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Summary

Meiotic recombination is a fundamental evolutionary process driving diversity in eukaryotes. In 

mammals, recombination is known to occur preferentially at specific genomic regions. Using 

topological data analysis (TDA), a branch of applied topology that extracts global features from 

large datasets, we developed an efficient method for mapping recombination at fine scales. When 

compared to standard linkage-based methods, TDA can deal with a larger number of SNPs and 

genomes without incurring prohibitive computational costs. We applied TDA to 1,000 Genomes 

Project data and constructed high-resolution whole-genome recombination maps of seven human 

populations. Our analysis shows that recombination is generally under-represented within 

transcription start sites. However, the binding sites of specific transcription factors are enriched for 

sites of recombination. These include transcription factors that regulate the expression of meiosis- 

and gametogenesis-specific genes, cell cycle progression and differentiation blockage. 

Additionally, our analysis identifies an enrichment for sites of recombination at repeat-derived loci 

matched by piwi-interacting RNAs.
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 Introduction

The maintenance of genetic diversity in a species can promote survival during times of 

unpredictable environmental change. Germline mutations, inherited by the offspring, are the 

raw material of genetic diversity in sexually reproducing organisms. Meiotic recombination 

enables a population to explore and maintain this genetic diversity by allowing for the rapid 

generation of new allele combinations. An excessive amount of genetic linkage due to 

insufficient meiotic recombination can preclude removal of deleterious variants from the 

genome over successive generations, leading to a substantial fitness reduction.

Meiotic recombination is initiated by the induction of programmed DNA double-strand 

breaks (DSBs) during meiosis. These initiating lesions can be repaired through various 

pathways involving the formation of heteroduplex DNA. Consequently, meiotic 

recombination is usually accompanied by GC-biased gene conversion tracts (Duret and 

Galtier, 2009). Additionally, some of the repair pathways lead to the formation of 

chromosomal crossovers, required for proper chromosomal disjunction (Koehler et al., 

1996). The aggregate effect of all these biochemical processes over evolutionary time 

defines the recombination landscape of the genome.

Studies of the recombination landscape in eukaryotes have revealed that recombination is 

highly regulated, with ~80% of recombination events in humans occurring at narrow (~2 kb) 

regions known as recombination hotspots (Crawford et al., 2004; Kauppi et al., 2004; 

McVean et al., 2004; Myers et al., 2005). The enrichment of non-allelic homologous 

recombination (NAHR) variants observed at recombination hotspots (Mills et al., 2011) 

suggests that the programmed DSBs required for recombination initiation can also serve as a 

source for NAHR. Regulation of the location and frequency of recombination can therefore 

potentially reduce the impact of DSB repair problems and target recombination to genomic 

regions where genetic diversity is more advantageous.
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The specific biological mechanisms that regulate meiotic recombination are largely 

unknown. In mammals, the meiosis-specific Histone 3 Lysine 4 (H3K4) tri-

methyltransferase PRDM9 binds chromosomes at recombination hotspots through a tandem-

array of C2H2 zinc-fingers that recognizes a specific DNA binding motif (Baudat et al., 

2010; Myers et al., 2010; Parvanov et al., 2010). In Prdm9 knockout mice, meiotic DSBs 

occur at different locations than in wild type, suggesting that this gene determines the 

location of meiotic DSBs (Brick et al., 2012). Accordingly, variants of the Prdm9 gene 

coding different numbers of zinc-finger domains are associated with variation in hotspot 

location, both between human populations and between mammalian species (Baudat et al., 

2010; Myers et al., 2010), as well as between human individuals (Pratto et al., 2014). It is an 

open question whether factors other than PRDM9 modulate recombination in mammals.

