darcy flux, GWT-wet, and surface ele-
vation does not affect the overall fit of the model; these variables can thus be considered as largely irrelevant in
explaining spatial variations in As concentrations at national or regional scales.

The final, national-scale GRM is simpler yet retains a total of 10 statistically significant covariates and 3 inter-
actions with surface geology and covariates (well depth, TSSC, and mean PGI recharge) (see supporting
information for detailed model outputs). Figure 4 shows the modeled associations between three key
hydraulic and groundwater abstraction covariates (hydraulic conductivity, net changes in recharge and irri-
gation trends) and As concentrations in groundwater. Modeled coefficients of the key covariates between
two national-scale GRMs (comprehensive and final) are comparable (see Table 2 and supporting informa-
tion Table S4). In the final GRM, statistically significant (LR-test P values <0.05) negative coefficients of
20.026 and 20.004 are obtained for hydraulic conductivity and net changes in recharge respectively; a
negative coefficient of 20.056 for irrigation trends is of borderline significance (LR-test P value of 0.06).
However, modeled associations of the combined effect of covariates grouped under groundwater-fed

Table 1. Effect of Dropping Covariates and Their Associated Terms From the Comprehensive, National-Scale GRM According to
Adjusted Log Likelihood Ratio (LR) Test Proceduresa

Covariates/Factors DF LR Test P Value (Adjusted)

Geology and Hydrogeological Variables
Surface geology and all statistical interactions 56 0
TSSC and its interaction with surface geology 1 5.2 3 1024

Hydraulic conductivity 1 0.0334
Specific yield 1 0.6129
Darcy flux 1 0.6633
Well depth and interaction 15 8.3 3 1025

Hydrodynamic and Groundwater Recharge Variables
Wet-season groundwater table (GWT-wet) 1 0.9914
Groundwater-level trends 1 0.0754
Mean groundwater fluctuation 1 0.3436
Mean PGI recharge and statistical interaction 15 0.0073
Net changes in recharge 15 0.0016

Geographical, Altitudinal, and Seasonal Factors
Geographic coordinates (longitudes and latitudes) and statistical interactions 7 0.0008
Surface elevation 1 0.9147
Seasonality (sine 1 cosine of sampling dates) 2 0.5839
Geographic coordinates and interaction, surface elevation, and seasonality terms 10 0.0008

Groundwater-Fed Irrigation
Irrigation trends (198521999) 1 0.1470
Irrigation trends and net recharge changes 2 0.0011
Irrigation trends, mean PGI recharge and its interaction, and net recharge changes 17 3.8 3 1027

Statistical Interaction Terms
Only geological interaction terms 42 0

aP values derived from LR test and any value less than 10210 is reported as zero. DF denotes degrees of freedom.
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irrigation in Table 1 (e.g., irrigation trends, mean PGI recharge and its interaction, and net recharge changes)
are statistical significant (LR-test P value <1026). As described above, the coefficient of 20.026 for hydraulic
conductivity implies a 2.6% reduction in expected As concentrations for each unit (m d21) increase in
hydraulic conductivity. Similarly, a unit (mm) increase of net change in recharge is associated with a 0.4%
reduction in expected As concentration; and a unit (mm yr21) increase of irrigation trend (1985–1999) is
associated with a 5.6% reduction. Operationally of course, these effects do not act in isolation: however, the
GRM provides a means of quantifying the relative contributions of these different factors to the variation in
As concentrations. The absence of significant statistical interactions between these factors and other covari-
ates is particularly noteworthy as this indicates that the modeled relationships are consistent across the
range of hydrogeological conditions represented in the data set.

