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ABSTRACT
Exercise induces arterial flow patterns that promote functional and structural adaptations,
improving functional capacity and reducing cardiovascular risk. While heat is produced by
exercise, local and whole-body passive heating have recently been shown to generate favorable
flow profiles and associated vascular adaptations in the upper limb. Flow responses to acute
heating in the lower limbs have not yet been assessed, or directly compared to exercise, and
other cardiovascular effects of lower-limb heating have not been fully characterized. Lower-limb
heating by hot-water immersion (30 min at 42�C, to the waist) was compared to matched-
duration treadmill running (65-75% age-predicted heart rate maximum) in 10 healthy, young adult
volunteers. Superficial femoral artery shear rate assessed immediately upon completion was
increased to a greater extent following immersion (mean § SD: immersion C252 § 137% vs.
exercise C155 § 69%, interaction: p D 0.032), while superficial femoral artery flow-mediated
dilation was unchanged in either intervention. Immersion increased heart rate to a lower peak
than during exercise (immersion C38 § 3 beats¢min-1 vs. exercise C87 § 3 beats¢min-1,
interaction: p < 0.001), whereas only immersion reduced mean arterial pressure after exposure
(¡8 § 3 mmHg, p D 0.012). Core temperature increased twice as much during immersion as
exercise (C1.3 § 0.4�C vs. C0.6 § 0.4�C, p < 0.001). These data indicate that acute lower-limb
hot-water immersion has potential to induce favorable shear stress patterns and cardiovascular
responses within vessels prone to atherosclerosis. Whether repetition of lower-limb heating has
long-term beneficial effects in such vasculature remains unexplored.
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Introduction

Limb blood flow is affected by the temperature of local
tissue, the limb and the body as a whole. Both the pro-
file and the magnitude of arterial flow within limbs
have important effects on that limb’s arteries and
potentially on downstream vessels, as well as on
remote vasculature. Shear stress, the mechanical force
of blood flow on the walls of arteries1 provides the
stimulus for both acute2,3 and adaptive effects.4 Specif-
ically, an increase in forward-directional (antegrade)
shear acutely promotes vasodilation.5 Chronic expo-
sure to increased antegrade shear (over several weeks),
as in during repetitive bouts of exercise training, is
known to improve endothelial function6 (responsive-
ness to shear stress) within the first 4 weeks, after
which structural remodeling becomes evident (and

thereby structurally normalizes shear stress within 6
to 8 weeks).7,8

Shear stress can be manipulated using various ther-
mal and non-thermal interventions, including exer-
cise, terrestrial heat exposure and hot-water
immersion.5,9–12 Hot-water immersion can acutely
increase antegrade shear in the arteries of immersed
limbs9 as well as in remote limbs.12 Chronically, favor-
able adaptations in endothelial function10,12 and
microvascular vasodilation13 have been demonstrated
following repeated local heating in healthy individuals.
Systemically-applied heat via sauna bathing has also
been reported to improve endothelial function in
patients with coronary risk factors14 and heart fail-
ure.15 Again, the suggested mechanism for these
effects has been increased peripheral artery blood flow
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(C68% following 15 min of sauna14), although a
causal relationship has not always been expounded in
such studies. In support of the shear stress hypothesis,
repeated sauna therapy (4-5 weeks) upregulates endo-
thelial nitric oxide synthesis expression in animal
models.16,17 Therefore, heat therapy, applied in vari-
ous ways, appears to have potential as a stimulus for
increasing blood flow and antegrade shear stress,12 in
a manner similar to exercise.7,8

Heat is also implicated in other exercise-induced
cardiovascular adaptations, which occur as a result of,
or are amplified by, increased core and tissue tempera-
ture. Examples include blood volume expansion,18,19

muscle growth20,21 and glucose uptake,22 and a height-
ened cellular stress response conferring increased
resilience to stress.23-25 Isolated heat stress also causes
several other significant physiological responses simi-
lar to those induced by exercise (which is also heat
stressful26). These include elevations in cutaneous and
muscle blood flow, heart rate and sympathetic activ-
ity.27,28 Furthermore, repetitive heat exposure, inde-
pendent of exercise, can improve cardiac
function,15,29–31 reduce blood pressure32 and induce
cardiac preconditioning,33 and is associated with
reduced risk of cardiovascular and all-cause
mortality.34

