
ORIGINAL
ARTICLE

Speciation in the dark: diversification
and biogeography of the deep-sea
gastropod genus Scaphander in the
Atlantic Ocean
Mari H. Eilertsen1* and Manuel Ant�onio E. Malaquias2

1Marine Biodiversity Research Group,

Department of Biology, University of Bergen,

5006 Bergen, Norway, 2Phylogenetic

Systematics and Evolution Research Group,

Department of Natural History, University

Museum of Bergen, University of Bergen,

5020 Bergen, Norway

*Correspondence: Mari H. Eilertsen, Marine

Biodiversity Research Group, Department of

Biology, University of Bergen, PB 7803, 5006

Bergen, Norway.

E-mail: Mari.Eilertsen@bio.uib.no

This is an open access article under the terms

of the Creative Commons Attribution License,

which permits use, distribution and

reproduction in any medium, provided the

original work is properly cited.

ABSTRACT

Aim The aim of this work was to improve understanding about the mode,

geography and tempo of diversification in deep-sea organisms, using a time-cali-

brated molecular phylogeny of the heterobranch gastropod genus Scaphander.

Location Atlantic and Indo-West Pacific (IWP) oceans.

Methods Two mitochondrial gene markers (COI and 16S) and one nuclear

ribosomal gene (28S) from six Atlantic species of Scaphander, and four IWP spe-

cies were used to generate a multilocus phylogenetic hypothesis using uncorrelat-

ed relaxed-clock Bayesian methods implemented in beast and calibrated with

the first occurrence of Scaphander in the fossil record (58.7–55.8 Ma).

Results Two main clades were supported: clade A, with sister relationships

between species and subclades from the Atlantic and IWP; and clade B, with

two western Atlantic sister species. Our estimates indicate that the two earliest

divergences in clade A occurred between the middle Eocene and late Miocene

and the most recent speciation occurred within the middle Miocene to Pleisto-

cene. The divergence between the two western Atlantic species in clade B was

estimated at late Oligocene–Pliocene.

Main conclusions The prevailing mode of speciation in Scaphander was allo-

patric, but one possible case of sympatric speciation was detected between two

western Atlantic species. Sister relationships between IWP and Atlantic lineages

suggest the occurrence both of vicariance events caused by the closure of the

Tethyan Seaway and of dispersal between the two ocean basins, probably around

South Africa during episodic disruptions of the deep-sea regional current system

caused by glacial–interglacial cycles. Cladogenetic estimates do not support com-

paratively older diversification of deep-sea faunas, but corroborate the hypothesis

of a pulse of diversification centred in the Oligocene and Miocene epochs.

Amphi-Atlantic species were found to occur at deeper depths (bathyal–abyssal)
and we hypothesize that trans-Atlantic connectivity is maintained by dispersal

between neighbouring reproductive populations inhabiting the abyssal sea floor

and by dispersal across the shelf and slope of Arctic and sub-Arctic regions.
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INTRODUCTION

Little is known about the biogeography and speciation mecha-

nisms of deep-sea (> 200 m deep) organisms (Thistle, 2003).

This is in sharp contrast with shallow-water faunas, where the

advent of molecular phylogenetic methods during the last

20 years has led to a profusion of studies that improve our

understanding of the origins of species and patterns of diversity

(e.g. Williams & Reid, 2004; Williams & Duda, 2008; Malaquias

& Reid, 2009; Bowen et al., 2013). Some factors commonly

invoked to explain diversification in shallow water (e.g. sea-level

fluctuations, variation in water temperature) are unlikely to
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have the same impact in the deep sea, but a common period of

diversification for both shallow and deep-water faunas was

recently suggested around the Oligocene and Miocene epochs,

probably influenced by global warming, high levels of tectonic

activity and changes in oceanic currents (Williams & Duda,

2008; Cabezas et al., 2012; Williams et al., 2013).

At a global scale, the effects of major tectonic events on

the biogeography and diversification of shallow-water marine

faunas are well documented, and include the opening of the

Drake Passage and establishment of the Antarctic Circumpo-

lar Current (Beu et al., 1997), the closure of the Tethys Sea

(R€ogl, 1998), the opening of the Bering Strait (Marincovich

& Gladenkov, 1999) and the uplift of the Isthmus of Panama

(Lessios, 2008). Nevertheless, how these same events affected

deep-water fauna remains largely unknown.

The traditional view has been that deep-sea species have

large biogeographical ranges due to the apparent lack of bar-

riers to dispersal and homogeneous environment (McClain

& Hardy, 2010). The notion of the deep sea as a continuous

and homogeneous ecosystem where diversity and biogeo-

graphical patterns are mostly controlled by biological interac-

tions such as competition (the stability–time hypothesis;

Sanders, 1968), has been challenged by the discoveries of

chemosynthetic habitats [hydrothermal vents (Lonsdale,

1977), cold seeps (Paull et al., 1984) and whale-falls (Smith

et al., 1989)], seasonality (Billett et al., 1983) and deep-sea

storms (Hollister & McCave, 1984). Today, the deep sea is

regarded as a patchy environment of great heterogeneity, cre-

ated by disturbances at different scales, generating a mosaic

of communities at different stages of succession (temporal

mosaic hypothesis; Grassle & Sanders, 1973; Levin et al.,

2001; Rex & Etter, 2010). These two hypotheses are mostly

based on contemporaneous ecological factors, however, and

do not take large-scale temporal effects or an evolutionary

perspective into account.