4. Discussion

4.1. Robustness of Modeled Associations in GRMs
It can be argued that the national-scale GRM is biased toward the predominantly low-As concentrations
observed in groundwater in the Pleistocene and older deposits in Bangladesh. To check the robustness of
modeled associations, we constructed a reduced model (regional-scale GRM) restricting data to the As-
affected geological units in Bangladesh (i.e., excluding pre-Holocene deposits). These pre-Holocene deposits
are the Barind clay residuum (‘‘rb’’), Madhupur clay residuum (‘‘rm’’), and pre-Quaternary bedrock (‘‘br’’)

Figure 4. Modeled effects of key covariates: hydraulic conductivity, net changes in recharge, and irrigation trends on As concentrations in
the national-scale, final GRM. On each plot, the vertical axis is labeled as contribution to the natural logarithm of expected As concentra-
tion, the horizontal axis denotes measurement unit for each covariate, and a 95% pointwise confidence interval is drawn around the esti-
mated effect. Note: relationships for hydraulic conductivity and net changes in recharge are statistically significant (LR-test P
values< 0.05), whereas the relationship for irrigation trends is of borderline significance (LR-test P value of 0.06).

Table 2. Summary of Key Results From the Final, National-Scale GRMa

Covariates Unit Coefficient Std. Error LR Test P Value

Geological and Hydrogeological Variables
Surface geology (n 5 15)b categorical
TSSC and its interaction with surface geologyc m 20.023 0.019 0.0013
Hydraulic conductivity m d21 20.026 0.007 0.0089
Sampling well depth and its interaction with surface geologyc m 20.012 0.009 0.0001

Hydrodynamic and Groundwater Recharge Variables
Mean groundwater recharge and its interaction with surface geologyc mm yr21 20.0006 0.004 0.0019
Net changes in recharged mm 20.004 0.0009 0.0006
Mean groundwater-level trends cm yr21 0.034 0.012 0.0230

Groundwater-Fed Irrigation
Irrigation trends (198521999) mm yr21 20.056 0.022 0.0635

aModel coefficients represent the overall effect of a covariate excluding its statistical interactions; however, P values are for the main
effect together with all associated interactions. Complete results from the national-scale, final GRM are provided in supporting
information.

bModel coefficients, standard errors, and P values for categorical surface geology covariate listed in the supporting information.
cModel coefficients are associated with the respective covariate only and not including their statistical interactions.
dNet changes in mean recharge between PGI (197521980) and DGI (199521999) periods.
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deposits. Previous studies [DPHE, 1999; BGS and DPHE, 2001; McArthur et al., 2008, 2011b] have argued that
mobile As from the Plio-Pleistocene sediments in Barind and Madhupur Tracts (Figures 1 and 2) was vigo-
rously flushed during the Last Glacial Maximum (LGM) (20 ka) under greater hydraulic gradients. Conse-
quently, observed As concentrations in groundwater within these geological units are consistently low (<10
lg L21). In contrast, prior to recent abstraction for irrigation, mobile As in shallow groundwater within the Hol-
ocene deposits was not subjected to vigorous flushing under natural (i.e., nil pumping) hydraulic gradients
[Ravenscroft et al., 2005]. Intensive groundwater pumping for irrigation over the last few decades has, how-
ever, perturbed natural hydraulic gradients in shallow aquifers [Harvey et al., 2006; Klump et al., 2006; Michael
and Voss, 2009]. We thus investigated whether the statistical associations observed in the national-scale GRM
hold in the regional-scale GRM restricted to the Holocene deposits where As concentrations in shallow
groundwater are generally high. Our analysis of the regional-scale GRM confirms that the modeled associa-
tions of critical covariates explaining the spatial variation in groundwater As concentrations such as irrigation
trends, net changes in recharge and hydraulic conductivity are robust and similar to the outcomes of both
comprehensive and final national-scale GRMs (see Table 2 and supporting information Tables S4 and S5).