Despite this background, much remains unknown
about the acute hemodynamic effects of heat and
how these compare with traditional exercise, espe-
cially in the lower limbs. Therefore, the aim of this
study was to directly compare the lower-limb artery
shear rate pattern induced by an acute bout of
lower-limb heating to that induced by running (i.e.,
the ubiquitous mode of exercise) – within the same
young, healthy individuals. The duration of expo-
sure was matched between interventions. Impor-
tantly, the novelty of this study was in the
assessment of the lower-limb arterial response, as
most investigations on arterial responses to exercise
(acute and chronic) focus on the brachial artery and
infer that this reflects global arterial responses.
However, in cases where more than one anatomical
location has been assessed, upper- and lower-limb
arteries often show little resemblance in their
respective flow profiles.35 It follows that upper-limb
responses are unlikely to reflect local effects of
lower-limb-specific interventions. Thus far, the
superficial femoral artery (SFA) has not been stud-
ied in relation to acute hot-water immersion, and

much also remains unknown about the acute vascu-
lar effects of exercise, especially in the lower limb.36

Assessing the hemodynamics in lower-limb arteries
is important for 2 reasons: 1) to understand the
response in the limbs involved in heat and exercise
administration, and 2) atherosclerotic disease is far
more prevalent in the lower than upper limbs,37 so
understanding their shear profiles is important for
considering future therapeutic prospects, particu-
larly for people with a limited exercise capacity and
concomitant high cardiovascular risk. Of secondary
interest were systemic cardiovascular responses to
the acute lower-limb heating protocol. There is a
growing body of literature examining isolated stres-
sors (e.g., heat) for their potential to induce benefi-
cial cardiovascular and thermoregulatory strain.
Understanding the complex acute effects of any
such approach is therefore warranted to understand
their potential as an alternative or complement to
an exercise-training stimulus.

Participants and methods

Participant characteristics

Ten young, healthy individuals volunteered for this
study (8 male and 2 female; age 27 § 5 y, height
181 § 8 cm, mass 81 § 8 kg, BMI 24.4 § 1.5 kg¢m-2).
Participants were not taking any medications or sup-
plements, all were non-smokers, and all were recrea-
tionally active, typically engaging in moderate-
intensity aerobic exercise (e.g. jogging) and resistance
training (�3 d per week). Written informed consent
was obtained before participation. The study was
approved by the University of Otago Human Ethics
Committee, and conformed to the standards set by
the Declaration of Helsinki.

Experimental procedures

This cross-over study involved 2 experimental inter-
ventions, namely exercise and water immersion, which
were performed in a randomized and balanced order.
Upon arrival to the laboratory, participants rested
supine for 15 min before initial baseline data collec-
tion. They then completed the assigned intervention
(exercise or immersion), with measures recorded dur-
ing and immediately afterward as outlined below. The
interventions were matched for parameters of stress
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rather than strain; i.e., 30-min duration of exposure;
being realistic/tolerable for both interventions as well
as meeting the current health-related exercise guide-
lines.38 Similarly, intensities were chosen to be strenu-
ous but tolerable. Neither intervention provides an
exclusively lower-limb or whole-body stimulus per se,
so the intent was for interventions to be somewhat
matched for the extent of tissue exposed to the stimu-
lus provided. Exercise consisted of 30-min treadmill
running at 65-75% age-predicted heart rate maximum.
Running speeds ranged from 9.5 to 12 km¢h-1 with an
average of 10 km¢h-1. Exercise was performed in a
temperature-controlled environment at 22-23�C.
Water Immersion consisted of 30-min seated,
immersed to the waist in hot water (42.0 § 0.4�C).
Water temperature was checked continually and
adjusted throughout the 30-min immersion. This tem-
perature was chosen as ‘a tolerable maximum’ based
on pilot experiments.

Each session was performed at the same time of day
(>10 :00 h because of the known early-morning atten-
uation of endothelial function),39 and 3-7 d apart, suf-
ficient to ensure wash-out. All participants were
instructed to abstain from exercise36 and alcohol40 for
24 h prior to the test, and to avoid caffeine on the
morning of testing.41 Participants were also instructed
to maintain their normal diet during the study period.
Female participants were tested in days 1 – 7 of the
menstrual cycle.42

Experimental measures

Temperature measurements
Core body temperature (Tc) was measured using a
thermistor in the esophagus at a depth 48% of sitting
height, minus 4.44 cm.43 Muscle temperature (Tm) of
the medial gastrocnemius was measured using a nee-
dle thermocouple (YSI 525, Yellow Springs Instru-
ments, Yellow Springs, OH, USA) at a depth of 2 cm
below the skin surface. Muscle temperature was mea-
sured throughout the water immersion protocol, and
after exercise (<5 min post-exercise). All temperatures
were recorded at 30-s intervals using portable, battery-
operated loggers (Squirrel SQ2010, Grant Instru-
ments, Cambridge, UK). Perceived ratings of body
temperature and thermal discomfort were ascertained
from a 13- and 5-point scale respectively (extended
from Gagge44), at baseline and at 10, 20 and 30 min
through the intervention.

