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Abstract

In cluster randomized trials, the study units usually are not a simple random sample from some 

clearly defined target population. Instead, the target population tends to be hypothetical or ill-

defined, and the selection of study units tends to be systematic, driven by logistical and practical 

considerations. As a result, the population average treatment effect (PATE) may be neither well-

defined nor easily interpretable. In contrast, the sample average treatment effect (SATE) is the 

mean difference in the counterfactual outcomes for the study units. The sample parameter is easily 

interpretable and arguably the most relevant when the study units are not sampled from some 

specific super-population of interest. Furthermore, in most settings the sample parameter will be 

estimated more efficiently than the population parameter. To the best of our knowledge, this is the 

first paper to propose using targeted maximum likelihood estimation (TMLE) for estimation and 

inference of the sample effect in trials with and without pair-matching. We study the asymptotic 

and finite sample properties of the TMLE for the sample effect and provide a conservative 

variance estimator. Finite sample simulations illustrate the potential gains in precision and power 

from selecting the sample effect as the target of inference. This work is motivated by the 

Sustainable East Africa Research in Community Health (SEARCH) study, a pair-matched, 

community randomized trial to estimate the effect of population-based HIV testing and 

streamlined ART on the five-year cumulative HIV incidence (NCT01864603). The proposed 

methodology will be used in the primary analysis for the SEARCH trial.
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 1. Introduction

In many studies, the goal is to estimate the impact of an exposure on the outcome of interest. 

Often the target causal parameter is the population average treatment effect (PATE): the 

expected difference in the counterfactual outcomes if all members of some population were 
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exposed and if all members of that population were unexposed. If there are no unmeasured 

confounders and there is sufficient variability in the exposure assignment (i.e. if the 

randomization and positivity assumptions hold), then we can identify the PATE as a function 

of the observed data distribution [1, 2]. The resulting statistical parameter can be estimated 

with a variety of algorithms, including matching and inverse weighting estimators (e.g. [1, 3, 

4]), simple substitution estimators (e.g. [2, 5]), and double robust algorithms (e.g. [6–9]).

An alternative causal parameter is the sample average treatment effect (SATE) [10–15]. The 

sample effect is the average difference in the counterfactual outcomes for the actual study 

units. There are several potential advantages to selecting the SATE as the parameter of 

interest. First, the SATE is readily interpretable as the intervention effect for the sample at 

hand. Second, the SATE avoids assumptions about randomly sampling from and 

generalizing to some “vaguely defined super-population of study units” [14]. In other words, 

the sample parameter remains relevant and interpretable if the units were systematically 

selected for inclusion in the study, as is likely to be common in cluster randomized trials. 

Extensions of the study results to a broader or a different population can be addressed as a 

distinct research problem, approached with formal tools (e.g. [16–19]), and do not have to be 

assumed in the parameter specification. Finally, an estimator of the sample effect is often 

more precise than the same estimator of the population effect [10–13].

For a randomized trial, Neyman [10] first proposed estimating the SATE with the unadjusted 

estimator, which is the difference in the average outcomes among the treated units and the 

average outcomes among the control units. In this setting, the difference-in-means estimator 

will be unbiased for the SATE, conditional on the set of counterfactual outcomes for the 

study units. However, its variance remains unidentifiable as it relies on the correlation of the 

counterfactual outcomes [10–13]. Imbens [12] later generalized this work for an efficient 

estimator (i.e. a regular, asymptotically linear estimator, whose influence curve equals the 

efficient influence curve) in an observational setting. In particular, he showed that an 

efficient estimator for the population effect was unbiased for the sample effect, conditional 

on the baseline covariates and the counterfactual outcomes of the study units. He further 

expressed the variance of an efficient estimator of the SATE in terms of the variance of the 

same estimator of the PATE minus the variance of the unit-specific treatment effects across 

the population. This suggested that the standard variance estimator would be biased upwards 

unless there is no variability in the treatment effect.

Our contribution is to propose using targeted maximum likelihood estimation (TMLE) for 

estimation and inference of the sample effect in trials with and without pair-matching. 

TMLE is a general algorithm for constructing double robust, semiparametric, efficient, 

substitution estimators [8, 9]. Our results generalize the variance derivations of Imbens [12] 

to allow for misspecification of the outcome regression (i.e. the conditional mean outcome, 

given the exposure and covariates), estimation of the propensity score (i.e. the conditional 

probability of the receiving the exposure, given the covariates), and adaptive pair-matching 

[20]. Pair-matching is a popular design strategy in cluster randomized trials to protect study 

credibility and to increase power [20–25]. To the best of our knowledge, this is the first 

paper considering using an efficient estimator for the sample effect in a pair-matched trial.
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We also contribute to the existing literature by formally defining each parameter, discussing 

interpretation, and examining identifiability within Pearl’s structural causal model [26] as 

opposed to the Neyman-Rubin framework (e.g. [10–14]). Even though the SATE is formally 

not identified, we prove that the TMLE, presented here, is an asymptotically linear estimator 

of the SATE. Specifically, we show that the TMLE minus the sample effect behaves as an 

empirical mean of an influence curve depending on non-identifiable quantities and establish 

asymptotic normality with a non-identifiable limit variance. We propose a straightforward 

estimator of the upper bound of this variance, which nonetheless results in confidence 

intervals for the SATE that are smaller than those of the PATE. Simulations are used to 

evaluate the finite sample performance of our point estimator and proposed variance 

estimators. The simulations also serve to highlight the differences between the two causal 

parameters and the potential gains in power from selecting the sample effect as the target of 

inference and from pair-matching. Full R code for the simulations and estimators is provided 

in the Supplementary Material. We motivate our discussion with the Sustainable East Africa 

Research in Community Health (SEARCH) trial for HIV prevention and treatment [27].