There are very few molecular phylogenies of benthic deep-

sea clades with complete (or even near-complete) taxon sam-

pling, and the few available works have a regional focus (e.g.

Puillandre et al., 2010; Cabezas et al., 2012; Due~nas et al.,

2014) or are concerned with the origins of major deep-sea

clades (genus-level or higher; e.g. Strugnell et al., 2008; Lins

et al., 2012; Williams et al., 2013; Corrigan et al., 2014).

More attention has been paid to the genetic diversity of

broadly distributed species, such as the bivalves Deminucula

atacellana and Ledella ultima (Zardus et al., 2006; Etter et al.,

2011) or the amphipod Eurythenes gryllus (Havermans et al.,

2013). Differences in geographical ranges between organisms

that inhabit the bathyal zone (c. 1000–3000 m) and those

that inhabit the abyssal plains (c. 4000 m) have been recog-

nized, and studies on deep-sea bivalves and gastropods have

shown that abyssal species have larger biogeographical ranges

than bathyal species (Etter & Rex, 1990; Allen & Sanders,

1996; Etter et al., 2005, 2011; Zardus et al., 2006).

Despite the fact that evidence is slowly accumulating, bio-

geographical inferences on deep-sea faunas are still hampered

by three main factors.

1. Taxonomic impediment. Many deep-sea species with

broad geographical ranges have been identified based on sim-

ilarities of their external morphology only (e.g. Allen &

Sanders, 1996; Allen, 2008; Miljutin et al., 2010; Menzel

et al., 2011), and there is growing recognition of cryptic spe-

ciation in the marine realm (Carmona et al., 2011; Clare-

mont et al., 2011).

2. Sampling bias. It is acknowledged that very little of the

deep sea has actually been sampled (less than 0.01%; Ramirez-

Llodra et al., 2010), and that sampling is uneven across ocean

basins. For example, the South Atlantic is much less sampled

than the North Atlantic (McClain & Hardy, 2010).

3. Sampling constraints. Deep-sea sampling is expensive and

the amount of material suitable for DNA analysis available in

worldwide research institutions is very low. This is especially

limiting for phylogenetic analyses where high levels of geo-

graphical and taxon coverage is desirable.

Scaphander is a globally distributed genus of predomi-

nantly deep-sea cephalaspidean gastropods (Eilertsen & Mal-

aquias, 2013a). Eight species of Scaphander are recognized in

the Atlantic Ocean, and these are well supported based on

shell morphology, internal anatomy (including characters of

the male reproductive system) and reciprocal monophyly in

a molecular phylogenetic tree (Eilertsen & Malaquias, 2013a).

Because of its large, strong shell, Scaphander is relatively well

documented in the fossil record. Palaeocene fossils are

known from Europe, the USA and the east and west coasts

of Argentina, with the oldest fossils that can confidently be

identified as Scaphander dating from the late Palaeocene

(Thanetian, 58.7–55.8 Ma) of Poland (Krach, 1963) and Cal-

ifornia (Weaver, 1949; Schoellhamer et al., 1981).

Our main goal is to contribute to a better understanding of

the mode, causes and tempo of diversification of deep-sea

organisms, with an emphasis on the Atlantic Ocean and using

Scaphander snails as our study group. We will produce a time-

calibrated molecular phylogeny to infer relationships and esti-

mate the age of divergence between species. This phylogeny,

together with knowledge about the geographical distributions

of species, will be used to infer the prevalent geographical

mode of speciation and test the hypothesis that the Oligocene

and Miocene epochs correspond to a period of major diversifi-

cation of deep-sea fauna. We will test the prediction that, in

deep-sea groups, speciation between Atlantic and Indo-Pacific

lineages caused by the closure of the Tethyan Seaway is

expected to pre-date the diversification times of shallow-water

species. We will also assess whether species of Scaphander with

deeper bathymetric ranges have broader geographical distribu-

tions, and then discuss the possible causes.

MATERIALS AND METHODS

Taxon sampling, geography and bathymetric

distributions

Our set of specimens for molecular study was assembled

from natural history museums and from fieldwork along the
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coast of Norway (Table 1). Geographical and bathymetric

distributions of all Atlantic species of Scaphander were taken

from Eilertsen & Malaquias (2013a). Only bathymetric

records of live specimens were considered to be reliable, and

therefore the bathymetric distribution of S. gracilis is not

included here, because this species is only known from

empty shells. Geographical and bathymetric distributions of

Indo-Pacific species were not plotted in detail because there

is no comprehensive revision available for these species and

they are not the focus of the present study.

