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Abstract

Deep learning is rapidly advancing many areas of science and technology with multiple success 

stories in image, text, voice and video recognition, robotics and autonomous driving. In this paper 

we demonstrate how deep neural networks (DNN) trained on large transcriptional response data 

sets can classify various drugs to therapeutic categories solely based on their transcriptional 

profiles. We used the perturbation samples of 678 drugs across A549, MCF‐7 and PC‐3 cell lines 

from the LINCS project and linked those to 12 therapeutic use categories derived from MeSH. To 

train the DNN, we utilized both gene level transcriptomic data and transcriptomic data processed 

using a pathway activation scoring algorithm, for a pooled dataset of samples perturbed with 

different concentrations of the drug for 6 and 24 hours. In both gene and pathway level 

classification, DNN convincingly outperformed support vector machine (SVM) model on every 

multiclass classification problem, however, models based on a pathway level classification 

perform better.

For the first time we demonstrate a deep learning neural net trained on transcriptomic data to 

recognize pharmacological properties of multiple drugs across different biological systems and 

conditions. We also propose using deep neural net confusion matrices for drug repositioning. This 

work is a proof of principle for applying deep learning to drug discovery and development.
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 INRODUCTION

Drug discovery and development is complicated and time and resource consuming process 

and various computational approaches are regularly being developed to improve it. In silico 
drug discovery1,2 has evolved over the past decade and offers a targeted, efficient approach 

compared to those of the past, which often relied on either identifying active ingredients in 

traditional remedies or, in many cases, serendipitous discovery. Modern methods include 

data mining, structure modeling (homology modeling), traditional Machine Learning3 (ML) 

and its biologically inspired branch technique, Deep Learning (DL).4

DL4 methods modeling high-level representations of data using Deep Neural Networks 

(DNNs). DNNs are flexible systems of connected and interacting artificial neurons that 

perform non-linear data transformations. They have several hidden layers of neurons, which 

number variation allows adjusting level of data abstraction. DL now play a dominant role in 

the areas of physics5, speech, signal, image, video and text mining and recognition6, 

improving state of the art performances by more than 30% where the prior decade struggled 

to obtain 1–2% improvements. Traditional machine learning approaches have achieved 

significant levels of classification accuracy, but at the price of manually selected and tuned 

features. Arguably, feature engineering is the dominating research component in practical 

applications of ML. In contrast, the power of NNs is in automatic feature learning from 

massive datasets. Not only does it simplify manual and laborious feature engineering but 

also allows learning task-optimal features.

Modern biology has entered the era of Big Data, wherein datasets are too large, high-

dimensional and complex for classical computational biology methods. The ability learn at 

the higher levels of abstraction made DL is a promising and effective tool for working with 

biological and chemical data7. Methods using DL architecture capable to deal with sparse 

and complex information, which is especially demanded in the analysis of high-dimensional 

gene expression data. “Curse of dimensionality” is one of the major problems of gene 

expression data that can be solved by feature selection implementing standard data 

projections methods as PCA or more biologically relevant as pathway analysis.8 DNNs 

demonstrate the state-of-art performance extracting features from sparse transcriptomics 

data (both mRNA and miRNA data)9, in classifying cancer using gene expression data10 and 

predicting splicing code patterns.11 DL have been effectively applied in biomodeling and 

structural genomics to predict protein 3-D structure using protein sequence (order or 

disorder protein (with lack of fixed 3-D structure)12,13 and may become an essential tool for 

development of new drugs.14 DL approaches were successfully implemented to predict 

drug-target interactions15, model reaction properties of molecules16 and calculate toxicity of 

drugs.17 As deep networks incorporate more features from biology18, application breadth 

and accuracy will likely increase.

Drug repurposing or target extension allows prediction of new potential applications of 

medications or even new therapeutic classes of drugs using gene expression data before and 

after treatment (e.g. before and after incubation of a cell line with multiple drugs). There are 

multiple in silico approaches to drug discovery and classification.19–21 And many attempts 

were made to predict transcriptional response with functional properties of drugs.22–24 In 
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this study we addressed this problem by classifying various drugs to therapeutic categories 

with DNN solely based on their transcriptional profiles. We used the perturbation samples of 

X drugs across A549, MCF-7 and PC-3 cell lines from the LINCS project and linked those 

to 12 therapeutic use categories derived from MeSH therapeutic use section (Fig. 1). After 

that we independently used both gene expression level data for “landmark genes” and 

pathway activation scores to train DNN classifier.