 2. The Causal Model & Causal Parameters

SEARCH is an ongoing cluster randomized trial to evaluate the effect of a community-based 

strategy for HIV prevention and treatment in rural Uganda and Kenya (NCT01864603) [27]. 

In intervention communities, annual and targeted HIV testing is offered, and all individuals 

testing HIV+ are immediately eligible for antiretroviral therapy (ART) with streamlined 

delivery, including enhanced services for initiation, linkage, and retention in care. In control 

communities, all individuals testing HIV+ are offered ART according to the evolving in-

country guidelines. The study hypothesis is that early HIV diagnosis combined with 

immediate and streamlined ART will reduce the five-year cumulative HIV incidence. The 

primary outcome as well as other health, educational and economic outcomes will be 

measured among approximately 320,000 individuals, enrolled in the study. For the purposes 

of discussion, we focus on the community-level data. Thereby, our results are equally 

applicable to clustered and non-clustered data structures.

Consider the following data generating process for a randomized trial with two arms. First, 

the study units are selected. While some trials obtain a simple random sample from a well-

defined target population, in other studies there may not be a clear target population from 

which units were sampled and about which we wish to make inferences. In the SEARCH 

trial, for example, 32 communities were selected from Western Uganda (Mbarara region), 

Eastern Uganda (Tororo region) and the Southern Nyanza Province in Kenya by first 

performing ethnographic mapping on 54 candidate communities meeting the inclusion 

criteria (e.g. community size, health care infrastructure and accessibility by a maintained 

transportation route), and then selecting the 16 pairs best matched on a range of 

characteristics (e.g. region, population density, occupational mix and migration index) [20]. 

After selection of the study units, additional covariates are often measured. Additional 

covariates collected in the SEARCH trial included male circumcision coverage, measures of 

HIV prevalence and measures of community-level HIV RNA viral load. Throughout the 

baseline covariates are denoted W.
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Next, the intervention is randomized to the study units. Balanced allocation of the 

intervention can be guaranteed by randomly assigning the intervention to n/2 units and the 

control to remaining units or by randomizing within matched pairs. In the SEARCH trial, for 

example, the intervention was randomized within the 16 matched pairs. For ease of 

exposition, we present the causal model for the simple scenario, where the intervention is 

completely randomized, but our results are general. (Extensions to pair-matched trials are 

given in Section 5.) Let A be a binary variable, reflecting the assigned level of the 

intervention. For the SEARCH trial, A equals one if the community were assigned to the 

treatment (annual population-based testing and immediate and streamlined ART for all 

individuals testing HIV+) and equals zero if the community were assigned to the control 

(ART offered to HIV+ individuals according to in-country guidelines). At the end of follow-

up, the outcome Y is measured. For the SEARCH trial, Y is the five-year cumulative 

incidence of HIV. The observed data for a given study unit are then

Suppose we observe n independent, identically distributed (i.i.d.) copies of O with some 

distribution P0. Throughout the subscript 0 will be used to denote the true distribution of the 

observed data. We note that for estimation and inference of the sample and conditional 

average treatment effects, we can weaken the i.i.d. assumption by conditioning on the vector 

of baseline covariates (W1, W2, …, Wn); for further details, see Balzer et al. [20].

The following structural causal model describes this data generating process [26, 28]. Each 

component of the observed data is assumed to be a deterministic function of its parents 

(variables that may influence its value) and unobservable background factors:

(1)

where the set of background factors U = (UW, UA, UY) have some joint distribution PU. By 

design, the random error determining the intervention assignment UA is independent from 

the unmeasured factors contributing the baseline covariates UW and the outcome UY:

Specifically, UA is independently drawn from a Uniform(0,1). This causal model implies the 

statistical model for the set of possible distributions of the observed data O. In a randomized 

trial, the statistical model is semiparametric.

Balzer et al. Page 4

Stat Med. Author manuscript; available in PMC 2017 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Through interventions on the structural causal model, we can generate the counterfactual 

outcome Y (a), which is the outcome if possibly contrary-to-fact the unit were assigned A = 

a:

In this framework, the counterfactual outcomes Y (a) are random variables. For the 

SEARCH trial, Y (a) is the counterfactual cumulative incidence of HIV if possibly contrary-

to-fact the community had been assigned treatment level A = a.

The distribution of the counterfactuals can then be used to define the causal parameter of 

interest. Often, the target of inference is the population average treatment effect:

This is the expected difference in the counterfactual outcomes for underlying target 

population from which the units were sampled. From the structural causal model, we see 

that the expectation is over the measured factors W and unmeasured factors UY, which 

determine the counterfactual outcomes for the population. In other words, the true value of 

the PATE does not depend on the sampled values of W or UY. For the SEARCH trial, the 

PATE would be the difference in the expected counterfactual cumulative incidence of HIV if 

possibly contrary-to-fact all communities in some hypothetical target population 

implemented the test-and-treat strategy, and expected counterfactual cumulative incidence of 

HIV if possibly contrary-to-fact all communities in that hypothetical target population 

continued with the standard of care.

