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Abstract

Institution of a low-NaCl diet beginning at embryonic day 3 and continued throughout pre- and 

postnatal development has widespread effects on the neuroanatomical organization of the first 

gustatory relay in the nucleus of the solitary tract. To determine when these effects are expressed 

postnatally, the terminal field of the chorda tympani nerve was compared between sodium-

restricted and sodium-replete rats at postnatal days 15–17, postnatal days 25–27, postnatal days 

35–37, and adults. Total terminal fields were significantly larger in postnatal days 35–37 and adult 

sodium-restricted rats compared with aged-matched controls. The group-related differences appear 

related more to a remodeling of the terminal field in the dorsal zone of the terminal field in 

controls. Specifically, the terminal field volume in the dorsal zone in controls decreased 

dramatically from postnatal days 25–27 to postnatal days 35–37 and then again from postnatal 

days 35–37 to adulthood. In contrast, the fields did not change during development in sodium-

restricted rats. These findings suggest that remodeling of the chorda tympani field occurs in 

controls at about the developmental period of taste response maturation. The lack of remodeling in 

sodium-restricted rats may be explained by a corresponding lack of functional response 

development to sodium salts. These results also illustrate the specificity and extent of how early 

dietary manipulations shape the developing brainstem.
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An extensive literature examines the consequences of sensory restriction during 

development and the reversal of such effects in the auditory, olfactory, visual, and 

somatosensory systems (Hubel and Wiesel, 1970; Renehan et al., 1989, 1994; Henderson et 

al., 1992; Cummings and Brunjes, 1997; Cummings et al., 1997; Buonomano and 

Merzenich, 1998; Catalano and Shatz, 1998; Rauschecker, 1999; Fox et al., 2002; Katz and 

Crowley, 2002; Yan, 2003). Findings from these studies have been important in not only 

elucidating the responses of the restricted sensory system to abnormal environments, but 

also in understanding the processes required for normal development.

The developing gustatory system is no exception. Restriction of maternal dietary sodium 

(0.03% NaCl) beginning on or before embryonic day 8 (E8) and continuing throughout 

development results in profound peripheral and central functional alterations. The early 

dietary restriction results in a 50%–70% reduction of chorda tympani nerve responses to 

sodium salts when compared with rats maintained on sodium-replete chow (0.5% NaCl) 

(Hill et al., 1986; Hill, 1987; Hill and Przekop, 1988). These reductions are specific to 

sodium salts, since responses to non-sodium salts are unaffected. Widespread functional 

alterations also occur at the first central relay. Early dietary sodium restriction reduces 

sodium salt response frequencies of neurons in the nucleus of the solitary tract (NTS) by as 

much as 50%, and severely decreases the proportion of cells that respond best to NaCl (Vogt 

and Hill, 1993). Similar to the periphery, only responses to sodium salts are affected in NTS 

neurons. Therefore, there are similar and specific functional taste response alterations in 

peripheral and central gustatory neurons following early dietary sodium restriction.

Restriction of dietary NaCl at early stages of development also alters the morphology of the 

NTS (King and Hill, 1991). Specifically, the dorsal-most region of the chorda tympani 

terminal field in the NTS is significantly increased in size in sodium-restricted rats, whereas 

more ventral zones are unaffected. Moreover, the terminal zone of the lingual-tonsillar 

branch of the glossopharyngeal nerve and the terminal zone of the greater superficial 

petrosal nerve are unaffected by the dietary restriction paradigm (King and Hill, 1991; 

Sollars and Hill, 2000). Further morphological alterations occur in the structure of neurons 

located within the NTS. The dendritic organization of NTS neurons in developmentally 

sodium restricted rats and in restricted rats fed the sodium replete diet after weaning are 

much different than that in control rats (King and Hill, 1993). The dendrites of putative relay 

neurons, multipolar and fusiform neurons, are longer and/or have more dendritic processes 

in sodium restricted rats compared with controls. Thus, the expanded terminal field of the 

chorda tympani nerve co-exists with increased dendritic branching of neurons in the NTS.

In all of the studies noted above, dietary sodium restriction was performed early in prenatal 

development and the consequences of the manipulation were observed at adulthood only. 