 RESULTS

The main aim of this study was to apply and estimate the accuracy of DL methods to 

classify various drugs to therapeutic categories solely based on their transcriptional profiles. 

In total, we analysed 26,420 drug perturbation samples for three cell lines from Broad 

LINCS database. All samples were assigned to 12 specific therapeutic use categories 

according to MeSH classification of particular drug (Supplementary Table 1). Since a 

number of drugs was present in multiple categories we considered only those drugs that 

belong only to one category. To increase the number of samples in each of the categories and 

to make the classification more robust for each given drug we aggregated all samples 

corresponding to all possible perturbation time, perturbation concentration and cell line 

parameters (Supplementary Table 2).

When dealing with transcriptional data at the gene level, a common problem is the so called 

“curse of dimensionality”. Indeed, when we applied DNN on gene level data for whole 

dataset of 12,797 genes it didn’t perform very well, achieving only 0.24 mean F1 score on 

12 classes. So our first step was proper feature selection. Here we investigated two 

approaches: pathway activation scoring and using “landmark genes” as new features.

 Pathway level

For pathway level analysis we used previously established pathway analysis method called 

OncoFinder.25–30 In contrast with other pathway analysis tools, which implement basic 

pathway enrichment analysis, OncoFinder performs quantitative estimation of signaling 

pathway activation strength. It preserves biological function and allows for dimensionality 

reduction at the same time. All perturbation samples were analysed with this tool and for 

each sample we calculated pathway activation profiles for 271 signaling pathways. Samples 

with zero pathway activation score for all of the pathways were considered as insignificantly 

perturbed and were excluded from further analysis. That resulted in a final dataset 

containing 308, 454 and 433 drugs for A549, MCF7 and PC3 cell lines, respectively, and 

totalling 9352 samples (Supplementary table 2).

Using this dataset we built a deep learning classifier based only on pathway activation scores 

for drug perturbation profiles of 3 cell lines: A549, MCF-7 and PC-3. Making a classifier 

based on a pooled dataset with different cell lines, drug concentration and perturbation time, 

we’re able to estimate the classification performance in recognizing complex drug action 

patterns across different biological conditions. For the 3-class classification problem we 

chose the most abundant categories: antineoplastic, cardiovascular and central nervous 

system agents. DNN achieved 10 fold cross-validation mean F1 score of 0.701. We 

compared the results of DNN to other popular classification algorithm called support vector 
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machine (SVM) trained via nested 3-fold cross validation for several hyperparameters (see 

Methods). On 3-class classification problem SVM performed with mean F1 score of 0.530.

Addition of gastrointestinal and anti-infective classes decreased the mean F1 score of DNN 

to 0.596. Mean F1 score for SVM dropped as well, down to 0.417.

When all 12 classes were considered, the classification neural performance decreased in a 

minor way, with a cross-validation mean F1 score of 0.546. SVM performed with cross-

validation mean F1 score of 0.366 on the same 12-class classification problem. The 

performance comparison of DNN and SVM on investigated classification problems is 

depicted in Fig. 2a–c. These results indicate that our model performance far exceeds random 

chance31 and we can conclude that DNN outperformed SVM on every multiclass 

classification problem.

 Landmark genes level

In our second feature selection approach we used a dataset containing normalized gene 

expression data for 977 “landmark genes”. According to the authors of LINCS Project they 

can capture approximately 80% of the information and possess great inferential value. For 

fair comparison we trained DNN exactly the same way we did on pathway level. We used 

the same dataset of 9352 significantly perturbed samples and tested the performance of 

DNN on the same classification problems. DNN trained on “landmark genes” data 

performed with 10 fold cross-validation mean F1-scores of 0.397, 0.285 and 0.234 for 3-, 5- 

and 12-class classification tasks, respectively. SVM model showed mean F1-scores of 0.372, 

0.238 and 0.202 for respective tasks (Fig. 2d–f).

 DNN as drug repurposing tool

Here we tried to dig a bit deeper into classification results on pathway level, since DNN 

model worked best with pathways as features. To determine which of the 12 therapeutic use 

categories are the most detectable by DNN, we calculated 10-fold cross-validation 

classification accuracy of each category. Antineoplastic agents turned out to be the most 

“recognizable” category by a large margin, with 0.686 accuracy on 12 classes. This was 

followed by Anti-Infective, Central nervous system and Dermatologic categories, with 

0.513, 0.506 and 0.505 accuracy, respectively. The least “recognizable” on the same number 

of classes was Hematologic agents, with accuracy of 0.23. On 3- and 5-class classification 

problems, the Antineoplastic drugs category was on top as well, with accuracy of 0.82 and 