4.2. Effects of Irrigation-Induced Recharge on As Cycling
It has been argued that groundwater recharge can dilute previously mobilized As over time through flushing
[McArthur et al., 2004, 2011a]. This implies that lower As concentrations would occur in areas where ground-
water abstraction for irrigation has induced greater recharge to shallow aquifers. Our models reveal negative
associations between irrigation trends, net changes in recharge and As concentrations in shallow groundwater.
Both national and regional-scale GRMs (Tables 1 and 2) show that an average net change in groundwater
recharge of 1 mm yr21 is associated with 0.4% lower mean As concentration (e.g., national mean As concentra-
tion 62 lg L21). Net changes in recharge in the order of 100 mm yr21 between the predeveloped
groundwater-fed irrigation (197521980) and developed groundwater-fed irrigation (199521999) have been
observed in Bangladesh [Shamsudduha et al., 2011]. According to the GRMs such a net change (100 mm yr21)
in mean groundwater recharge implies a 40% lower mean As concentration. This relationship inferred from our
statistical model is one of association rather than causation; nonetheless, our modeling results are clearly con-
sistent with the assertion that irrigation-induced recharge serves to flush mobile As from shallow groundwater.

The mobilization of As in shallow groundwater, however, depends on a range of geochemical factors that
include retardation (i.e., adsorption capacity of oxidized brown sediments) [Radloff et al., 2011], rates of reduc-
tive dissolution of iron-oxyhydroxide minerals [Nickson et al., 1998], and the availability of reactive organic car-
bon (OC) in aquifers to drive microbial metabolism [Harvey et al., 2006; Neumann et al., 2010]. These factors
vary locally and can greatly influence local-scale variations in As concentrations in shallow aquifers. Indeed, at
local scales, it has been argued that irrigation-induced recharge both decreases the concentration of mobile
As by flushing [McArthur et al., 2004; Stute et al., 2007; van Geen et al., 2008] and increases the mobilization of
As by transporting reactive OC from surface sources to the site of As release [Harvey et al., 2006; Neumann
et al., 2010]. Recent evidence from short-term (<10 years) monitoring of As concentrations at sites in the Ben-
gal Basin [McArthur et al., 2010; Bhattacharya et al., 2011] and other Asian Mega-Deltas [Winkel et al., 2011; van
Geen et al., 2013] suggests that As concentrations have decreased in areas of active flushing of aquifer due to
irrigation-induced recharge but increased in areas where intensive, long-term pumping has transported
groundwater from As-contaminated regions in the aquifer. Our statistical models do not attempt to explain
such localized variations in groundwater As concentrations; they reveal overall, mean relationships between
As and covariates at both national and regional scales. As such, they explain large-scale structures while
implicitly accounting for localized variations by adjusting for the induced intersite dependence when calculat-
ing standard errors and performing hypothesis tests. Further sampling of shallow groundwater throughout
Bangladesh is required to confirm the implications of the GRMs.

A critical water management concern in Bangladesh is whether irrigation with As-contaminated ground-
water redistributes As from shallow aquifers to soil thereby affecting food security and human health
[Meharg and Rahman, 2003; Williams et al., 2006; Ravenscroft et al., 2009]. Our statistical models cannot
directly investigate this assertion, but modeled negative associations between As concentrations, irrigation
trends and net changes in recharge can explain the process of As cycling. A national-scale map of soil (sam-
pling depth 0215 cm bgl) As concentrations (Figure 5) surveyed between 2001 and 2005 throughout Ban-
gladesh [Duxbury and Panaullah, 2007] shows that low As concentrations in soil (<5 mg kg21) occur in
northwestern and north-central Bangladesh whereas higher concentrations of As in soils (>15 mg kg21) are
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found south of the River
Ganges. The survey also
reveals that subsoil
(30245 cm bgl) As con-
centrations are much
higher (5215 mg kg21) to
the south of the River
Ganges than in the rest of
Bangladesh [Duxbury
et al., 2011]. These obser-
vations suggest that As, if
it was present in ground-
water of northwestern
and north-central Bangla-
desh, has not recently
been removed through
irrigation-induced ground-
water recharge but may
have previously been
flushed during the LGM
[McArthur et al., 2008].
South of the River Ganges,
high As concentrations
(>20 mg kg21) in soils
coincide with the areas
where increases in
groundwater-fed irrigation
have taken place in the
last two decades (Figure
5). Neumann et al. [2010,
2011] show further that in
Mushiganj very little
(<10%) of the As applied
to rice fields through
groundwater-fed irrigation
returns to the aquifer. This
region includes areas
where intensive pumping
for dry-season irrigation

has induced greater groundwater recharge to shallow aquifers, and areas (e.g., south of the confluence of
the Rivers Ganges and Brahmaputra) where rain-fed recharge to the underlying aquifer is inhibited by low
permeability of surface geology [Shamsudduha et al., 2011].