Therefore, it is possible that selective restriction-induced alterations to the adult terminal 

field pattern could be in place at or near the time of birth and, therefore, be present at early 

postnatal ages. Alternately, the abnormal afferent terminal field may be expressed only at 

later postnatal times. These two outcomes imply much different mechanisms.

During normal development, significant stimulus-elicited responses are not seen until about 

the second post-natal week (Hill and Almli, 1980; Yamada, 1980; Ferrell et al., 1981). 
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However, sodium-restricted rats fail to develop normal functional responses to sodium (Hill 

et al., 1986; Hill, 1987; Hill and Przekop, 1988). If terminal field morphology is similar 

between sodium-restricted and control rats during early development, this finding would 

imply that the diet-related differences in taste activity expressed later in development are 

responsible for the morphological alterations at adulthood. Conversely, if terminal field 

morphology is abnormal in sodium-restricted rats early in development, this would suggest 

that factors established prior to the onset of mature taste function are responsible for the 

alterations in terminal field morphology.

Therefore, the age at which the terminal fields of the chorda tympani nerve differs between 

control and sodium restricted rats may provide insights about mechanisms of synaptic 

plasticity in the central gustatory system. To explore the potential mechanisms of plasticity, 

the current study focused on the time course of the expression of the terminal field 

development at four postnatal ages in control and sodium-restricted rats.

 EXPERIMENTAL PROCEDURES

 Animals

The topography of the chorda tympani nerve terminal field in the NTS was studied via 

anterograde transport of 3 kD biotinylated dextran amine in two groups of Sprague–Dawley 

rats at four developmental ages. Both sodium-restricted and control rats were studied at 15–

17 days postnatal (P15–17), 25–27 days postnatal (P25–27), 35–37 days postnatal, and 43–

200 days postnatal (adult). These ages were selected to correspond to important periods 

during normal development: during normal increased sensitivity to Na+ salts in the NTS 

(P15–17) (Hill et al., 1983); during the end of the period when the chorda tympani nerve 

terminal field is adult-like in size within the NTS and when peripheral responses to salts are 

nearly mature (P25–27) (Hill and Almli, 1980; Yamada, 1980; Ferrell et al., 1981; Lasiter et 

al., 1989; Lasiter, 1992); before taste responses in NTS neurons mature (P35–37) (Hill et al., 

1983), and at adulthood (adult; >50 days) when adult morphology and function occur (Hill 

and Almli, 1980; Yamada, 1980; Ferrell et al., 1981; Lasiter et al., 1989; Lasiter, 1992). The 

adult period also corresponds with the age used in our prior studies of dietary-induced 

changes in chorda tympani nerve terminal field (King and Hill, 1991). The number of rats 

per group was as follows: restricted P15–17, n=5; control P15–17, n=5; restricted P25–27, 

n=6; control P25–27, n=5; restricted P35–37, n=5; P35–37, n=6; restricted adult, n=5; 

control adult, n=5.

Sodium restriction during early development was accomplished by feeding pregnant rats 

(Harlan Sprague–Dawley; Dublin, VA, USA) a sodium-deficient diet consisting of 0.03% 

NaCl (I.C.N-Nutritional Biochemicals; Aurora, OH, USA) from E3 until the time of 

weaning (21 days postnatal). Pups born to mothers fed the NaCl-deficient diet were weaned 

on the NaCl-deficient diet. Control rats were born to mothers that were always maintained 

on normal 0.5% NaCl rat chow. Distilled water was freely available to all rats throughout the 

study.
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 Surgical procedures

All experiments were performed according to procedures approved by the University of 

Virginia Animal Care and Use Committee and National Institutes of Health guidelines. All 

efforts were made to minimize the number of animals used and their suffering. Rats were 

anesthetized with Methohexital sodium (Brevital®, 50 mg/kg, i.p.; King Pharmaceuticals; 

Bristol, TN, USA). A small incision was made on the ventromedial portion of the neck. The 

ventral aspect of the tympanic bulla was exposed and a hole was placed in its surface using 

microfine forceps. The chorda tympani nerve was sectioned distal to the geniculate ganglion 

and dimethylsulfoxide was applied to the cut end for approximately 15 s. Crystals of 

biotinylated dextran amine (Molecular Probes; Eugene, OR, USA) were placed on the nerve 

and the animal remained stabilized in a supine position for approximately 30 min. Thermal 

regulation was maintained through the use of a standard heating pad. Upon recovery from 

the anesthetic, rats were returned to their home cage.