Superficial femoral artery hemodynamics
Superficial femoral artery (SFA) diameter and blood
velocity were measured using ultrasound (Aplio XG,
Toshiba, Nasu, Japan) with a 7 MHz linear array
transducer (bandwidth 4-11 MHz) by simultaneously
recording a longitudinal section B-mode image and a
spectral Doppler trace of blood velocity. The Doppler
angle of insonation was maintained at 60�. Partici-
pants were supine during this procedure. Measure-
ments were made 2-3 cm distal to the bifurcation of
the common femoral artery. The location of the trans-
ducer was recorded and marked on the skin using
indelible ink and reused for the repeat test. Ultrasound
settings (depth, focus position and gain) were opti-
mized for each participant, and reused for the repeat
test. All ultrasound scans were performed by the same
vascular sonographer (K.T.). Video clips were
recorded using a VGA to USB screen capture device at
21 Hz (VGA2USB LR, Epiphan Systems Inc., Palo
Alto, California, USA). Analysis of diameter and
velocity, and the calculation of shear rate (SR D
4� velocity / diameter)45 were performed using wall-
tracking software (Cardiovascular Suite UE v 2.5,
Quipu, Pisa, Italy),46,47 which reduces investigator
bias. Our test-retest reliability using this software for
measures of diameter and velocity were 0.4% and
2.1% respectively (n D 10).

Flow-mediated dilation (FMD)
FMD is predominantly an endothelium-dependent
measure of vascular function based on the ability of
the vessel to respond to transient ischemia with reac-
tive hyperemia. The resting hemodynamics (diameter,
velocity, shear rate) and FMD of the SFA were
assessed before and 5-10 min after the intervention,
following 2-min baseline recording, according to
international guidelines.48 To perform the FMD, arte-
rial flow was blocked at the distal thigh using a 17-cm
contoured cuff inflated to 200 mmHg within 2 sec-
onds (CC17 contoured leg cuff, E20 Rapid Cuff Infla-
tor and AG101 Cuff Inflator Air Source, Hokanson,
Bellevue WA, USA). Occlusion was maintained for
5 min. Recording resumed for the final 30 s of occlu-
sion and continued for 3 min following rapid release
of the cuff (<2 s).

Systemic hemodynamics
Heart rate (HR) was obtained continuously using
detection of the R-R wave of ventricular
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depolarization frequency (Polar S810i, Polar, Finland).
Blood pressure (BP) was measured using finger photo-
plethysmography (Finometer, Finapres Medical Sys-
tems, Amsterdam, The Netherlands). Stroke volume
(SV) and cardiac output ( _Q) were calculated using the
Modelflow method, which incorporates sex, age,
height and mass (BeatScope 1.0 software, Finapres
Medical Systems, Amsterdam, The Netherlands).
Continuous recording of the above variables was
obtained at 200 Hz using an analog-to-digital con-
verter (Powerlab/16SP, ADInstruments, Dunedin,
New Zealand) and later analyzed using Chart software
(LabChart Pro v 7.2.5, ADInstruments). Baseline data
were collected over 5 min before each intervention,
and post-intervention recording began within 5 min
of finishing exercise or exiting the water.

Data analysis

Calculations: Core temperature (Tc) was calculated as
the maximum change from baseline during the inter-
vention (DT), while muscle temperature (Tm) was cal-
culated as either the maximum change from baseline
during immersion, or immediately post-exercise (DT).
Heat impulse was calculated using DT � time at that
temperature for both Tc and Tm

49, to approximate the
volume of heat strain and thus a unitary but admit-
tedly simplistic index of the thermal stimulus for
adaptation.