An alternative causal parameter is the sample average treatment effect, which was first 

proposed in Neyman [10]:

This is simply the intervention effect for the n study units. The SATE is a data adaptive 

parameter; its value depends on the units included in the study. For recent work on 

estimation and inference of other data adaptive parameters, we refer the reader to [29, 30]. 

The SATE remains interpretable if there is no clear super-population from which the study 

units were selected. For the SEARCH trial, the SATE is the average difference in the 
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counterfactual cumulative incidence of HIV under the test-and-treat strategy and under the 

standard of care for the n = 32 study communities.

In the SEARCH trial, targeting the sample effect has several advantages over targeting the 

population effect. First, there is no single real world (as opposed to hypothetical) target 

population from which the study units were sampled or about which we wish to make 

inferences. While appropriate analytic approaches can reduce concerns over systematic 

sampling, the interpretation and policy relevance of the resulting PATE estimate would be 

unclear. In contrast, targeting the SATE allows us to rigorously estimate the intervention 

effect in a clearly defined, real world population consisting of the roughly 320,000 persons 

resident in the 32 SEARCH communities. The resulting SATE estimate does not rely on any 

assumptions about the sampling mechanism, has a clear interpretation, and is generally more 

precise than an estimate of the PATE. As discussed below, estimators of the sample effect 

are at least as powerful as those of the population effect and expected to be more powerful 

when there is effect modification [11–13]. Clearly, however, it remains of significant policy 

interest to transport any effect found in the SEARCH trial to new populations and settings. 

However, alternative real world target populations are likely to differ from the current setting 

in a number of ways that will likely impact the magnitude of the effect. As a result, neither 

the SATE nor the PATE will apply directly to these new settings. Thus, a desire for 

generalizability does not constitute an argument for favoring the PATE over the SATE. 

Instead, we argue that generalization (or transport) of the SEARCH effect to settings beyond 

the current sample is best addressed as a distinct research question, making full use of the 

modern toolbox available (e.g. [16–19]).

 3. Identifiability

To identify the above causal effects, we must write them as some function of the observed 

data distribution P0 [9, 12]. Under the randomization and positivity assumptions, we can 

identify the mean counterfactual outcome within strata of covariates [1, 2]:

where the right-most expression is now in terms of the observed data distribution P0. Briefly, 

the first equality holds under the randomization assumption, which states that the 

counterfactual outcome is independent of the exposure, given the measured covariates: A ⫫ 

Y (a)|W. This is equivalent to the no unmeasured confounders assumption [1]. The positivity 

assumption states that the exposure level a occurs with a positive probability within all 

possible strata of covariates. Both assumptions hold by design in a randomized trial. As a 

well known result, the PATE is identified as

This statistical estimand is also called the G-computation identifiability result [2]. For the 

SEARCH trial, Ψ℘ (P0) would be the difference in expected cumulative HIV incidence, 

given the treatment and measured covariates, and the expected cumulative HIV incidence, 
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given the control and measured covariates, averaged (standardized) with respect to the 

covariate distribution in the hypothetical target population. As with the causal parameter, 

there is one true value Ψ℘(P0) for the population. In a randomized trial, conditioning on the 

covariates W is not needed for identifiability, but will often provide efficiency gains during 

estimation (e.g. [31–37]).

In contrast, the SATE is not identifiable - in finite samples, we cannot strictly write the 

causal parameter as a function of the observed data distribution P0. (Asymptotically, the 

SATE is identifiable, because the empirical mean converges to the expectation and thereby 

the sample effect converges to the population effect.) To elaborate, we can use the structural 

causal model (Eq. 1) to rewrite the sample effect as

The second equality is from the definition of counterfactuals as interventions on the causal 

model. The final equality is the conditional average treatment effect (CATE), given the 

measured baseline covariates as well as the unmeasured factors. The conditional effect was 

first proposed in Abadie and Imbens [38] and is the average difference in the expected 

counterfactual outcomes, treating the measured covariates of the study units as fixed: 

. This representation of the SATE suggests that if we 

had access to all pre-intervention covariates impacting the outcome (i.e. {W, UY}), then we 

could apply the results for estimation and inference for the conditional parameter, as detailed 

in Balzer et al. [20]. In reality, we only measure a subset of these covariates (i.e. W) and 

only this subset is available for estimation and inference. Therefore, the SATE is formally 

not identifiable in finite samples. Nonetheless, as detailed below, a TMLE developed for the 

population effect will be consistent and asymptotically linear for the sample effect, and the 

corresponding variance estimator will be asymptotically conservative.

 4. Estimation & Inference

There are many well-established algorithms for estimation of the population parameter 

Ψ℘(P0). Examples include inverse probability of treatment weighting (IPTW), simple 

substitution estimators, augmented inverse probability of treatment weighting (AIPTW) and 

targeted maximum likelihood estimation (TMLE) (e.g. [1–9]). In a randomized trial, the 

unadjusted difference in the average outcomes among the treated units and the average 

outcome among the control units provides a simple and unbiased estimate of the PATE. 