Optimal time of transport for the dextran was determined to be a minimum of 8 h. Rats were 

killed with sodium pentobarbital (80 mg/kg, i.p.) 8–24 h after the application of the 

anterograde tracer. No differences were noted as a result of the length of time that the tracer 

was allowed to transport. Rats were perfused transcardially with modified Krebs solution 

(pH=7.3) containing 0.5% glucose (Lasiter, 1992) followed by 8% paraformaldehyde. 

Medullae were then removed and placed in 8% paraformaldehyde overnight. Brainstems 

were sectioned in the horizontal plane at 50 μm with a vibratome to allow the visualization 

of the entire extent of the terminal fields in both the rostral–caudal and medial–lateral planes 

(King and Hill, 1991; Krimm and Hill, 1997). Tissue was then processed using standard 

diaminobenzidine (DAB) procedures.

 Quantification

Terminal fields of the chorda tympani nerve were observed under brightfield microscopy. 

Serial reconstruction of the labeled chorda tympani afferent field was accomplished using a 

computer microscope system (Neurolucida; MicroBrightField, Inc.; Burlington, VT, USA). 

Companion software calculated the area of each outlined section and the area was multiplied 

by the thickness of the section. All sections were summed to give an estimate of the total 

volume of the chorda tympani nerve terminal field (Lasiter et al., 1989; King and Hill, 1991; 

Lasiter, 1992). The data were coded prior to measurement so that terminal field 

measurements were obtained blind relative to the experimental group.

 Statistical tests

Planned, a priori comparisons were used to examine differences in mean terminal field 

volumes. Separate analyses were done for each dietary group to determine age-related 

differences. A separate analysis was done to compare group-related differences at each age. 

Accordingly, the α-level of 0.05 was divided by the number of comparisons in each analysis 

(0.05/3 for each age-related analysis and 0.05/4 for diet-related differences).
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 RESULTS

 Quality of terminal field label

As seen in Fig. 1, terminal fields were densely labeled in control and sodium-restricted rats 

in all age groups, and systematic differences in labeling efficiency were not noted among 

groups. In many sections, clear anterograde labeling was evident beyond the densest portion 

of the terminal field and was included in the volume measurement (e.g. Fig. 1A). Terminal 

endings and varicosities could be seen at the margins of the label (see Fig. 1A). Therefore, 

terminal field volume measurements included the entire region occupied by all labeled axons 

with terminals. Data were not included from animals in which robust and distinct labeling 

was not evident.

 Total terminal field volumes

Diet-related differences in the chorda tympani terminal field initially occurred in the P35–37 

group and were maintained at adulthood (Fig. 2). At P15–17 days, the mean (±S.E.M.) 

terminal field volume in the NTS of controls was 64.9±7.9×106 μm3 compared with 

64.2±8.0×106 μm3 in sodium-restricted rats (P>0.10). Similarly, there were no significant 

differences between controls and sodium-restricted rats at P25–27 (controls: 67.2±4.8×106 

μm3; sodium restricted: 55.5±1.3×106 μm3; P>0.10). However, at P35–37 the terminal field 

volume in controls was approximately 50% smaller than in sodium-restricted rats (controls: 

25.4±2.9×106 μm3; sodium restricted: 49.0±9.7×106 μm3; P<0.01), and the terminal field in 

controls was approximately 60% smaller than in sodium-restricted rats at adulthood 

(controls: 16.3±1.5×106 μm3; sodium restricted: 39.9±3.4; P< 0.0001).

As seen in Fig. 2, the diet-related changes that occurred in P35–37 and adult rats were due to 

changes in the terminal field volume in controls and not to changes in sodium-restricted rats. 

That is, the volume decreased significantly in control rats from P25–27 to P35–37 days 

(P<0.0001) and then again from P35–37 to adulthood (P<0.001). In contrast, there were no 

age-related changes in terminal field volume in sodium-restricted rats (Fig. 2; P>0.10).