5. Concluding Remarks

This study has two major outcomes. First, we demonstrate the application of generalized regression models
(GRMs) to explain the spatial variation in groundwater As data set in Bangladesh that features (1) a highly
skewed distribution, (2) a substantial number censored or nondetect observations, and (3) correlations between
sites from neighboring spatial locations. These characteristics are commonly observed in many hydrological and
environmental data sets where GRMs can be used to explain the spatial variation of variables of interest.

Second, we observe statistically significant inverse associations between groundwater As concentrations
and two covariates: (1) hydraulic conductivity of the shallow aquifer and (2) net increase in mean recharge
between periods before and after the development of groundwater-fed irrigation. A sensitivity analysis
using an adjusted log likelihood ratio (LR) test shows that a combined effect of groundwater-fed irrigation
trends (1985–1999) and recharge factors on the variation of As concentrations is statistically significant (LR-

Figure 5. Average groundwater-fed irrigation trends (mm yr21) for the period of 1985–1999 in
each districts (n 5 64) in Bangladesh. The background map shows observed soil (depth 0215 cm
bgl) As concentrations surveyed and interpolated from a total of 394 sampling points reported in
Duxbury and Panaullah [2007]. Areas in Bangladesh where As concentrations in groundwater are
>50 lg L21 are shown as hatched symbol.
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test P value< 1026). These associations are observed both nationally and in a regional-scale model
restricted to aquifers in Holocene deposits where As concentrations in shallow groundwater are generally
high (>10 lg L21). Both GRMs demonstrate significant associations between surface geology and As con-
centrations. The GRMs further reveal that significant statistical interactions exist between surface geology
and mean groundwater recharge, thickness of surficial silt and clay (TSSC) and well depth.

Since time series records of As concentrations in shallow groundwater are limited, our analysis reveals asso-
ciations rather than causation: further surveys are required to test the mechanisms implied by the associa-
tions that our GRMs reveal. A further caveat is that our analysis has necessarily used interpolated values of
some covariates without explicitly accounting for the associated uncertainty; the relationships we have
found for these covariates are therefore probably weaker than those that would have been obtained if they
had been observed perfectly. A pragmatic interpretation of this is: where we find statistically significant
associations involving the interpolated covariates, we can be confident that there are genuine associations
with the true covariates as well.

Groundwater-fed irrigation in Bangladesh has been observed to lower water tables during the dry season
and induce greater recharge during the subsequent monsoon by increasing available groundwater storage
[Shamsudduha et al., 2011]. Statistical associations developed here indicate that where favorable geological
conditions enable increased recharge capture, lower As concentrations in shallow groundwater are
observed. At local scales, irrigation-induced recharge has been shown both to decrease the concentration
of mobile As by flushing [McArthur et al., 2004; Stute et al., 2007] and to increase As concentrations by trans-
porting reactive organic carbon from surface sources to the site of As release [Harvey et al., 2006; Neumann
et al., 2010]. National and regional-scale analyses presented here reveal an overall negative association
between irrigation trends, net changes in recharge, and As concentrations in shallow groundwater. These
findings are consistent with the assertion that irrigation-induced recharge serves to flush mobile As from
shallow groundwater. It has been observed that very little of the As in pumped groundwater (primarily
applied as dry-season irrigation water) is returned to the underlying aquifer [Neumann et al., 2010, 2011].
Groundwater abstraction for irrigation may consequently redistribute As to soil where it can continue to
pose a threat to human health and food security in the Bengal Basin [Ravenscroft et al., 2009].
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