Molecular phylogenetic analyses and estimation of

divergence times

Sequences of the mitochondrial genes cytochrome oxidase c

subunit I (COI) and 16S rRNA (16S) and the nuclear gene

28S rRNA (28S) of Scaphander were obtained from GenBank

(previously generated by Eilertsen & Malaquias, 2013a) and

some additional sequences were produced (Table 1). DNA

was extracted, amplified and sequenced according to the pro-

tocol described by Eilertsen & Malaquias (2013a), except for

some specimens where amplification of 28S failed. These

were run again using LA Taq polymerase with GC buffer from

TaKaRa (TaKaRa Bio, Otsu, Japan). The PCR reaction volume

was 25 lL, comprising 5.35 lL ddH2O, 12.5 lL GC buffer,

4 lL dNTPs, 1 lL of each primer (10 lM concentration),

0.15 lL Taq and 1 lL DNA template. PCR thermal cycles were

as follows: initial denaturation of 1 min at 94 °C, followed by

40 cycles with denaturation for 30 s at 94 °C, annealing for

30 s at 52 °C, and extension for 2 min at 72 °C. Final exten-
sion was 10 min at 72 °C. PCR products were cleaned and

sequenced as described in Eilertsen & Malaquias (2013a).

Sequencher 4.10.1 (Gene Codes, Ann Arbor, MI, USA)

was used to assemble the forward and reverse strands and to

assess the quality of the sequences, which were edited by care-

ful examination of chromatograms. Sequences were checked

for potential contamination using blast (Altschul et al.,

1990) and have been deposited in GenBank (Table 1). The

sequences were aligned using Clustal X (Thompson et al.,

1997) with a gap-opening penalty of 60 and a gap-extension

penalty of 30. The single-gene alignments were examined in

BioEdit (Hall, 1999), padded to equal the longest sequence

and missing data at the ends were coded with question marks.

Blocks of ambiguous data in the single-gene alignments were

Table 1 List of specimens used for molecular phylogenetic analysis including sampling localities and voucher numbers. Sequences

labelled with an asterisk (*) were generated for the present study, the remaining sequences were downloaded from GenBank.
Abbreviations: MCZ, Museum of Comparative Zoology, Harvard University, Boston, MA, USA; MNHN, Mus�eum national d’Histoire

naturelle, Paris, France; MZSP, Museu de Zoologia da Universidade de S~ao Paulo, Brazil; NHMUK, Natural History Museum, London,
UK; RMNH, National Museum of Natural History (Naturalis), Leiden, The Netherlands; USNM, National Museum of Natural History,

Smithsonian Institution, Washington DC, USA; ZMBN, Natural History Collections, University Museum of Bergen, Norway.

Species Specimen Locality Voucher number COI 16S 28S

Scaphander lignarius 1 C�adiz, Spain ZMBN 87998 KC731431* KC351524 KC351543

2 Bergen, Norway ZMBN 87999 KC351562 KC351525 KC351544

19 Barcelona, Spain MCZ 371884 KC351561 KC351522

37 Bergen, Norway ZMBN 88000 KC351563 KC351526 KC351545

51 Lofoten, Norway ZMBN 88001 KC351564 KC351527 KC731432*

GB1 Algarve, Portugal NHMUK 20060325 DQ974663 DQ923454 DQ927221

GB2 Algarve, Portugal NHMUK 20060114 DQ974664 DQ927212

GB3 Blanes, Spain EED-Phy-442 EF489372

Scaphander punctostriatus 3 Bergen, Norway ZMBN 88002 KC351568 KC351532 KC351549

4 Newfoundland, Canada MNHN, Paris KC351566 KC351531 KC351548

34 Lofoten, Norway ZMBN 88006 KC351571 KC351536 KC351553

35 Honningsv�ag, Norway ZMBN 88005 KC351570 KC351535 KC351551

36 Skagerrak, Denmark ZMBN 88004 KC351569 KC351534 KC351552

38 Hauglandsosen, Norway ZMBN 88003 KC351567 KC351533 KC351550

Scaphander watsoni 15 Tampa, FL, USA USNM 1151226 KC351575 KC351542 KC351557

17 New Orleans, LA, USA USNM 1151240 KC351576 KC731433* KC351558

Scaphander nobilis 9 Bay of Biscay, France MNHN, Paris KC351530

Scaphander bathymophilus 13 Azores, Portugal RMNH unnr. KC351559 KC351520

52 San Juan, Puerto Rico MZSP 75708 KC731430* KC351519

Scaphander darius 21 Guarapari, Brazil MZSP 29016 KC351560 KC351521

Scaphander mundus 29 East of the Philippines MNHN, IM-2009-4319 KC351565 KC351529 KC351547