 Terminal field analysis by dorsal/ventral zones

To be consistent with our previous studies of the chorda tympani terminal field in the NTS 

(King and Hill, 1991; Krimm and Hill, 1997), the terminal field was divided into three 

contiguous horizontal zones designated as dorsal, intermediate and ventral. However, due to 

smaller NTS sizes for the youngest age in the current study and difficulty in visualizing all 

anatomical landmarks at this age or developmental differences in the location of the 

structure (e.g. the salivatory nucleus extended much more dorsally in young rats), the 

dorsal–ventral zone classifications were revised from those used previously (King and Hill, 

1991; Krimm and Hill, 1997). The dorsal zone extended dorsally from the ventral-most 

extent of the solitary tract and included sections in which the fourth ventricle occupied the 

largest medial–lateral extent (Fig. 3A). The dorsal zone was further characterized by the 

spinal trigeminal tract extending to approximately the rostral-most extent of the NTS and by 

the lack of the hypoglossal nucleus and the facial nucleus (Fig. 3). The intermediate zone 

was defined by sections in which the hypoglossal nucleus was present, where the spinal 

trigeminal tract extended rostrally beyond the inferior cerebellar peduncle, and by the 
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presence of the dorsal extent of the facial nucleus (Fig. 3B). The ventral zone of the field had 

an expanded hypoglossal nucleus and facial nucleus compared with the intermediate 

sections (Fig. 3B and 3C). In all animals, regardless of age- or diet-related group, the 

terminal field in the intermediate zone was most easily identified and most consistent across 

animals. Axons entered the NTS from a rostral–lateral direction and projected into the NTS 

to form a dense and compact terminal field. The trajectory of the entering axons was 

characteristic in that they were parallel to the orientation of the field (Figs. 2B, 2E, 2H, 3B). 

Dorsal zones were characterized by a less compact terminal field organization and axons 

from a rostral–lateral direction, while the terminal field was oriented primarily medial to 

lateral (Figs. 2A, 2D, 2G, 3A). Ventral zones lacked the topography of the terminal field 

seen in the intermediate zone in that it was narrower than the intermediate zone and less oval 

in shape (Figs. 2C, 2F, 2I, 3C). Therefore, both landmarks near the terminal field and the 

overall shape of the terminal field were used to categorize sections into dorsal, intermediate 

and ventral sections. It must be pointed out that we use the terms “dorsal,” “intermediate,” 

and “ventral” zones here to be consistent with earlier reports (King and Hill, 1991; Krimm 

and Hill, 1997); however, the orientation of the NTS within the brainstem is such that the 

dorsal-most portion of the chorda tympani nerve terminal field label in the NTS is caudal to 

the majority of terminal field label in the intermediate and ventral zones. Therefore, the 

“dorsal” zone more accurately represents the dorsal–caudal portion of the field in the NTS 

and the intermediate and ventral sections represent more ventral–rostral portion of the 

terminal field in the NTS.

 Dorsal zone

The pattern of group-related and age-related differences in the dorsal zone of the chorda 

tympani field was generally the same as that seen for the total terminal field. The only 

exception was that diet-related differences did not occur until after P35–37 days in the dorsal 

region (Fig. 4A), as compared with before P35–37 days in the total terminal field (Fig. 2).

There were no differences in the mean (±S.E.M.) volumes between control and sodium-

restricted rats at 15–17 days (control: 42.8±5.4×106 μm3; sodium restricted: 34.9± 9.6 106 

μm3; P>0.10) at 25–27 days (control: 40.6±5.5×106 μm3; sodium restricted: 34.2±1.2×106 

μm3; P>0.10) and at 35–37 days (control: 15.5±1.3×106 μm3; sodium-restricted: 

28.6±6.5×106 μm3; P>0.10; Fig. 4A). However, the terminal field volume in the dorsal zone 

of adult control rats was approximately 65% smaller in controls compared with sodium-

restricted rats (control: 8.0±0.8×106 μm3; sodium restricted: 23.0±3.1×106 μm3; P=0.002; 

Fig. 4A).