0.742. Separability of therapeutic categories by DNN can be illustrated with confusion 

matrices (Fig. 3). Here we observed that the Cardiovascular category drugs was relatively 

often misclassified as Central nervous system and Antineoplastic agents. In contrast, the 

level of false positives for the Antineoplastic category was relatively small. If we look even 

closer into the results, sometimes these misclassified false positive drugs may in fact 

represent a possibility for drug repurposing. For instance, well known muscarinic receptor 

antagonist Otenzepad, was misclassified as central nervous system agent, but despite its 

obvious role in the brain function32,33, according to MeSH therapeutic use section it is only 

used against cardiac arrhythmia. Another example includes vasodilator Pinacidil, a 

cyanoguanidine drug that opens ATP-sensitive potassium channels, that was misclassified as 
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central nervous system agent in several cross-validation iterations, although it is used only in 

cardiovascular conditions. It’s known that potassium channels play important roles in 

different brain regions34 and pinacidil might influence some of them. Aforementioned cases 

hint to the fact that imperfect accuracy here might not be a bad thing and DNN model could 

serve as powerful drug repositioning tool.

 Discussion

With increasing availability of big data and GPU computing, the entire field of deep learning 

is experiencing very rapid development, and the breadth of DNN applications goes far 

beyond text, voice and image recognition problems. In this paper we explored the possibility 

of using DL to classify various drugs into therapeutic categories solely based on their 

transcriptomic data. To our knowledge, this is the first DL model to map transcriptomic data 

onto therapeutical category.

DNN trained on gene level data did not perform very well, achieving only 0.24 F1 score on 

12 classes. Thus, as a way to reduce dimensionality and keep biological relevance, we 

decided to apply pathway activation scoring.27 Translation of perturbation profiles onto the 

pathway level turned out to be very beneficial. Pathways served as excellent features, and we 

were able to exclude insignificantly perturbed samples and demonstrate the ability of deep 

neural network to recognize sophisticated drug action mechanisms on the pathway level. The 

power of this approach is further highlighted by the fact that it performs with high accuracy 

on a pooled dataset with samples from cells treated by different drug concentrations and 

perturbation times. Furthermore, the DNN achieves significant classification accuracy even 

across different cell lines. Its performance turned out to be better than SVM on every 

multiclass classification problem. When we used the same set of significantly perturbed 

samples that we selected with the pathway activation approach, and trained DNN on a 

dataset with gene expression data for “landmark genes” the results turned out to be 

significantly worse. Hence, we can conclude that pathway level data is more complementary 

for DNN and more suitable for classifying drugs into therapeutic use categories. Proper 

comparison to reference group of samples plays an essential role and merely normalized 

gene expression data from perturbed samples isn’t sufficient for complex classification tasks.

It is possible to interpret the classification results from different angles. For instance, as it 

was shown, in confusion matrices (Fig. 3) the “misclassified” samples for a certain drug 

might in fact be an indication of its potential for novel use, or repurposing, in these exact 

“incorrectly” assigned conditions. Misclassification, therefore, may lead to unexpected new 

discoveries. This approach opens a great avenue for application of DL in the drug 

repurposing field.

 EXPERIMENTAL SECTION

 Data collection

In this study, we performed the analysis of gene expression data produced by the LINCS 

Project participants (http://www.lincsproject.org/). We utilized the level 3 (Q2NORM) gene 

expression data for three cell lines: MCF7, A549 and PC3. Q2NORM data contains the 
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expression levels of both directly measured landmark transcripts plus inferred genes, which 

were normalized using invariant set scaling followed by quantile normalization. Mapping 

probes onto official HGNC35 gene symbols resulted in a gene expression dataset comprising 

12,797 genes total.

 Drugs selection

To link the drugs profiled by LINCS project to medical conditions we utilized MeSH 

(Medical Subject Headings) classification (https://www.nlm.nih.gov/mesh/). We picked only 

those drugs that had the link to a disease in “therapeutic use” section of classification tree. 

The drugs belonging to several categories simultaneously were excluded from the analysis.

 Gene expression analysis

All of the selected drugs’ samples collected for three cell lines were grouped by the 

combination of following parameters: cell line, drug, perturbation concentration and 

perturbation time. This resulted in a total number of 26,420 samples. For gene level analysis 

we trained our models on both whole dataset of 12,797 genes and a subset of 977 so called 

“landmark genes” defined in the LINCS Project.

In pathway level analysis, for each given case sample group we generated a reference group 

consisting of samples perturbed with DMSO that came from the same RNA plate as samples 

from the case group.