31 East of the Philippines MNHN, IM-2009-4318 KC731429* KC351528 KC351546

Scaphander sp. A 30 Grand Passage,

New Caledonia

MNHN, IM-2009-4317 KC351572 KC351537 KC351554

Scaphander sp. B 32 Grand Passage,

New Caledonia

MNHN, IM-2009-4371 KC351573 KC351538 KC351555

Scaphander subglobosus 33 Bohol Sea, Philippines MNHN, IM-2009-4339 KC351574 KC351539 KC351556

Sagaminopteron psychedelicum Kalakajoro, Madagascar Cas-Cephas3 DQ974667 KJ022787 DQ927225
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identified and excluded using Gblocks with relaxed settings

(Talavera & Castresana, 2007; K€uck et al., 2010; see Appendix

S1 in Supporting Information). Pairwise uncorrected p-dis-

tances were calculated using mega 5.2 (Tamura et al., 2011).

The incongruence length difference test (ILD; Farris et al.,

1995), implemented in paup* 4.0 b10 (Swofford, 2003) as the

partition homogeneity test, was performed on the dataset

with 100 replicates to test for incongruence between genetic

markers. Saturation was tested for each gene and for the first,

second and third codon positions of the COI gene, by plotting

GTR pairwise distances against total substitutions (transitions

+ transversions). Substitution saturation analysis showed signs

of saturation at the third codon position of COI, so two

COI datasets were created: one including the third position

(COI-A) and one excluding it (COI-B).

The best-fitting models of evolution (see Appendix S2)

were selected according to the Akaike information criterion

(Akaike, 1974) implemented in MrModelTest 2.3 (Nyland-

er, 2008). For COI and 16S, the GTR+G+I model was the

best model (Appendix S2), but because of statistical concerns

regarding the coestimation of the gamma and invariant-site

parameters (discussed in the RAxML manual; Stamatakis,

2008) we chose to use GTR+G for these genes. Chronograms

for each of the single-gene datasets (COI, 16S and 28S) and

for a concatenated dataset of all three genes with missing

data coded as question marks were produced in beast 1.8.0

(Drummond et al., 2007). The analyses were set up in

BEAUti 1.8.0 (Drummond et al., 2007) with the concate-

nated dataset partitioned by gene, using unlinked substitu-

tion models and clock models and linked tree priors. The

ingroup (all species of Scaphander) was defined and set to be

monophyletic. The sister lineage of Scaphander is not known

and we therefore selected as an outgroup a representative of

the family Gasteropteridae (Sagaminopteron psychedelicum),

which has been shown to be closely related to Scaphandridae

(Malaquias et al., 2009).

A relaxed, uncorrelated lognormal clock model was

selected, and substitution rates were left to be estimated

(Drummond et al., 2006). The tree model was chosen using

Bayes factor (BF) calculations comparing the Yule speciation

model (Gernhard, 2008) and the birth–death model with

incomplete sampling (Stadler, 2009) based on single-run

marginal likelihoods obtained by stepping-stone (SS) sam-

pling. The result [2 ln(BF) = 12.2] strongly favoured the

birth–death model with incomplete sampling (Kass & Raf-

tery, 1995). The prior for the proportion of taxa sampled

was modelled as a normal distribution with a mean of 0.45

and a standard deviation of 0.05. The time to the most

recent common ancestor (TMRCA) for Scaphander was given

a lognormal prior with an offset of 55.8 Ma and, a mean of

1.5 Myr and a standard deviation of 1 Myr (Ho & Phillips,

2009). These settings were based on the oldest reliable fossils

of Scaphander, which date from the late Palaeocene (55.8–
58.7 Ma; Weaver, 1949; Krach, 1963; Schoellhamer et al.,

1981). A vaguely informative prior (exponential distribution,

mean 0.1) was set for the relaxed clock rates, and the

remaining priors were left at the default settings (Drummond

et al., 2007). Three independent runs were carried out and

each analysis was run for 20 million generations for the sin-

gle-gene datasets, and 50 million generations for the com-

bined dataset, with sampling every 1000 generations. The log

files were examined in Tracer 1.5 (Rambaut & Drummond,

2009) to ensure convergence was reached and to determine

the burn-in. The outputs were combined in LogCombiner

and maximum clade credibility trees created in TreeAnno-

tator (Drummond & Rambaut, 2007) with a burn-in of

10%. The resulting trees were converted to graphics in Fig-

Tree 1.4.0 (Rambaut, 2012) and final adjustments were

made in Adobe Illustrator CS6 (Adobe Systems, San Jose,

CA, USA).