As noted for total terminal field measurements (Fig. 1), the dietary group-related effects 

appear due to an age-related decrease in terminal field size in controls, but not in sodium-

restricted rats. There was approximately a 60% decrease in dorsal terminal field volume in 

controls from P25–27 to P35–37 (P=0.001) and an additional 50% decrease from P35–37 to 

adulthood (P=0.001). No significant age-related changes in dorsal terminal field volume 

occurred in sodium-restricted rats (Fig. 4A).

While there were obvious differences in the terminal field volumes in comparable sections 

across ages, the age-related differences for controls were also due to more sections in the 
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dorsal zone of young rats containing terminal field label compared with rats aged 35–37 

days and adults. Specifically, terminal field label was seen in an average (±S.E.M.) of 8.8 

(±0.2), 7.6 (±0.8), 5.2 (±0.2), and 5.0 (±0.3) 50 μm sections in P15–17, P25–27, P35–37 and 

adult control rats, respectively. There was a significant decrease in the number of labeled 

sections between P25–27 and P35–37 (P=0.01) and between P35–37 and adults (P=0.01). 

Therefore, the label in P15–17 control rats extended approximately 190 μm dorsal to that 

seen in adult control rats. This is especially impressive given the large difference in brain 

size between the two groups. No significant differences in the number of sections containing 

label were found in sodium-restricted rats.

 Intermediate zone

Unlike noted for the dorsal zone, there were no differences in terminal field volumes 

between control and sodium-restricted rats at any age (Fig. 4B). However, the means 

(±S.E.M.) at P35–37 days (control: 7.6±1.5×106 μm3; sodium-restricted: 15.6±2.9×106 μm3; 

P>0.05) and at adulthood (control: 6.2±0.8×106 μm3; sodium-restricted: 9.3±1.1×106 μm3; 

P>0.05) approached significance.

There was approximately a 56% decrease in terminal field volume in controls initially 

between P25–27 and P35–37 (P25–27: 17.4±1.2×106 μm3; P35–37: 7.6±1.5×106 μm3; 

P=0.001) and no further change in volume from P35–37 to adulthood (Fig. 4B). Therefore, 

the age-related decrease in terminal field volume of controls in the intermediate zone was 

similar to that seen in the dorsal zone.

There were no age-related or diet-related differences in the number of sections that 

contained terminal field label in the intermediate zone (P>0.10).

 Ventral zone

The pattern of terminal field changes (or lack of changes) in the ventral zone was the same 

as described for the intermediate zone (Fig. 4C). Specifically, there were no differences in 

terminal field volumes between control and sodium-restricted rats at any age, although the 

means (±S.E.M.) at P35–37 days (control: 2.3±0.9×106 μm3; sodium-restricted: 5.3±1.3×106 

μm3; P>0.05) and at adulthood (control: 2.2±0.6×106 μm3; sodium-restricted: 7.6±2.7×106 

μm3; P>0.05) approached significance. Furthermore, there was approximately a 75% 

decrease in terminal field volume in controls initially between P25–27 and P35–37 (P25–27: 

9.0±0.2×106 μm3; P35–37: 2.3±0.6×106 μm3; P=0.001) and no further change in volume 

from P35–37 to adulthood (Fig. 4C). There were no age-related or diet-related differences in 

the number of sections in the ventral zone that contained terminal field label (P>0.10).

 DISCUSSION

The results of this study demonstrate that pre- and post-natal sodium restriction-induced 

alterations in the rat NTS occur between postnatal days 25 and 35. That is, the changes 

reported due to early dietary manipulations (King and Hill, 1991) are not expressed 

morphologically until after weaning. Therefore, even though the dietary manipulation must 

begin early in embryonic development to have profound central morphological influences 

(King and Hill, 1991), the anatomical expression of the effects does not occur until much 
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later. The group-related differences appear related more to the lack of terminal field 

reorganization during development in sodium-restricted rats and not to an abnormally 

expanded field.

Findings from these experiments are the first to show that the chorda tympani field remodels 

with a four-fold decrease in terminal field volume from postnatal days 25–35 during normal 

development. Unlike controls, however, there was a lack of a developmental decrease in total 

volume and lack of terminal field reorganization in sodium-restricted rats. Once the field 

expanded normally by P15–17 in sodium-restricted rats, it was “frozen” at an immature 

state. That is, the overall size and the volume in the dorsal zone of the field did not change 

with age; the expanded terminal field in sodium-restricted rats in the dorsal zone was 

maintained well into adulthood (Fig. 4A and King and Hill, 1991).