Mean arterial blood pressure (MAP) was calculated
as one-third systolic (SBP) plus two-thirds diastolic
blood pressure (DBP). Baseline blood pressure, HR,
SV and _Q data were obtained as an average of a 5-min
period. MAP, SBP, DBP, SV and _Q are presented as
pre vs. post-intervention (within 5 min of comple-
tion); HR is presented as pre vs. peak HR attained dur-
ing intervention.

Baseline diameter (Dbase), blood flow velocity (v)
and shear rate (SR) were calculated as the mean of the
last minute of the baseline period, pre-cuff inflation.
Peak diameter post-deflation was determined auto-
matically using the edge-detection software. FMD was
calculated as the percentage increase (FMD%) in
diameter from the baseline (FMD = (Dpeak – Dbase) /
Dbase

� 100). Recent publications50,51 have highlighted
the biased nature of using the FMD% due to its reli-
ance on Dbase and the known negative correlation
between FMD% and Dbase.

51 We therefore followed
guidelines51,52 utilizing allometric scaling to adjust for

Dbase with a covariate-controlled approach. These
results are presented as “Dbase-adjusted FMD%.”

Statistics: All descriptives are reported as mean §
SD and all estimates are presented as mean § SE
unless stated otherwise. The cardiovascular and shear
stress responses to the 2 interventions were analyzed
using mixed models with random effects at the partici-
pant and participant-intervention levels, with an inter-
vention-time interaction used to identify differences
between intervention effects. Within-intervention
changes are presented to assist interpretation of
between intervention tests. Mixed models were used
to compare between-intervention changes in FMD in
3 ways: using the raw data, FMD adjusted for baseline
FMD, and FMD adjusted for Dbase. Period effects (first
or second) were included in all mixed models and a
lack of carryover was assumed based on the study
design rather than being formally tested for. Analyses
were performed using Graphpad Prism 6 (Graphpad
Software, Inc., La Jolla, California, USA), SPSS (v 19.0,
SPSS Inc., Chicago, Illinois, USA), and Stata (v 13.1,
StataCorp, College Station, Texas, USA) statistical
software. All statistical tests were performed at the 2-
sided 0.05 level with no adjustment for multiple
comparisons.

Results

All participants completed both conditions. All data
are of n D 10 for all variables except post-exercise Tm,
for which n D 8.

Temperature

The increase in Tc during 30 min of water immersion
was approximately twice as much as during 30 min of
exercise (p < 0.001; Table 1 and Fig. 1). Peak Tm,

Figure 1. Change in core temperature from baseline throughout
exercise and water immersion measured at 30-s intervals. Data
points represent the group mean and error bars are SD.
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measured as soon as possible (<5 min) following exer-
cise and at the equivalent time following immersion,
was higher following immersion (mean § SD: 38.5 §
0.4 vs. 38.1 § 0.4�C, p D 0.007). The Tm at this time
post-immersion was within 0.2 § 0.3�C of the peak
recorded for the entire immersion trial. Consequently,
the heat impulse generated for both Tc and Tm was
larger for water immersion than exercise (Tc, as calcu-
lated from the entire trial: 19.0 § 2.2 vs. 6.0 §
2.2�C¢min, p < 0.001; Tm, as calculated from 10 min
of recovery: 44.1 § 1.8 vs. 30.4 § 2.0�C¢min, p <

0.001). Perceived body temperature was “hot” (i.e., 10
on the 13-point sensation scale) at completion of both
interventions, which was rated as ‘slightly uncomfort-
able’ (2/5) for exercise and ‘slightly uncomfortable’-
to-‘uncomfortable’ (2.5) for water immersion on the
discomfort scale.

Shear rate patterns

Total shear rate was increased to a greater extent
after immersion than exercise (measured 5-10 min
following cessation of intervention; immersion:
C181 s-1 § 23 s-1; exercise: C104 s-1 § 23 s-1,
both p<0.001, interaction p D 0.032, see Table 2
and Fig. 2). This represents an increase of »250%
following immersion and »150% following exer-
cise. Similarly, antegrade shear rate was increased
differentially between interventions (immersion:
C157 s-1 § 22 s-1; exercise: C85 s-1 § 22 s-1, both
p < 0.001, interaction pD0.004). Retrograde shear
rate was attenuated by 24 s-1 § 4 s-1 following
both interventions (both p < 0.001) but not differ-
entially so (p D 0.862).