Adjusting for measured covariates, however, will generally increase efficiency and study 

power (e.g. [4, 31–37].) For example, we can obtain a more precise estimator of the PATE 

by (1) regressing the outcome Y on the exposure A and covariates W, (2) using the 

estimated coefficients to obtain the predicted outcomes for all units under the exposure and 

control, and (3) then taking the average difference in the predicted outcomes. For a large 

class of general linear models, there is no risk of bias if the “working” model for the 

outcome regression is misspecified [36]. This algorithm is called parametric G-Computation 

[2] in observational studies and also called analysis of covariance (ANCOVA)[32] in the 
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special case of a continuous outcome and a linear model without interactions. Alternatively, 

we can obtain a more precise estimator of Ψ℘(P0) by estimating known exposure mechanism 

to capture chance imbalances in the covariate distribution between treatment groups (e.g. [4, 

7, 35]). In the SEARCH trial, for example, the true conditional probability of being assigned 

to the test-and-treat intervention is P0(A = 1|W) = 0.5. However, with only n = 32 

communities there is likely to be variation in the baseline covariates across the treatment 

arms.

We focus our discussion on TMLE, which incorporates estimation of both the outcome 

regression (the conditional mean outcome given the exposure and covariates) and the 

propensity score (the conditional probability of receiving the exposure given the covariates 

[1]). In general, TMLE is a double robust estimator; it will be consistent if either outcome 

regression or the propensity score is consistently estimated. If both functions are consistently 

estimated at a fast enough rate and there is sufficient variability in the propensity score, the 

estimator is also asymptotically efficient in that it attains the lowest possible variance among 

a large class of regular, asymptotically linear estimators. TMLE is also a substitution (plug-

in) estimator, which provides stability in the context of sparsity [39, 40]. Finally, TMLE 

makes use of state-of-the-art machine learning and therefore avoids the parametric 

assumptions commonly made in other algorithms. In other words, TMLE does not place any 

unwarranted assumptions on the structure of the data and respects the semiparametric 

statistical model.

 4.1. TMLE for the Population Effect

For the population parameter Ψ℘(P0), a TMLE can be implemented as follows.

• Step 1. Initial Estimation: First, we obtain an initial estimator of the 

outcome regression 0 (Y |A, W). For example, the outcome Y can be 

regressed on the exposure A and covariates W according to a parametric 

“working” model [36]. Alternatively, we could use an a priori specified 

data adaptive procedure, such as SuperLearner [41].

• Step 2. Targeting: Second, we update the initial estimator of the outcome 

regression n (Y |A, W) by incorporating information on the exposure-

covariate relation (i.e. the propensity score). Informally, this “targeting” 

step helps to remove some of the residual imbalance in the baseline 

covariate distributions across treatment groups. More formally, this 

targeting step serves to obtain the optimal bias-variance tradeoff for 

Ψ℘(P0) and to solve the efficient score equation [42]. The reader is 

referred to van der Laan and Rose [9] for further details. This targeting 

step is implemented as follows.

– We calculate the “clever covariate” [9] based on the known or 

estimated propensity score Pn (A = 1|W):
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(To estimate the propensity score, we could run logistic 

regression of the exposure A on the covariates W or use more 

data adaptive methods.)

– For a continuous and unbounded outcome, we run linear 

regression of the outcome Y on the covariate Hn (A, W) with 

the initial estimator as offset (i.e. we suppress the intercept and 

set the coefficient on the initial estimator equal to 1). We plug 

in the estimated coefficient εn to yield the targeted update: 

.

– For a binary or a bounded continuous outcome (e.g. a 

proportion) [39], we run logistic regression of the outcome Y 
on the covariate Hn (A, W) with the logit(·) = log[·/(1 − ·)] of 

the initial estimator as offset. We plug in the estimated 

coefficient εn to yield the targeted update: 

.

• Step 3. Parameter Estimation: Finally, we obtain a point estimate by 

substituting the targeted estimates into the parameter mapping:

where Pn denotes the empirical distribution, placing mass 1/n on each 

observation Oi. The sample mean is the nonparametric maximum 

likelihood estimator of the marginal distribution of the baseline covariates 

P0(W).

We note if the propensity score is not estimated and the working regression model used for 

initial estimation of 0 (Y |A, W) contains an intercept and a main term for the exposure, 

then this targeting step will not yield an update and can be skipped [35, 36].

Under standard regularity conditions, this TMLE is a consistent and asymptotically linear 

estimator of the population parameter [8, 9]:

In words, the estimator minus the truth can be written as an empirical mean of an influence 

curve D℘ (O) and a second order term going to 0 in probability. The influence curve is given 

by
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where  denotes the limit of the TMLE  and we are assuming the 

propensity score is known or consistently estimated, as will always be true when the 

treatment A is randomized. The first term of the influence curve DY is the weighted 

residuals (i.e. the weighted deviations between the observed outcome and the limit of the 

predicted outcome). The second term DW is deviation between the limit of the estimated 

strata-specific association and the marginal association.