RESULTS

DNA sequence analyses

The present dataset includes six of eight valid Atlantic species

(75% of recognized diversity; Eilertsen & Malaquias, 2013a),

and four Indo-Pacific species (40% of recognized diversity;

Vald�es, 2008; Rosenberg et al., 2012; for the complete speci-

men list see Table 1). Seven sequences from S. lignarius were

downloaded from GenBank and included in the dataset. The

Gblocks analysis excluded 10 positions from the COI align-

ment with third codon positions excluded (COI-B), 27 posi-

tions from the 16S alignment and 25 positions from the 28S

alignment (all positions excluded were at the ends of the

alignments; see Appendix S1 for settings). Uncorrected p-dis-

tances for COI (COI-A, complete alignment) ranged from

0.1% to 5.9% within Scaphander species and 10.8–19.7%
between species; however, two specimens of S. lignarius from

Spain (specs 1 and 19) showed unusually high divergence

from conspecifics (9.6–10.1%). For 16S, uncorrected p-dis-

tances ranged between 0–2% within Scaphander species and

0.4–10.1% between species. It is interesting to note that the

two S. lignarius specimens from Spain (specimens 1 and 19)

also showed high intraspecific divergence in 16S, along with

one specimen from Portugal (specimen GB1), with 1–2%
differences from conspecifics. This may indicate some phylo-

geographical structure in S. lignarius, but it would require a

much larger dataset with better geographical coverage to test

this hypothesis.

The ILD test (Farris et al., 1995) performed on the concat-

enated dataset showed no incongruence between the genetic

markers (P ≫ 0.05). Because substitution saturation analysis

showed signs of saturation in the third codon position of

COI, the alignment excluding this position (COI-B) was used

in the phylogenetic analyses.

Phylogenetic hypothesis

The individual gene trees were not in conflict (see Appendix

S3), and the topology of the concatenated tree is consistent with

the first phylogenetic analysis of Scaphander (Eilertsen &
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Malaquias, 2013a), with all morphological species forming

monophyletic groups (Fig. 1). Scaphander lignarius is basal to

the other species with high support, but the remaining deep

divergences are not resolved [PP (posterior probabilities)

< 0.9]. We focus on the species relationships within the genus

that are well supported: clade A, with S. subglobosus (West Paci-

fic) sister to a group containing S. punctostriatus (Atlantic) +
S. mundus (WP) + S. nobilis (A), and clade B consisting of two

West Atlantic sister species: S. darius and S. watsoni (Fig. 1).

Divergence times and rates of evolution

The estimated age of divergence for node A1 representing

the split between the West Pacific species S. subglobosus and

clade A2, containing S. punctostriatus (amphi-Atlantic),

S. nobilis (amphi-Atlantic), and S. mundus (IWP) is

20.33 Ma [highest posterior density (HPD) 35.88–8.86 Ma].

Node A2, the divergence between S. punctostriatus and the

ancestral lineage of S. nobilis and S. mundus, is estimated at

11.28 Ma (HPD 21.41–4.29 Ma). The more recent split

between S. nobilis and S. mundus (A3) is estimated at

4.74 Ma (HPD 11.38–0.72 Ma), and the divergence between

the western Atlantic species S. darius and S. watsoni (clade

B) is estimated to 13.16 Ma (HPD 27.02–2.4 Ma; see Fig. 1).

Average rates of substitution were highest for COI with

0.19% Myr�1, followed by 16S with 0.11% Myr�1 and 28S

with 0.03% Myr�1. These rates are in line with those found

for other gastropods under similar methodological

approaches (Williams & Reid, 2004; Frey & Vermeij, 2008;

Malaquias & Reid, 2009).

Figure 1 Chronogram produced by time-calibrated Bayesian analysis of the concatenated three marker dataset (COI + 16S + 28S),

using a relaxed molecular clock in BEAST). Branch labels show posterior probabilities, node labels show median ages of supported
nodes and node bars represent 95% highest posterior density intervals (HPD). Median divergence times for nodes A1, A2, A3 and B in

millions of years ago (Ma) are listed in the blue box with upper and lower limits of 95% HPD. The outgroup was pruned from the tree
for clarity. The shells of the Atlantic species are illustrated (taken from Eilertsen & Malaquias, 2013a).

Journal of Biogeography 42, 843–855
ª 2015 The Authors. Journal of Biogeography Published by John Wiley & Sons Ltd

847

Biogeography and speciation of Scaphander



Geographical and bathymetric distributions

Two of the eight valid Atlantic species of Scaphander are

amphi-Atlantic (S. nobilis and S. punctostriatus), whereas one

species, S. bathymophilus, is known from the western Atlantic

and the mid-Atlantic islands of the Azores (see Fig. 2). Scap-

hander punctostriatus and S. bathymophilus are represented in

the molecular phylogeny by specimens from both east and

west Atlantic (Table 1). For S. nobilis, only one specimen

from the east Atlantic was suitable for molecular analysis,

but specimens from the west Atlantic were studied and char-

acters from the shell, digestive tract and reproductive system

support that eastern and western populations are conspecific

(Eilertsen & Malaquias, 2013a). Of the remaining Atlantic

species, three are restricted to the western Atlantic (S. darius,

S. watsoni and S. clavus), one is restricted to the eastern

Atlantic (S. lignarius), and one is known only from the

Azores (S. gracilis; Eilertsen & Malaquias, 2013a).