Flow-mediated dilation

Baseline diameter (Dbase, i.e., before FMD) was
increased following exercise (C0.40 § 0.11 mm, p <

0.001, see Table 2 and Fig. 3), but did not change fol-
lowing immersion (¡0.04§ 0.11 mm, pD 0.713, inter-
action: p D 0.005, Fig. 3). The FMD was unrelated to
Dbase before or after either intervention (all p � 0.256).
Irrespective of analyses used, FMD was not reliably
affected between interventions (all p � 0.640) or across
time (all p � 0.584), and showed large individual vari-
ability (Fig. 4). FMD results are presented as Dbase-
adjusted FMD% based on the methods suggested by
Atkinson and Batterham.51,52

Systemic cardiovascular responses

The stress-induced rise in HR was approximately
twice as large during exercise than immersion (inter-
action p < 0.001; Table 1). _Q was elevated following

Table 1. Thermoregulatory and systemic cardiovascular variables at baseline and immediately post-intervention (<5 min). Data are
mean § SD for baseline and post values, and mean § SE for change scores. Baseline and post-intervention data were averaged over
5 min. Tc, core temperature; Tm, muscle temperature; SV, stroke volume; _Q, cardiac output; MAP, mean arterial pressure; SBP, systolic
blood pressure; DBP, diastolic blood pressure; HR, heart rate.a HR post is peak HR reached during intervention.

Baseline Post Change

Variable Exercise Immersion Exercise Immersion Exercise Immersion

Tc (�C) 36.3 § 0.5 36.5 § 0.3 37.0 § 0.7 37.7 § 0.6 �y C0.6 § 0.4 C1.3 § 0.4
Tm (�C) – 33.7 § 0.7 38.1 § 0.4 38.5 § 0.4 z – C4.7 § 0.9
SV (mL¢min-1) 89 § 22 109 § 24 89 § 16 98 § 38 C1 § 9 ¡10 § 9
_Q (L¢min-1) 4.8 § 1.6 5.6 § 1.5 6.9 § 2.0 y 6.6 § 1.1 C2.1 § 0.5 C1.0 § 0.5
MAP (mm Hg) 88 § 7 89 § 9 88 § 11 82 § 12 y 0 § 3 ¡8 § 3
SBP (mm Hg) 119 § 11 125 § 11 120 § 13 116 § 16 y C1 § 4 ¡10 § 4
DBP (mm Hg) 72 § 6 71 § 9 72 § 10 65 § 11 y 0 § 3 ¡6 § 3
HR (beats¢min-1)a 54 § 7 54 § 7 141 § 12 y� 93 § 8 y C87 § 3 C38 § 3

�interaction: intervention x time (p < 0.05)
ydifferent from baseline (p < 0.05)
zdifferent from post-exercise (p < 0.05).

Figure 2. Superficial femoral artery total (black bars), antegrade
(checked bars) and retrograde (gray bars) shear rate at baseline
and post-intervention. Bars represent group mean, error bars are
SE. � interaction: intervention x time (p<0.05); y different from
baseline (p<0.05).
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exercise (C2.1 § 0.5 L¢min-1, p < 0.001) but the
changes post-immersion did not reach statistical sig-
nificance (C1.0 § 0.5 L¢min-1, p D 0.056). For SV,
there was no differential response following each
intervention (interaction: p D 0.400), nor an effect
of intervention per se (p � 0.275). The MAP tended
to show a hypotensive response following immer-
sion only (interaction: p D 0.068, immersion MAP:
¡8 § 3 mmHg, p D 0.012; exercise: 0 § 3 mmHg,
p D 0.944), with 9 out of 10 participants having a
reduction in MAP following immersion. The SBP
was reduced by »10 § 4 mmHg following immer-
sion (p D 0.008) but was unchanged following exer-
cise (1 § 4 mmHg; interaction: p D 0.041). The
DBP responses to interventions were unclear (inter-
action: p D 0.134).

Discussion

Shear stress is a principal determinant of arteries’
acute responses and adaptive remodeling (reviewed in
Laughlin4 and Newcomer53). The shear stress effects
of heating and exercise have been studied mostly in
the upper limb yet the lower limb is susceptible to
arterial disease,37 so we examined SFA shear rate
responses to acute lower-limb heating via hot-water
immersion, and also relative to a typical bout of pre-
dominantly lower-limb exercise. Understanding the
acute responses during and/or following transient
stress such as heat or exercise is important for at least
3 reasons. First, heat is part of exercise, so delineating
effects of heat within or apart from exercise has mech-
anistic value. Second, acute responses mediate long-
term adaptation, so understanding these responses
improves knowledge of adaptation. Third, a major
portion of the health-related benefits of regular bouts
of stress is attributable to the recovery period itself,
(e.g., prolonged post-exercise hypotension is likely
more important in cardiovascular risk reduction than

Table 2. Superficial femoral artery (SFA) hemodynamic responses at baseline and post-intervention (< 10 min). Dbase, baseline diameter;
SR, shear rate; Dpeak, peak diameter; Ddiff, change in diameter; FMD, flow-mediated dilation. Data are mean § SD for baseline and post
values, except for adjusted FMD, which are mean § SE. Change scores are mean § SE.