The standardized estimator is asymptotically normal with variance given by the variance of 

its influence curve D℘ (O), divided by sample size n [8, 9]. Under consistent estimation of 

the outcome regression (i.e. when ), the TMLE will be 

asymptotically efficient and achieve the lowest possible variance among a large class of 

estimators of the population effect. In other words, its influence curve will equal the efficient 

influence curve, and the TMLE will achieve the efficiency bound of Hahn [42]. Thereby, 

improved estimation of the outcome regression leads to more precise estimators of the 

population effect. In finite samples, the variance of the TMLE is well-approximated by the 

sample variance of the estimated influence curve scaled by sample size:

(2)

where

The algorithm is available in the tmle [43] and ltmle [44] packages in R [45]. Full R code 

is also given in Appendix D of the Supplementary Material.

 4.2. TMLE for the Sample Effect

For a randomized trial, Neyman [10] proposed estimating the SATE with the unadjusted 

estimator:
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Conditional on the vector of counterfactual outcomes Y(a) = {Yi(a) : i = 1, …, n, a = 0, 1}, 

the difference-in-means estimator is unbiased but inefficient. To the best of our knowledge, 

Imbens [12] was the first to discuss an efficient estimator (i.e. a regular, asymptotically 

linear estimator, whose influence curve equals the efficient influence curve) of the sample 

effect. He proved that an efficient estimator for the PATE was unbiased for the SATE, given 

the vector of baseline covariates W= (W1, …, Wn) and the set of counterfactual outcomes 

Y(a) = {Yi(a) : i = 1, …, n, a = 0, 1}. We now extend these results to TMLE. Specifically, 

we allow the estimator of outcome regression 0 (Y |A, W) to converge to a possibly 

misspecified limit, incorporate estimation of the known propensity score, and suggest an 

alternate method for variance estimation. In Section 5, we further extend these results to a 

pair-matched trial.

The TMLE for the population parameter Ψ℘ (P0), presented in Section 4.1, also serves as an 

estimator of the SATE. The implementation is identical. Furthermore, under typical 

regularity conditions, the TMLE minus the sample effect behaves as an empirical mean of an 

influence curve depending on non-identifiable quantities, and a second-order term going to 

zero in probability:

where

(3)

(4)

(Proof in Appendix A of the Supplementary Material.) The first component D  is the 

influence curve for the TMLE of the conditional parameter 

, which corresponds to the 

conditional average treatment effect (CATE) under the necessary identifiability assumptions 

[20]. This term depends on the true outcome regression 0 (Y |A, W). Specifically, the 

conditional expectation of the DY component, given the baseline covariates, equals the 

deviation between the true conditional means and the limits of the estimated conditional 

means:
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Under consistent estimation of the outcome regression (i.e. when 

), this term is zero. The second component Dℱ is a function of 

the unobserved factors U = (UW, UA, UY) and the observed data O = (W, A, Y). This non-

identifiable term captures the deviations between the unit-specific treatment effect and 

expected effect within covariate strata:

In the last line, the expectation is over the unmeasured factors UY that determine the 

counterfactual outcomes. This term will be zero if there is no variability in the treatment 

effect across units with the same values of the measured covariates. We also note that there 

is no contribution to the influence curve D  from estimation of the covariate distribution, 

which is considered fixed. In other words, there is no DW component to the influence curve.

As a result, the standardized estimator of the SATE is consistent and asymptotically normal 

with mean zero and variance given by the limit of

(Proof in Appendix A.1 of the Supplementary Material.) Since the variance of the non-

identifiable Dℱ component must be greater than or equal to zero, the asymptotic variance of 

the TMLE as an estimator of the sample effect will always be less than or equal to the 

asymptotic variance of the same estimator of the conditional effect. They will only have the 

same precision when there is no variability in the unit-level treatment effect within strata of 

measured covariates (i.e. when Var[Dℱ(U, O)] = 0). In many settings, however, there will be 

heterogeneity in the effect, and the TMLE for the SATE will be more precise. Even if the 

treatment effect is constant within covariate strata, the TMLE for the sample effect (or the 

conditional effect) will always be at least as precise as the same TMLE for the population 

effect. They will only have the same efficiency bound when (1) the outcome regression is 

consistently estimated, (2) there is no variability in the treatment effect across strata of 

measured covariates (i.e. when Var[DW (O)] = 0), and (3) there is no variability in the 

treatment effect within strata of measured covariates. In many settings, there will be effect 

modification, and focusing on estimation of the SATE will yield the most precision and 

power.

We can conservatively approximate the influence curve for the TMLE of the sample effect as

(5)
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(Further details in Appendix A.1–A.2 of the Supplementary Materials.) Thereby, we obtain 

an asymptotically conservative variance estimator with the sample variance of the weighted 

residuals scaled by sample size n:

(6)

As for the PATE, adjusting for predictive baseline covariates can substantially improve 

power for the SATE by reducing variability in the estimator. Unlike the PATE, however, 

adjusting for predictive baseline covariates can provide an additional power gain for the 

SATE by resulting in a less conservative variance estimator. Furthermore, this variance 

estimator is easy to implement as the relevant pieces are known or already estimated. As a 

result, this may provide an attractive alternative to the matching estimator of the variance, 

proposed by Abadie and Imbens [38] and discussed in Imbens [12]. We note that the 

bootstrap is inappropriate as the SATE changes with each sample. Fisher’s permutation 

distribution is also not appropriate, because it is testing the strong null hypothesis of no 

treatment effect for any unit (Yi(1) = Yi(0), ∀i) [46], whereas our interest is in the weak null 

hypothesis of no average treatment effect.