Several methods have been proposed to study the landscape of recombination (Kirkness et 

al., 2013; Lu et al., 2012; McVean et al., 2004; Pan et al., 2011; Pratto et al., 2014; 

Smagulova et al., 2011; Wang et al., 2012). Population-based recombination maps capture 

the recombination history of populations using genome-wide genomic data and have become 

a valuable tool in the study of human recombination during the last decade (Hinch et al., 

2011; International HapMap et al., 2007; Kong et al., 2010; Myers et al., 2005). Sub-

kilobase scale mapping and annotation of human recombination is now possible due to the 

large number of genomes published by consortia such as the 1,000 Genomes Project (1000 

Genomes Project Consortium et al., 2012) and ENCODE (Encode Project Consortium, 

2012). Nucleotide-resolution datasets, such as those obtained by chromatin 

immunoprecipitation (ChIP-seq), bisulfite, or RNA sequencing methods, reveal a gamut of 

biological features associated to small genomic regions, often spanning mere handfuls of 

bases. How these fine scale, nucleotide-level features influence the structure and position of 

recombination hotspots is not understood.

A key step towards this understanding is the development of methods that can accurately 

estimate fine-scale meiotic recombination rates genome-wide, so that relationships with 

narrow (and often clustered) biological features of the genome can be assessed statistically. 

Such high-resolution recombination maps are only attainable through the analysis of large 

numbers of sequences and segregating sites, becoming an important challenge for current 

methods of recombination rate estimation. Widely used methods (Crawford et al., 2004; 

Hudson, 2001; Li and Stephens, 2003; McVean et al., 2002) are based on the non-random 

association of alleles at different loci, that is, linkage disequilibrium. Analysis based on 

these methods, however, becomes computationally expensive when the number of sequences 

is on the order of one hundred. New mathematical and computational approaches are needed 

to meet this challenge.

Topological data analysis (TDA) is a new branch of applied topology that extracts global 

features from large datasets. TDA has been successfully utilized in cross-sectional studies of 

complex genetic diseases (Li et al., 2015) and cancer (Nicolau et al., 2011). Persistent 
homology, a framework within TDA for deriving and classifying topological features 

associated to data (discussed in detail below), has been shown to capture instances of 

recombination and re-assortment in viral populations (Chan et al., 2013). These results 

suggest that it may be also used for quantifying recombination in human populations.
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Here, we introduce an estimator of recombination rates at fine scales (0.5 – 1 kb) that uses 

persistent homology and is tailored to the analysis of very large genomic samples. We make 

use of this estimator to build fine-scale recombination maps of seven human populations 

sequenced by the 1,000 Genomes Project. Comparison of these recombination maps with 

recent fine-scale annotations of the human genome (Gerstein et al., 2012; Sai Lakshmi and 

Agrawal, 2008) reveals that although transcription start sites are generally depleted for 

recombination (Coop et al., 2008; Lu et al., 2012), specific transcription factor (TF) binding 

sites are frequently associated with PRDM9 binding motifs and recombination. These 

include TFs that regulate expression of meiosis- and gametogenesis-specific genes, cell 

cycle progression, and differentiation blockage. We also observe that repeat-derived loci 

targeted by piwi-interacting RNAs (piRNAs), coding some recent families of transposable 

elements known to be expressed during gametogenesis (Guo et al., 2015) and early 

embryogenesis (Smith et al., 2014), are also enriched for recombination.

 Results

 Topology and evolution

Topology is the branch of mathematics concerned with properties of spaces that are 

preserved under continuous deformations (deformations that do not involve cutting or 

pasting), such as the number of loops or connected components of a space. For example, a 

“B”-shaped space can be continuously deformed into an “8”-shaped space without changing 

its topology (Figure 1A). A frequently used approach in topology is the replacement of the 

original space by a simpler one, known as a simplicial complex, which has the same 

topological features as the original space but consists of a finite set of elements (Figure 1B). 

A simplicial complex is a generalization of a network that, in addition to nodes and edges, 

includes higher dimensional elements like triangles and tetrahedra. Simplicial complexes are 

powerful because they allow the implementation of algebraic operations to extract the 

topological features of the space. These topological features of a space can be arranged in 

homology groups, that is, algebraic structures which encompass and classify all gaps or 

holes in the space. Note that throughout this work the term homology refers to topological 

homology, which is unrelated to the notion of sequence homology. Elements of the 0th 

homology group correspond to disconnected parts of the space; elements of the 1st 

homology group correspond to loops; elements of the 2nd homology group correspond to 

hollow spheres, and, in general, elements of the nth homology group correspond to (n+1)-
dimensional voids of the space. The number of independent elements of the nth homology 

group is called the nth Betti number. For instance, the first Betti number of an “8”-shaped 

space is 2 (Figure 1A). We refer to (Ghrist, 2014; Hatcher, 2002) for an extended 

introduction to the basic concepts of algebraic topology.