Baseline Post Change

Variable Exercise Immersion Exercise Immersion Exercise Immersion

Dbase (mm) 6.6 § 0.8 6.8 § 0.9 7.0 § 0.9 y 6.7 § 1.0 C0.4 § 0.1 ¡0.0 § 0.1
Total SR (s¡1) 71 § 28 78 § 34 175 § 74 y 259 § 118 �y C104 § 23 C181 § 23
Antegrade SR (s¡1) 101 § 32 108 § 38 185 § 70 y 265 § 112 �y C85 § 22 C157 § 22
Retrograde SR (s¡1) ¡30 § 9 ¡30 § 10 ¡6 § 12 y ¡6 § 7 y C24 § 4 C24 § 4
Dpeak (mm) 6.9 § 0.9 7.1 § 0.9 7.3 § 1.0 y 7.0 § 1.0 C0.4 § 0.1 ¡0.1 § 0.1
Ddiff (mm) 0.3 § 0.2 0.3 § 0.1 0.3 § 0.2 0.3 § 0.2 ¡0.0 § 0.1 ¡0.0 § 0.1
Dbase-adjusted FMD (%) 4.75 § 0.83 4.69 § 0.83 4.31 § 0.83 4.71 § 0.83 ¡0.41 § 1.11 C0.01 § 1.10

� interaction: intervention x time (p<0.05)
y different from baseline (p<0.05).

Figure 3. Absolute superficial femoral artery diameter (mm) at
baseline and in response to exercise and water immersion. Bars
represent group mean, error bars are SE, gray lines are individual
data. � interaction: intervention x time (p < 0.05); y different
from baseline (p < 0.05).

Figure 4. Individual absolute change in superficial femoral artery
flow-mediated dilation (FMD, %) in response to exercise and
water immersion.
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is the small adaptive reduction in resting blood pres-
sure induced by exercise training). We were interested
also in systemic cardiovascular responses because the
potential for lower-limb heating to provide therapeu-
tic benefit is largely unknown as this intervention has
not been comprehensively described or directly com-
pared to exercise.

Our main findings were that: 1) antegrade shear
rate in the SFA increased at least 2-fold following each
of the stressors, and to a greater extent following hot-
water immersion than exercise; 2) core and muscle
temperatures were also higher after immersion; and 3)
acute endothelium-dependent vasodilation in the SFA
was not consistently altered by either intervention.

Shear rate

Increased antegrade shear rate is an important driver
in vascular adaptation. To our knowledge, this is the
first time that SFA shear rate has been assessed and
demonstrated to be increased substantially in response
to lower-limb heating. The peak SFA shear rate
induced by lower-limb heating in this study (265 s¡1,
95%CI: 196 to 335 s¡1) was within the range of bra-
chial shear rates that have been associated with acute
and chronic improvements in FMD (»200 s¡1 during
handgrip exercise7 and forearm heating,5 »230 s¡1

during cycling5), but lower than others (»350 s¡1 dur-
ing forearm heating,10 »450 s¡1 during cycling8).
However, in the literature there is considerable varia-
tion in brachial shear rate between very similar fore-
arm heating protocols (»200 s¡15 vs. »350 s¡110).
Contextualising the shear changes demonstrated here
is therefore challenging, as comparative data in the
lower-limb vessels are scarce – the lower-limb arteries
appear to be persistently overlooked in studies of shear
rate manipulation. However, a human MRI study
found smaller mean and peak shear rates for the SFA
than brachial artery, by »33% and »20%, respec-
tively,54 so the lower SFA shear rates found in our
study than in some studies on the brachial artery may
be anticipated.