 5. Extensions to Pair-Matched Trials

We recall that the SEARCH trial is a pair-matched study. Briefly, N = 54 candidate 

communities, satisfying the study’s inclusion criteria, were identified. Of these, the best n/2 

= 16 matched pairs were chosen according to similarity on the baseline covariates of the 

candidate units. This “adaptive pair-matching” scheme is detailed in Balzer et al. [20] and 

also called “nonbipartite matching” and “optimal multivariate matching” in other contexts 

[22, 47, 48]. This study design creates a dependence in the data. Specifically, the 

construction of the matched pairs is a function of the covariates of all candidate sites. As a 

result, the observed data cannot be treated as n i.i.d. observations nor as n/2 i.i.d. paired 

observations, as current practice sometimes assumes (e.g. [21, 24, 49, 50]). However, once 

the baseline covariates of the study units are considered to be fixed, we recover n/2 

conditionally independent units:

where the index j = 1, …, n/2 denotes the partitioning of the candidate study communities 

{1, …, N} into matched pairs according to their baseline covariates (W1, …, WN).

Previously, Imai [13] generalized Neyman’s analysis of the unadjusted estimator for the 

sample effect in a pair-matched trial. The unadjusted estimator, as the average of the 

pairwise differences in outcomes, is unbiased but inefficient. For an adaptive pair-matched 

trial, van der Laan et al. [25] detailed the use TMLE for the population effect, and Balzer et 
al. [20] for the conditional effect. To the best of our knowledge, this is the first paper 

considering using a locally efficient estimator for the sample effect in a pair-matched trial.
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 5.1. TMLE for the Sample Effect in a Pair-Matched Trial

The TMLE for the population effect, presented in Section 4.1, also estimates the sample 

effect in a pair-matched trial. As before, the TMLE minus the SATE can be written as an 

empirical mean of an influence curve depending on non-identifiable quantities, and a second 

order term going to zero in probability:

where

(Proof in Appendix B of the Supplementary Material.) The first component D̄ (Ō) is the 

influence curve for the TMLE of the conditional parameter 

 in a trial with pair-matching [20]. 

In words, D̄ (Ōj) is the average of the pairwise D (Oi) components, as defined in Eq. 3. The 

second component D̄ℱ(Ū, Ō) is a non-identifiable function of the pair’s unobserved factors 

Ū = (Uj1, Uj2) and observed factors Ōj = (Oj1, Oj2). Specifically, D̄ℱ(Ūj, Ōj) is the average of 

the pairwise Dℱ(Ui, Oi) components, as defined in Eq. 4. As before, there is no contribution 

from estimation of the covariate distribution P0(W), which is considered fixed.

As a consequence, the standardized estimator of the SATE in a pair-matched trial is 

consistent and asymptotically normal with mean zero and variance given by the limit of

(Proof in Appendix B.1 of the Supplementary Material). As before, the variance of the non-

identifiable D̄ℱ component must be greater than or equal to zero. Therefore, in a pair-

matched trial the asymptotic variance of the TMLE as an estimator of the sample effect will 

always be less than or equal to the asymptotic variance of the same estimator of the 

conditional effect. Furthermore, by treating the covariate distribution as fixed, the TMLE for 

the sample (or conditional) effect will always be as or more precise than the TMLE of the 

population effect in a pair-matched trial. We also briefly note that there is often an additional 

efficiency gain due to pair-matching (Appendix C of the Supplementary Material). The 
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SATE will be estimated with more precision in a pair-matched trial when the deviations 

between the true and estimated outcome regressions are positively correlated within matched 

pairs and/or when the deviations between the treatment effect for a unit and the treatment 

effect within covariate strata are positively correlated within matched pairs.

We can conservatively approximate the influence curve for the TMLE of the SATE in a pair-

matched trial as

where  is defined in Eq. 5 (Appendix B.1 of the Supplementary Material). Thereby, 

we obtain an asymptotically conservative variance estimator with the sample variance of the 

estimated paired influence curve, divided by sample size n/2:

(7)

If we order the observations within matched pairs, such that the first corresponds to the unit 

randomized to the intervention (Aj1 = 1) and the second to the control (Aj2 = 0) and treat the 

exposure mechanism as known P0(A) = 0.5, it follows that

(8)

In this case, we can represent the variance estimator as the sample variance of the difference 

in residuals within matched pairs, divided by n/2. This variance estimator will be consistent 

if there is no heterogeneity in the treatment effect within strata of measured covariates (i.e. if 

the variance of the D̄ℱ component is zero) and if the outcome regression 0 (Y |A, W) is 

consistently estimated. Under the same conditions, the TMLE will be efficient (i.e. achieve 

the lowest possible variance among a large class of regular, asymptotically linear 

estimators). Otherwise, the TMLE will not be efficient and the variance estimator will be 

conservative. As before, adjusting for predictive baseline covariates can substantially 

improve power in two ways: (1) by reducing variability in the estimator, and (2) by resulting 

in a less conservative variance estimator.