 Comparison with previous developmental studies

The data from control rats in the current study contrast with those reported by Lasiter 

(1992). They showed that there was a large increase in total terminal field volume of the 

facial nerve from P7 to approximately P25 and that the size was stable thereafter. The lack 

of observing a significant increase in terminal field volume by P15 followed by a 

reorganization after P25 may be partially due to differences in labeling techniques. Lasiter 

(1992) labeled the central stump of the facial nerve (combined chorda tympani and greater 

superficial petrosal nerves) with Lucifer Yellow in situ. Therefore, he killed the rats before 

applying the anterograde tracer and allowed the tracer to transport three to six hours. It is 

possible that these procedures are less sensitive for transport efficiency and for visualization 

of the terminal field compared with the procedures used here.

The difference in the labels and reaction used in our earlier studies (King and Hill, 1991; 

Krimm and Hill, 1997) compared with the current study may also explain the larger volumes 

seen here for both adult controls and sodium-restricted rats. Differences in how the dorsal–

ventral zones were defined among studies also likely contribute to differences in absolute 

volumes. We chose to anchor our categorization of the dorsal–ventral zones with the 

intermediate zone (see Experimental Procedures), primarily because of the ability to reliably 

identify these sections in all animals. However, it is possible that differences in how the 

three zones were defined resulted in a larger dorsal zone here as compared with our previous 

work (King and Hill, 1991; Krimm and Hill, 1997). Nonetheless, the largest diet-related 

changes in all studies occurred in the dorsal zone.

Additionally, Pittman and Contreras (2002) provide an interesting contrast to our dietary-

induced effects. By feeding rats a high NaCl diet (6.0% NaCl) throughout pre- and postnatal 

development, the chorda tympani terminal field was also abnormally large in the dorsal zone 

compared with controls. Thus, early low and high NaCl diets produced similar effects in 

terminal field development. Pittman and Contreras (2002) did not assess when the diet-

related effects occurred; therefore, developmental comparisons cannot be made.

 Neural activity and terminal field reorganization

Interestingly, the age when the total terminal field volume in sodium-restricted rats is 

noticeably different from that in control rats is at about the same age that functional sodium 
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responses in the chorda tympani nerve diverge between groups (Hill, 1987). This is when 

stimulus-induced responses reach maturity in control rats (Hill and Almli, 1980; Yamada, 

1980; Ferrell et al., 1981). Therefore, the afferent activity responsible for the reorganization 

of the terminal field in controls may not be present in sodium-restricted rats. It should be 

noted, however, that there is a nonsignificant decrease in terminal field volumes between 

P15–17 and adult sodium-restricted rats (Fig. 2), which is consistent with a corresponding, 

but small, age-related increase in sodium salt responses (Hill, 1987). Furthermore, rats given 

restricted taste stimulation early postnatally (Lasiter, 1995) failed to develop normal-sized 

terminal fields. However, the terminal fields of rats failing to receive adequate stimulation in 

Lasiter’s (1995) study were abnormally small, unlike the enlarged fields seen with 

developmental sodium restriction. Since Lasiter (1995) first manipulated the gustatory 

system after birth and rats in the current study had the diet manipulation initiated very early 

in development, it is likely that rats in the two studies do not share the same prenatal brain 

developmental programs and may explain the differences in experimentally induced 

outcomes.

The role of afferent activity in shaping neuronal architecture during development has also 

been implicated in neurons presumed to be postsynaptic to chorda tympani neurons. Liu et 

al. (2000) showed that NTS neurons that are especially sensitive to salt taste stimuli decrease 

dendritic field size from P22–28 to adulthood in control rats; dendritic field size in neurons 

not sensitive to salt stimuli fails to change with age. This suggests that the postsynaptic 

targets follow an activity-dependent “pruning” similar to the decrease in terminal field size. 

Similar examples from other sensory systems demonstrate that neuronal activity shapes 

terminal fields (Cline, 1998; Zhang et al., 1998, 2000; Tao et al., 2000, 2001; Zhang and 

Poo, 2001) through “pruning” of axonal arbors (Nakamura and O’Leary, 1989; O’Leary et 

al., 1990; Weimann et al., 1999; Lichtman and Colman, 2000; Bagri et al., 2003; Kantor and 

Kolodkin, 2003; Watts et al., 2003).