It remains unknown whether a threshold exists
above which shear rate must be increased to induce
adaptation, and if so, whether it differs between limbs
or in healthy versus diseased vessels. Until such evi-
dence is available in humans, the implications of our
shear stress findings (Table 2) are difficult to quantify
or comment on. Importantly though, in vitro studies

on animal models indicate that endothelial nitric
oxide synthase upregulation in endothelial cells
responds to shear stress in a dose-dependent man-
ner.55 Therefore, any increase in antegrade shear
rate may induce some adaptation, if repeated
appropriately.

The lesser increase in shear rate when measured
after exercise than after immersion possibly reflects a
methodological bias. The peak of the exercise
induced-shear response was likely to have been
missed by our protocol because the largely-metabolic
stimulus was already decaying following exercise,
whereas the heat stimulus following lower-limb heat-
ing was still mostly present. However, the range of
shear rates reported in this study for both immersion
and exercise were not dissimilar to those exhibited in
other studies manipulating shear in conduit vessels,5,7

as mentioned above. The lower shear rate after exer-
cise could also be partly due to the increased Dbase

induced by the exercise. Furthermore, the difference
in Tc and/or Tm could contribute to the shear rates
generated, as the immersion protocol resulted in
higher temperatures in both the core and muscle;
however a matched-temperature study design would
be required to resolve this, and is a possible future
research direction. Regardless of the comparison
between interventions however, the finding of an ele-
vated shear rate, in particular antegrade, following
lower-limb heating is significant due to the important
role of repetitive antegrade shear stress in promoting
vascular adaptation.

Systemic cardiovascular strain

Knowledge of the MAP-lowering effects of hot-water
immersion alone, regardless of the comparison with
exercise, is valuable because post-stress hypotension is
important in its own right and for mediating cardio-
vascular adaptations, as mentioned above and
described below. The heating protocol was effective in
inducing a hypotensive effect in recovery whereas
exercise was not in this study. The average MAP
reduction post-immersion of 8 mmHg (95%CI: ¡3
to ¡12 mmHg) was similar to that found previously
following passive heating.24 Whether repetitive heat-
ing (e.g., a 6-week conditioning intervention) would
lower baseline blood pressure is unknown.

As hypotension appears necessary for expanding
plasma volume,56 heat stress may be a useful such
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stimulus. Convertino et al.19 demonstrated that
thermal effects alone accounted for 40% of the
exercise-induced plasma volume expansion. Larger
blood volume, even via the plasma alone, improves
cardiovascular function at rest and across the range
of cardiovascular capacity, by increasing stroke vol-
ume,57 lowering heart rate and increasing aerobic
capacity.58,59 The significant reductions in MAP
demonstrated here may be important in this role,
although the dose-response relations of acute hypo-
tensive duration and magnitude required to pro-
voke this hypervolemia effect are not yet fully
known.

Hot-water immersion additionally increased heart
rate and tended to increase cardiac output, as occurs
with various forms of passive heat stress.24,28 Increased
heart rate and cardiac output with a concomitant,
albeit non-significant, reduction in blood pressure
would indicate the heat stimulus provides an attenu-
ated increase in cardiac workload compared to that
for an equivalent increase in heart rate during exer-
cise.27 This increased cardiac work plus the increased
heart temperature as discussed below, could be inter-
preted as a gentler but perhaps appropriate stressor
for those with contraindications to exercise, i.e.,
increased cardiac work pertaining to volume and tem-
perature changes rather than pressure changes. Over-
all, these results indicate that hot-water immersion
may have potential to induce at least some of the acute
hemodynamic and cardiovascular effects associated
with exercise.

Temperature

Core and muscle temperature increased significantly,
and to a greater extent upon completing immersion
than exercise. As mentioned above, this difference
may have impacted on the shear rate generated follow-
ing interventions, but regardless of the temperature-
dependence of the shear rate response, heating of the
heart and skeletal muscle can mediate other beneficial
adaptations including muscle growth and stress
response proficiency.20,24,25 The thermal impulse for
the ‘core’ and gastrocnemius during early recovery
was »3 times larger following the passive warming,
but as for the shear stress response, it is unresolved as
to whether this would confer a similarly-larger stimu-
lus for adaptation; e.g., what is the threshold perturba-
tion, and for which adaptation in which tissues?

Nevertheless, it seems reasonable to conclude that
lower-limb heating may be a suitable stimulus to
induce such temperature elevations independent of
exercise.