 6. Simulation Study

We present the following simulation study to (1) further illustrate the differences between 

the causal parameters, (2) demonstrate implementation of the TMLE, and (3) understand the 

impact of the parameter specification on the estimator’s precision and attained power. We 

focus on a randomized trial to illustrate the potential gains in efficiency with pairmatching 

during the design and with adjustment during the analysis. All simulations were carried out 

in R v3.2.2 [45]. Full R code is available in Appendix D of the Supplementary Material.
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 6.1. Data generating process and estimators

Consider the following data generating process for unit i = {1, …, n}. First, we generated 

the background error UY,i by drawing from a standard normal distribution. Then we 

generated five baseline covariates from a multivariate normal with means 0 and standard 

deviation 1. The correlation between the first two covariates (W1i, W2i) was 0, and the 

correlation between the last three (W3i, W4i, W5i) was 0.65. The exposure Ai was 

randomized such that the treatment allocation was balanced overall. Recall Ai is a binary 

indicator, equaling 1 if the unit is randomized to the intervention and 0 if the unit is 

randomized to the control. For a trial without matching, the intervention was randomly 

assigned to n/2 units and the control to the remaining units. For a trial with matching, we 

applied the nonbipartite matching algorithm nbpMatch [51] to pair units on {W1, W4, W5}. 

The outcome Yi was generated as

We also generated the counterfactual outcomes Yi(a) by intervening to set Ai = a. For 

sample sizes of n = {30, 50}, this data generating process was repeated 5,000 times. The true 

value of the SATE was calculated as the average difference in the counterfactual outcomes 

for each sample, and the true value of the PATE was calculated by averaging the difference 

in the counterfactual outcomes over a population of 500, 000 units. In this population, the 

correlations between the observed outcome Y and the baseline covariates were weak to 

moderate: 0.5 for W1, 0.2 for W2, 0.6 for W3, 0.4 for W4 and 0.4 for W5.

We compared the performance of the unadjusted estimator to the TMLE with two methods 

for initial estimation of the outcome regression. Specifically, we estimated 0 (Y |A, W) 

with logistic regression, including as main terms the exposure A, the covariate W1 and an 

interaction A*W1. We also estimated 0 (Y |A, W) with SuperLearner, an optimal machine-

learning approach [41]. In particular, we used cross-validation to create the best convex 

combination of algorithm-specific estimates from a pre-specified library, which consisted of 

all possible logistic regressions with terms for the exposure A, a single covariate and their 

interaction. The unadjusted estimator can be considered as a special case of the TMLE, 

where n (Y |A, W) = n (Y |A). Inference was based on the estimated influence curve and 

the Student’s t-distribution. We constructed Wald-type 95% confidence intervals and tested 

the null hypothesis of no average effect.

 6.2. Simulation Results

Table 1 gives a summary of the parameter values across the 5,000 simulated trials. Recall the 

true value of the SATE depends on the units included in the study, whereas there is one true 

value of the PATE for the population. The sample effect ranged from 0.17% to 5.94% with a 

mean of 2.97%. The population effect was constant at 2.98%. As expected, the variability in 

the SATE decreased with increasing sample size.

Table 2 illustrates the performance of the estimators. Specifically, we give the bias as the 

average deviation between the point estimate and (sample-specific) true value, the standard 

deviation σ as the square root of the variance of an estimator for its target, and the mean 
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squared error (MSE). We also show the relative MSE (rMSE) as the MSE of a given 

estimator divided by the MSE of the unadjusted estimator of the population effect in trial 

without matching. The attained power, which is the proportion of times the false null 

hypothesis was rejected, and the 95% confidence interval coverage are also included.

As expected, all estimators were unbiased. In randomized trials, there is no risk of bias due 

to misspecification of the regression model for 0 (Y |A, W) (e.g. [34–36]). Also as 

expected, the precision of the estimators improved with increasing sample size and with 

adjustment (e.g. [31–36]). Consider, for example, estimation of the population effect in a 

trial with n = 30 units and without matching. The standard error was 2.2*10−2 for the 

unadjusted estimator and 1.9*10−2 after adjusting for a single covariate. Incorporating data 

adaptive estimation of the conditional mean 0 (Y |A, W) through SuperLearner further 

reduced the standard error to 1.6*10−2. Also as expected, precision increased with pair-

matching [20, 23, 25] (Appendix C of the Supplementary Material). For the SATE, the 

standard error of the unadjusted estimator in the trial without matching was 1.38 times 

higher with n = 30 units and 1.49 times higher with n = 50 units than its pair-matched 

counterpart.

For all estimation algorithms and sample sizes, the impact of the target parameter 

specification on precision and power was substantial. As predicted by theory, the highest 

variance was seen with the unadjusted estimator of the PATE. With n = 50 units, the MSE of 

this estimator for the PATE was 2.62 times that of the TMLE with SuperLearner for the 

SATE in a trial without matching and 4.42 times that of the TMLE with SuperLearner for 

the SATE in a trial with matching. In the finite sample simulations, the impact of having an 

asymptotically conservative variance estimator on inference for sample effect was notable. 

In most settings, the standard deviation of an estimator of the SATE was over-estimated, and 

the confidence interval coverage was greater than or equal to the nominal rate of 95%. 