After that, each case sample group was independently analyzed using an algorithm called 

OncoFinder.27 Taking the preprocessed gene expression data as an input, it allows for cross-

platform dataset comparison with low error rate and has the ability to obtain functional 

features of intracellular regulation using mathematical estimations. For each investigated 

sample group it performs a case-reference comparison using Student’s t-test, generates the 

list of significantly differentially expressed genes and calculates the Pathway Activation 

Strength (PAS), a value which serves as a qualitative measure of pathway activation. Positive 

and negative PAS values indicate pathway up- and down-regulation, respectively. In this 

study the genes with FDR-adjusted p-value<0.05 were considered significantly differentially 

expressed. Samples with zero pathway activation score for all of the pathways were 

considered as insignificantly perturbed and were excluded from further analysis. The filtered 

dataset contained 308, 454 and 433 drugs for A549, MCF7 and PC3 cell lines, respectively, 

and comprised 9352 samples total (Supplementary Tables 1 and 2).

 Classification methods

Among the multitude of available classification methods we have employed the two that are 

highly robust and widely successful in the fields outside drug prediction: SVM36,37 and deep 

neural network.38 SVMs are a celebrated classification method for their flexibility and ease 

of use, while deep learning approaches are continuing to break records in many pattern 

recognition tasks.

Flexibility of SVM, as a maximum margin classifier, is in part reflected in provided ability 

to select a kernel that fits the data best and choose a soft-margin parameter that allows for 
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best generalization. However, these parameters are not evident for any given dataset. It has 

been previously shown, that radial basis function (RBF) kernel SVMs perform well on 

largely different data. In order to be more objective in selection of kernel we have allowed 

our nested cross validation choice of three. We used grid search for hyperparameters 

optimization. We have trained the SVM via nested 3-fold cross validation for 

hyperparameters that include kernel type (linear, RBF, or polynomial) and soft-margin 

parameter C embedded in the outer 10-fold cross validation loop. For each fold, the 

algorithm could have selected different kernels and different soft-margin parameters. 

Nevertheless, RBF was indeed the most preferred.

The deep learning method used in our work was the standard fully connected multilayer 

perceptron with 977 input nodes for gene expression level data and 271 for pathway 

activation scores. Similarly to SVM, we used grid search for hyperparameters optimization. 

We used cross-entropy as cost function and AdaDelta39 as cost function optimizer. We 

searched for the optimal number of layers, number of hidden units, and the dropout rejection 

rate in a nested cross validation framework. For the hyper-parameter search, the number of 

layers varied from 3 to 8, where the number of hidden units per layer was reduced with the 

depth of the network to half the previous layer. We set the search for the starting hidden 

layer from 300 to 900 in steps of 150. Each layer was initialized with the Glorot uniform 

approach.40 The experiment shows that the best combination of parameters was 3 hidden 

layers with 200 in each with rectified linear activation function. The dropout rejection ratio 

was tested for 20% and 80% at each layer. We chose an antisymmetric activation function, 

hyperbolic tangent, as the non-linear function of hidden neurons because the data is 

normalized to zero mean and unit variance, thus we rely on deviations from the mean to train 

the network. Also, it has been reported that the hyperbolic tangent speeds convergence up 

compared to sigmoid functions.39 The number of output nodes was equal to the number of 

classes to explore in each particular experiment with a softmax activation function. The code 

that implements the feed-forward neural network used in our experiments is publicly 

available at https://github.com/alvarouc/mlp (commit: 

8b07a1a18b17ca530fdcb482fcec24e26e36b27a).

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Study design. Gene expression data from LINCS Project was linked to 12 MeSH therapeutic 

use categories. DNN was trained separately on gene expression level data for “landmark 

genes” and pathway activation scores for significantly perturbed samples, forming an input 

layers of 977 and 271 neural nodes, respectively.
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Figure 2. 
Classification results. Classification performance of DNN and SVM trained on signaling 

pathways (a, b, c) and landmark genes (d, e, f) for 3, 5 and 12 drug classes, respectively, 

after 10 fold cross validation. Training and validation set results are shown in gray and green 

colors, respectively.

Aliper et al. Page 11

Mol Pharm. Author manuscript; available in PMC 2016 July 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Validation confusion matrix representing deep neural network classification performance 

over a set of drugs profiled for A549, MCF7 and PC3 cell lines, belonging to 3 (a), 5 (b) and 

12 (c) therapeutic classes. C(i,j) element is a sample count of how many times i was the truth 

and j was predicted.
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