Flow-mediated dilation

FMD has been used as a “vascular health” outcome in
thousands of studies. Despite its widespread usage, a
systemic understanding of FMD (and its components)
to different stimuli (exercise36 and discrete stressors)
is still lacking. The lower-limb arteries are seldom
studied; FMD is assessed predominantly in the bra-
chial artery, yet we are often most interested in the
lower limbs for reasons described in the Introduction.
Where it has been looked at, the arterial function in
the upper limb appears to be a poor predictor of that
in the lower limb.64 Furthermore, much remains
unknown about the acute vascular effects of exercise
(or other stressors); in particular the relationship of
the shear stimulus, the resultant acute FMD response,
and the associated long-term adaptation. This study
provided a unique opportunity to assess the acute
responses of 2 different interventions targeting the
same outcome response (i.e., increased antegrade
shear in the SFA). Moreover, no comparative data
exist for the effect of heating on lower-limb FMD.
Only one study to our knowledge has looked at the
effect of acute exercise on lower-limb FMD; this was
within one hour of finishing a marathon, and femoral
FMD was reduced.60

With this background in mind, a hypothesis
regarding the likely SFA FMD change was difficult, as
the acute effects of exercise (and even more so, other
interventions) on FMD (in the SFA as well as other
arteries) are both equivocal and insufficiently charac-
terized at present. These effects depend on timing of
measurement, intensity, duration and mode of exer-
cise, the cohort studied and factors such as diameter
changes intrinsic to the study.36 Indeed, conflicting
data exist, with several acute exercise studies reporting
no change in FMD with an increase in Dbase,

60,61 as in
this study, although others have described a reduction
in FMD with increased Dbase following exercise.62,63

Due to the paucity of comparative data for our study,
we did not expect to be able to formulate a hypothesis
on the lower-limb responses based on previous find-
ings of upper-limb FMD responses during similar
stress.
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Several factors may explain the lack of change in
FMD. Oxidative stress generated during exercise, par-
ticularly higher-intensity exercise, has been suggested
to explain the reported reduction in FMD following
exercise. However, exercise training improves antioxi-
dant status;64 therefore, given that our participants
typically exercised at least 3 d per week, they may
have been better able to tolerate the acute oxidative
stimulus generated by the intervention, resulting in lit-
tle or no perturbation of FMD. Similarly, the exercise
was of moderate intensity (65-75% age-predicted HR
maximum), which may not have induced much oxida-
tive response in this cohort. Substantial variability in
both Dbase and FMD responses would also conceal any
small effect of either intervention. The variation
shown here seemed large (Table 2 and Fig. 4); however
most studies of this nature do not adequately present
individual variation, making comparison difficult.
There were no significant correlations evident between
FMD and shear rate or diameter to help explain this
variability (data not presented). Acute changes in
diameter, although controlled for here with the allo-
metric scaling, may present a limitation for the use
and interpretation of FMD in an experimental cross-
over setting.

Application

Some individuals may stand to benefit from such a
stressor more than others; for example, patients with
peripheral arterial disease, who have a severely limited
exercise capacity as a consequence of their condition.
Repeated dry sauna therapy in a peripheral arterial dis-
ease cohort demonstrated a significant reduction in
symptoms and an improvement in several measures of
leg perfusion;65,66 however, mechanisms for this and
measures of cardiovascular response were not included.
Patients with heart failure have also been treated with
sauna resulting in improved cardiac function and
reduction of arrhythmias.15,30,31 The extent to which
heat can provide health benefits in clinical groups
appears promising but has not yet been fully explored.

Conclusion

Heat, administered by sitting with the lower limbs
immersed in hot water may have potential to be used
as a stand-alone stressor, at least as a way to induce
transient increased peripheral artery shear rate,

increased core and muscle temperature, and transitory
hypotension. The lower-limb heating protocol was
well-tolerated in this young, healthy group. Future
studies should focus on the tolerance and physiologi-
cal responses to a passive heat stimulus such as this in
other population groups, and importantly, the adapta-
tions to repetitive exposure. Patient populations, who
have much to gain from exercise but often have a
compromised ability to perform exercise, would bene-
fit from a potent and time-efficient means of inducing
the health-related adaptations of exercise by such
alternative methods.

Abbreviations
BP blood pressure
Dbase baseline diameter
DBP diastolic blood pressure
Dpeak peak diameter
FMD flow-mediated dilation
HR heart rate
MAP mean arterial pressure
Q_ cardiac output
SBP systolic blood pressure
SFA superficial femoral artery
SR shear rate
SV stroke volume
Tc core temperature
Tm muscle temperature
DT change in temperature
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