The bathymetric distributions of the Atlantic species of

Scaphander are depicted in Fig. 3. The depth range of

S. gracilis is not considered here because this species is only

known from empty shells, which may be transported by cur-

rents or other animals. Three species are found on the conti-

nental shelf: S. darius has only been found between 16 m

(a) (b)

(c) (d)

Figure 2 Geographical distributions and phylogenetic relationships of Atlantic Scaphander species. (a) clade A with species
S. subglobosus, S. punctostriatus, S. mundus and S. nobilis; (b) clade B with species S. watsoni and S. darius; (c) S. clavus and

S. bathymophilus; (d) S. lignarius and S. gracilis. Detailed maps and references to the literature surveyed for each species can be found in
Eilertsen & Malaquias (2013a).
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and 97 m, whereas the other two, S. watsoni and S. lignarius,

occur at 110–476 m and 70–630 m, respectively. Two species

have a mainly upper-bathyal distribution (200–2000 m),

namely S. clavus and S. punctostriatus found at 595–1056 m

and 264–2730 m, respectively; but the latter also extends into

the lower bathyal zone (2000–4000 m). Scaphander bathymo-

philus and S. nobilis have a wide bathyal to abyssal distribu-

tion with a bathymetric range of 805–5130 m and 1493–
4255 m, respectively.

DISCUSSION

Phylogeny, speciation and patterns of diversity in

Scaphander

The monophyly of Scaphander has previously been confirmed

by Eilertsen & Malaquias (2013a). That analysis showed that

the Atlantic species-group is not monophyletic, with several

sister relationships between Atlantic and Indo-Pacific lin-

eages. Additionally, the systematics of the genus in the Atlan-

tic was revised and species were delimited based on a

combination of morpho-anatomical characters and reciprocal

monophyly of lineages rendered in a multilocus molecular

phylogenetic analysis, which we have expanded here (Fig. 1).

Eilertsen & Malaquias (2013a) found pronounced character

displacement between the Atlantic species of Scaphander,

particularly on reproductive structures, which, combined

with shell shape, makes species identification reliable.

Only two Atlantic species of Scaphander were unavailable

for molecular analysis: S. gracilis, known only from shells

collected in the Azores; and S. clavus, from the west Atlantic

(Eilertsen & Malaquias, 2013a). We acknowledge that incom-

plete taxon sampling can hamper inference of sister relation-

ships and estimates of divergence times (Heath et al., 2008),

but the present dataset remains one of the most complete

datasets of a clade of deep-sea invertebrates to have been

assembled and analysed in a molecular phylogenetic context

(but see Puillandre et al., 2010; Cabezas et al., 2012).

The combination of phylogenetic relationships and geo-

graphical distributions of species revealed little geographical

overlap between sister taxa or clades (Fig. 2), which supports

the prevailing view that allopatric speciation is dominant not

only in shallow marine taxa (Meyer, 2003; Williams & Reid,

2004; Malaquias & Reid, 2009; Frey, 2010), but also in the

deep sea. However, the overlap between the distributions of

the western Atlantic sister species S. darius and S. watsoni,

estimated to have diverged in the late Oligocene–Pliocene
(median 10.67 Ma, HPD 24.92–2.06 Ma), hints at a possible

case of sympatric speciation in Scaphander. Sympatric sister

species are often characterized by ecological differentiation

(e.g. Bolnick & Fitzpatrick, 2007; Frey, 2010), but no differ-

ences in bathymetric distribution, trophic ecology or habitat

between these species were recognized, suggesting a similar

ecological niche. We cannot, however, rule out the hypothe-

sis of allopatric speciation followed by later geographical

range shifts and secondary contact (Collin, 2003; Frey, 2010).

Even though these two species are located on the same side

of the Isthmus of Panama, speciation could be related to the

uplift of the isthmus, which led to changes in current flow,

salinity, temperature and primary production in the Atlantic

Figure 3 Depth distribution of Atlantic species of Scaphander, except S. gracilis, which is only known from shells. References to the
literature surveyed for each species can be found in Eilertsen & Malaquias (2013a).
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and eastern Pacific, generating opportunities for transient

allopatry and speciation (Williams & Reid, 2004; Lessios,

2008; Miura et al., 2010).

A pulse of diversification centred in the Oligocene and

Miocene epochs has been suggested for shallow-water organ-

isms (e.g. Williams & Duda, 2008; Malaquias & Reid, 2009),

and this has been also hypothesized more recently for deep-

sea fauna (Cabezas et al., 2012; Williams et al., 2013). An

Oligocene/Miocene pulse of diversification is corroborated

by the present results, in which median divergence time esti-

mates of speciation events ranged between 26.64 and

7.38 Ma (Fig. 1).

There is a cline in diversity between the bathyal and abys-

sal zones with all but one Scaphander species (S. darius)

present in the former bathymetric zone and only two (S. no-

bilis and S. bathymophilus) extending their range into the

abyssal plains (> 4000 m; Fig. 3).