 Non-activity dependent reorganization of terminal fields

Dietary-induced alterations could also occur due to cellular/molecular mechanisms that act 

upon the incoming fibers and/or the target NTS. For example, differences in factors such as 

neurotrophins (Snider, 1994; Huang and Reichardt, 2001) and molecular gradients such as 

ephrins and their receptors (Goodhill and Richards, 1999; Prakash et al., 2000; Yates et al., 

2001; Hansen et al., 2004; King et al., 2004; Person et al., 2004) may play a role in 

determining the diet-related differences in terminal fields at adulthood. As such, the effects 

seen here may not be entirely activity dependent, but may also include activity-independent 

mechanisms. It is possible that the processes that direct development of the chorda tympani 

nerve terminal field may be affected by dietary manipulations very early in development and 

only expressed much later.

Regardless of the mechanism(s) that underlie the current results, this study demonstrates that 

alterations in terminal field volumes of the chorda tympani nerve occur during normal 

development and points to a dramatic structural reorganization. Further, such age-related 

alterations are centered in the dorsal zone of the terminal field, suggesting that this region 

may be the focus of significant neuronal modifications that are coordinated with maturation 
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of functional and/or behavioral development (current study and Lasiter and Kachele, 1990; 

King and Hill, 1991; Lasiter and Diaz, 1992; Lasiter, 1995; Krimm and Hill, 1997; Pittman 

and Contreras, 2002). Moreover, the lack of these alterations in sodium-restricted rats 

provides an excellent model to further examine the underlying mechanisms responsible for 

terminal field maturation and plasticity in the gustatory brainstem.
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Fig. 1. 
Photomicrographs of horizontal sections through the rostral NTS in a P15–17 day control rat 

(A, D, G), an adult sodium-restricted rat (B, E, H) and an adult control rat (C, F, I). The 

dorsal (A, B, C), intermediate (D, E, F) and ventral (G, H, I) zones of the chorda tympani 

nerve terminal field are shown for each rat. The chorda tympani terminal field is the dark 

reaction product within the rostral pole of the NTS. Dashed lines outline the borders of the 

NTS. The scale bar in panel A denotes 200 μm and the solid arrow points to examples of 

axons with visible varicosities. L, lateral; R, rostral.
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Fig. 2. 
Total chorda tympani nerve terminal field volumes in the NTS in control (solid bars) and 

sodium-restricted rats (open bars) at P15–17, P25–27, postnatal days 35–37 and at 

adulthood. Standard errors (S.E.M.) are shown above the respective bar. Single asterisks 

denote mean volumes significantly different than the preceding age group of controls. 

Double asterisks denote significantly different means between same-aged control and 

sodium-restricted rats.
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Fig. 3. 
Photomicrographs of Nissl-stained horizontal sections in a P35 day control rat illustrating 

sections typical of the dorsal (A), intermediate (B), and ventral (C) zones of the chorda 

tympani nerve terminal field and anatomical landmarks in the brainstem. The solid line 

denotes the outline of the NTS. The terminal fields of the chorda tympani nerve are shown in 

the rostral pole of the NTS. This tissue is used for illustration purposes only and data were 

not obtained from Nissl-stained sections. The scale bar=500 μm in A. icp, inferior cerebellar 

peduncle; L, lateral; psV, spinal trigeminal tract; R, rostral; SpV, interpolar division of spinal 

trigeminal nucleus; ST, solitary tract; VCN, ventral cochlear nucleus; VII, facial nucleus; 

XII, hypoglossal nucleus; 4th, fourth ventricle.
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Fig. 4. 
Chorda tympani nerve terminal field volumes for control (solid bars) and sodium-restricted 

rats (open bars) in the dorsal (A), intermediate (B) and ventral (C) zones of the terminal field 

in rats aged P15–17, P25–27, postnatal days 35–37, and adults. S.E.M.s are shown above the 

respective bar. Single asterisks denote mean volumes significantly different than the 

preceding age group of controls. Double asterisks denote significantly different means 

between same-aged control and sodium-restricted rats.
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