Despite the conservative variance estimator, the TMLE for the sample effect achieved higher 

power than the same TMLE for the population effect. With n = 30 units, the attained power 

for the TMLE with SuperLearner was 48% for the population effect, 52% for the sample 

effect without matching and 58% for the sample effect after pair-matching. With n = 50 

units, the attained power for the TMLE with SuperLearner was 68%for the population effect, 

70% for the sample effect without matching and 81% for the sample effect after pair-

matching Notably, the power was the same for the unadjusted estimator of the 2 parameters 

in the trials without matching. The power of the unadjusted estimator did not vary, because 

the estimated DW (O) component of influence curve and thereby its variance were zero:

where n (Y |A) denotes the treatment-specific mean. Thus, using the unadjusted estimator 

sacrificed any potential gains in power by specifying the SATE as the target of inference. In 

contrast, the TMLE using SuperLearner was able to obtain a better fit of the outcome 

regression 0 (Y |A, W) and a less conservative variance estimator. As a result, this TMLE 

was able to achieve the most power.
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 7. Discussion

This work was motivated by the SEARCH trial for HIV prevention and treatment [27]. The 

SEARCH trial will capture the effect of a community-based strategy for immediate and 

streamlined ART on ≈ 320,000 people in rural Uganda and Kenya. For the following 

reasons, the sample average treatment effect (SATE) was chosen as the target of inference 

for the primary analysis. The candidate communities were systematically selected to satisfy 

the study’s inclusion criteria and then a matching algorithm applied to select the best 16 

matched pairs [20]. Therefore, the observed data did not arise from taking a simple random 

sample from some hypothetical target population of matched pairs of communities. In this 

setting, the SATE, in contrast to the PATE, remains a readily interpretable quantity that can 

be rigorously estimated without further assumptions on the sampling mechanism. While 

generalizability of the study findings and their transport to new settings remains of 

substantial policy interest, neither the SATE nor the PATE directly addresses this goal; these 

new settings are likely to differ in important ways from both the current sample and any 

hypothetical target population from which it was drawn. Instead, we advocate approaching 

generalizability and transportability as distinct research questions, requiring their own 

identification results and corresponding optimal estimators [14, 16–19]. Finally, the sample 

effect will be estimated with at least as much precision and power as the conditional or 

population effects.

To our knowledge, this is the first paper to propose using TMLE for estimation and 

inference of the SATE in trials with and without pair-matching. Despite the lack of 

identifiability of the SATE in finite samples, we proved that the TMLE was a consistent and 

asymptotically normal estimator of the SATE. If there is heterogeneity in the intervention 

effect within strata of measured covariates or across strata of measured covariates, the 

sample effect will be estimated with more precision than the population effect. We also 

provided asymptotically conservative variance estimators, which are intuitive and 

straightforward to implement. Furthermore, we showed that a trial targeting the sample 

effect and implementing adaptive pair-matching will often be more efficient than a trial 

targeting the sample effect and not implementing pair-matching.

Finite sample simulations highlighted the differences between the causal parameters and the 

impact of the target parameter specification on variance and power. We compared the 

unadjusted estimator (i.e. the difference-in-means estimator) to the TMLE with various 

methods for initial estimation of the outcome regression 0 (Y |A, W). As predicted by 

theory, adjustment and pair-matching led to greater power. An estimator of the SATE was 

less variable than the same estimator of the PATE. While the differences in the estimators’ 

variance were substantial, the differences in the attained power were attenuated due to the 

conservative variance estimator. Greater differences in the attained power were seen with a 

more aggressive fit of the outcome regression. As estimation of 0 (Y |A, W) improves, the 

TMLE becomes a more precise estimator (i.e. smaller true variance) and the variance 

estimator becomes less conservative. In small trials (e.g. n ≤ 30) such as early phase clinical 

trials or cluster randomized trials, obtaining a precise estimate of 0 (Y |A, W) is likely to be 

challenging. In practice, many baseline covariates are predictive of the outcome, but 

adjusting for too many covariates can result in over-fitting. Ongoing work investigates the 
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use of cross-validation in small trials to data adaptively select from a pre-specified library 

the optimal adjustment set [52]. As an area of future work, we plan to generalize these 

theorems and methods to observational studies. We hypothesize that a TMLE will provide at 

least as much precision and power to detect the impact of a non-randomized exposure on the 

study units (i.e. the SATE) than in some target population (i.e. the PATE).

Overall, we believe the sample effect is an interesting and possibly under-utilized causal 

parameter. It is simply the intervention effect for the study units. The SATE avoids 

assumptions about sampling from some vaguely defined target population. Furthermore, the 

SATE is responsive to heterogeneity in the treatment effect and avoids assumptions that the 

observed impact is generalizable or transportable to other contexts (e.g. [17–19]). These 

generalizations can be made with the formal methods and do not have to be assumed during 

the parameter specification. Furthermore, estimation of the SATE is likely to result in more 

precision and power to detect the exposure effect. To obtain a point estimate, the 

implementation of the TMLE is identical to that of the conditional and population 

estimands. To obtain conservative inference, we only need to take the sample variance of 

weighted residuals, divided by the appropriate sample size. Thereby, estimation and 

inference for the SATE does not require any extra work and is likely to give us more power 

to detect the impact of the exposure on the outcome.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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