Tethyan vicariance and deep-sea dispersal across

oceans

The presence of sister relationships between species and clades

from the Atlantic and IWP dating from the Eocene–Miocene

(nodes A1 and A2, with two Atlantic and two IWP species;

Fig. 1) may suggest vicariance associated with the closure of

the Tethyan Seaway in the early Miocene (c. 18–19 Ma; R€ogl,

1998). Diversification events that resulted from Tethyan vicari-

ance have been widely documented for shallow-water organ-

isms, and both molecular estimates and the fossil record

indicate that differentiation between the biogeographical

regions of the proto-Mediterranean and the proto-IWP region

was already present in the Oligocene (e.g. Williams & Reid, 2004;

Harzhauser et al., 2007; Frey & Vermeij, 2008; Malaquias & Reid,

2009; Cowman & Bellwood, 2013).

It is to be expected that deep-sea organisms may have

been affected earlier by the closure of the Tethyan Seaway

than organisms associated with shallow habitats, but it is not

clear if this is the case in Scaphander. The age estimates for

the cladogenetic events spanning the Tethys closure are

equivocal (nodes A1 and A2 in Fig. 1; A1, median 20.33 Ma,

HPD 35.88–8.86 Ma; A2, median 11.28 Ma, HPD 21.41–
4.29 Ma) and speciation could therefore have been driven

either by Tethyan vicariance or by post-Tethyan dispersal

between the Atlantic and the Indo-Pacific. On the other

hand, the split between the Indo-West Pacific S. mundus and

the Atlantic S. nobilis (median 4.74 Ma, HPD 11.38–
0.72 Ma), seems too recent to be associated with Tethyan

vicariance, suggesting dispersal between the two ocean basins

followed by subsequent isolation and allopatric speciation.

The shortest route of dispersal between the present-day dis-

tributions of these two species is around the Cape of Good

Hope (Fig. 2a). The southern tip of South Africa is a well-

known biogeographical barrier for shallow-water tropical/

temperate taxa because of the Benguela cold-water system,

which became established during the late Miocene (Siesser,

1980; Marlow et al., 2000; Teske et al., 2011). Nevertheless,

the fossil record and molecular phylogenetics studies have

documented successful dispersal and speciation events from

the IWP to the Atlantic around South Africa in shallow-water

taxa after the establishment of the Benguela current system

during the Plio-Pleistocene (Vermeij & Rosenberg, 1993; Ver-

meij & Snyder, 2003; Rocha et al., 2005; Levy et al., 2013).

These dispersal events have been attributed to changes in cli-

mate associated with the Plio-Pleistocene glacial–interglacial
cycles, which prompted modifications in ocean currents and

water temperature (Vermeij & Rosenberg, 1993; Rocha et al.,

2005).

The impact of these processes on the diversification of

deep-sea faunas is poorly understood, because of a general

lack of knowledge about the distribution of deep-sea organ-

isms and the paucity of available phylogenetic hypotheses.

Nevertheless, the lack of Scaphander species shared between

the Atlantic and Indo-Pacific realms suggests that barriers to

dispersal are also present in the deep sea in this region. Evi-

dence from deep-sea foraminiferan assemblages and geo-

chemistry suggest that the influx of fresh water caused by

melting ice-caps during the Plio-Pleistocene strongly dis-

rupted the deep-sea current system in the area (e.g. Schnit-

ker, 1974; Hodell et al., 1985; Gupta & Srinivasan, 1990),

and this could have created opportunities for deep-sea

organisms to disperse.

Alternative dispersal routes between the Atlantic and the

Indo-Pacific are the Drake Passage in the southern Atlantic

(opened in the late Oligocene; Beu et al., 1997), the Central

American corridor before the final closure of the Isthmus of

Panama (by the middle Miocene, there was a corridor about

2000 m deep; Coates & Obando, 1996; Lessios, 2008), and

the trans-Arctic route during the Pliocene (Marincovich &

Gladenkov, 1999). However, these would have implied dra-

matic range shifts (see Eilertsen & Malaquias, 2013a; Fig. 2)

or regional extinctions (but Palaeocene fossils are known

from California; Weaver, 1949; Schoellhamer et al., 1981).

Dispersal across the Eastern Pacific Barrier is known to be

insurmountable for the majority of marine invertebrates

(Williams & Reid, 2004; Frey, 2010) and further evidence,

including a better representation of the diversity of Indo-

Pacific species, is necessary to further test these alternative

hypotheses.

Trans-Atlantic dispersal via abyssal plains and along

Arctic slopes

Two species of Scaphander are amphi-Atlantic (S. nobilis and

S. punctostriatus) and a third is known from the western

Atlantic and the mid-Atlantic islands of the Azores (S. bathy-

mophilus; see Fig. 2). The remaining five Atlantic Scaphander

species (S. lignarius, S. darius, S. watsoni, S. clavus and

S. gracilis) have more limited distributions, restricted to one

side of the Atlantic or to the Azores (Fig. 2). This raises the

question of how connectivity is maintained across these long

distances. Nothing is known about the reproduction and lar-

val development of Scaphander, but the life-span of hetero-
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branch planktotrophic larvae is usually 15–42 days (Schaefer,

1996). The journey across the Atlantic by larval drift, follow-

ing one of the main trans-Atlantic surface currents, is esti-

mated to take 60–400 days (Scheltema, 1971). Deep-sea

currents are slow (2–20 cm s�1; Heezen et al., 1966) com-

pared to surface currents (trans-Atlantic surface currents

14–90 cm s�1; Scheltema, 1971), and deep-sea currents do

not usually reach higher velocities than surface currents even

during benthic storms (15–40 cm s�1; Hollister & McCave,

1984; Hollister, 1993). This indicates that unless Scaphander

has much greater than average dispersal potential, trans-

Atlantic dispersal is unlikely to maintain connectivity

between the eastern and western populations.

Comparing geographical and bathymetric ranges, it

becomes evident that the three broadly distributed species

are those with deeper bathymetric distributions (Fig. 3),

which supports the traditional view that deeper species have

wider geographical ranges (McClain & Hardy, 2010). Two of

these species (S. bathymophilus and S. nobilis) extend their

bathymetric range into abyssal depths below 4000 m (Fig. 3).

We speculate that if these species have reproducing popula-

tions scattered over the abyssal plains, gene flow could then

be maintained without requiring long-distance dispersal of

larvae, but instead by dispersal between populations. There is

unfortunately a scarcity of data from these regions, because

deep-sea sampling has been mostly focused on coastal areas,

areas around islands, hydrothermal vents or other chemosyn-

thetic habitats, whereas the open-ocean abyssal plains have

hardly been sampled (Ramirez-Llodra et al., 2010).

The ‘source–sink’ hypothesis of Rex et al. (2005) suggests

that abyssal populations are non-reproducing and require

larval supply from bathyal populations. The main argument

for this hypothesis is the decline in nutrient input with

increasing distance from the continental slope, but a patchy

distribution of areas with sufficient food supply, as pre-

dicted by the ‘temporal mosaic’ hypothesis (Grassle & Sand-

ers, 1973; Rex & Etter, 2010), could enable a dynamic

mosaic of reproductive populations of Scaphander. In fact,

food availability is unlikely to be a limiting factor in Scap-

hander, because these snails feed almost exclusively upon

foraminiferans (Eilertsen & Malaquias, 2013b), which are

among the most abundant inhabitants of the abyssal sea

floor (Gooday et al., 1992).

An interesting case is the distribution of S. bathymophilus,

which occurs at depths of 805–5130 m in the Caribbean Sea,

along the coast of the US north to Cape Hatteras (North

Carolina), and also in the Azores (Eilertsen & Malaquias,

2013a; Figs 2 & 3). The broad longitudinal distribution of

this species, spanning the width of the western Atlantic basin

can be explained analogously to S. nobilis, but its isolation in

the western Atlantic could be a consequence of a barrier

effect caused by the Mid-Atlantic Ridge hindering eastward

dispersal in this species. The role of the Mid-Atlantic Ridge

in the dispersal of bathyal and abyssal organisms across the

Atlantic is, however, poorly understood (Mullineaux et al.,

2002; Zardus et al., 2006; Etter et al., 2011).

Scaphander punctostriatus, the most widely distributed

Scaphander species, has only been recorded down to 2730 m

(Fig. 3), albeit at Arctic and sub-Arctic latitudes, where the

distance between the eastern and western margins is shorter,

and the coasts of Iceland and Greenland could provide ‘stag-

ing-posts’ for dispersal. In fact the percentage of amphi-

Atlantic species at Arctic and boreal latitudes has been docu-

mented to be higher than at temperate and tropical latitudes

(Vermeij, 2005; Garc�ıa & Bertsch, 2009).

CONCLUSIONS

The sister relationships between Atlantic and IWP lineages

dating from the middle Eocene to late Miocene suggest

vicariance events caused by the closure of the Tethyan Sea-

way, but they do not support a comparatively older diversifi-

cation of deep-sea faunas. However, our results corroborate

the hypothesis of a pulse of diversification centred in the

Oligocene and Miocene epochs. A post-Tethyan divergence

between Atlantic and IWP species is hypothesized to result

from dispersal around South Africa during episodic disrup-

tions of the deep-sea regional current system caused by gla-

cial–interglacial cycles. Allopatric speciation was prevalent,

but one potential case of sympatric speciation was detected

between two western Atlantic species. Amphi-Atlantic species

have comparatively deeper distributions (inhabiting bathyal-

abyssal depths), and we hypothesize that trans-Atlantic

dispersal is attained by connectivity between reproductive

populations inhabiting the abyssal sea floor and by dispersal

across the shelf and slope of Artic and sub-Arctic regions.
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