Motivated by the fact that actual data is rarely given in the form of topological spaces, recent 

mathematical developments have expanded the realm of algebraic topology to point cloud 

data, that is, any set of data points with a notion of distance between them (Carlsson, 2009). 

Starting from a set of points sampled from an unknown space, topological data analysis 

(TDA) aims to infer the topological features of the underlying space (Figure 1C). TDA 

provides the necessary tools to build simplicial complexes starting from point cloud data. 
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One such construction builds a simplicial complex by taking balls of radius ε, centered on 

the data points. If two balls intersect, the points at the center of the balls are connected in the 

simplicial complex. In this way, there is a simplicial complex (and hence a set of topological 

features) associated to the data at each value of ε. Tracking how homology groups change 

with ε permits their generalization to point cloud data. The resulting mathematical structures 

are known as persistent homology groups (Edelsbrunner et al., 2002; Zomorodian and 

Carlsson, 2005).

TDA can be used to infer evolutionary relations from a sample of genomic sequences (Chan 

et al., 2013). We consider high-dimensional spaces where each point corresponds to a 

genomic sequence and distances between points are given by the genetic distance (e.g. 

Hamming distance) between sequences. The evolutionary history of a sample of genomic 

sequences can be represented as such a space, consisting of all the genomic sequences that 

occur from the most common recent ancestor of the sample to the present. Assuming that 

each genomic site mutates at most once across the entire sample history, the genetic distance 

between two sequences can only increase with the acquisition of new mutations (Figure 1D). 

Hence, the only way of “closing” a loop in this space is by means of a recombination event. 

In populations evolving clonally without recombination or back-mutation, the first Betti 

number of the evolutionary space of the sample is zero (Chan et al., 2013), as a phylogenetic 

tree suffices to describe ancestry. More generally, the number of loops of the evolutionary 

space is related to the number of recombination events in the sample history. Since we only 

have access to a sample of points, we can make use of the persistent first Betti number (b1) 

of the sample to infer the amount of recombination in the sample history. In what follows, 

we make use of this approach to build an estimator of recombination. As noted, our 

estimator does not rely on genetic linkage, but rather on the topology of spaces formed by 

genomic sequences.

 Persistent homology estimator of recombination (ρPH)

A suitable approach to recombination rate estimation in very large datasets is the use of 

estimators based on summary statistics of the data (Wall, 2000). As we have argued, the 

persistent first Betti number of a sample of genomic sequences is expected to be a concise 

mathematical summary of recombination. To check this hypothesis, we performed extensive 

coalescent simulations with recombination (Table S1) and observed that the expected value 

of b1 increases monotonically with the population recombination rate parameter ρ (Figure 

2A), which is defined as four times the product of the effective population size (Neff, the 

number of diploid individuals in a coalescent simulation that produces a level of genetic 

diversity similar to that of the population of interest) and the per-meiosis recombination rate. 

At low values of this parameter, b1 is proportional to ρ. Intuitively this behavior is expected, 

as the number of topology-changing events in coalescent models of evolution scales as ρ 

log(n) for large n, where n is the number of sequences in the sample (Hein et al., 2004). At 

large values, b1 saturates due to the limit in the number of loops that a finite set of sequences 

can generate. We found that this behavior of b1 is well described by a logarithmic function 

(equation (1) in Experimental Procedures and Figure 2A).
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To evaluate the utility of b1 as a summary of recombination, we compared it to other 

summaries of recombination available in the literature. Specifically, we considered the lower 

bounds on the minimum number of recombination events of a sample history developed in 

(Hudson and Kaplan, 1985) and (Myers and Griffiths, 2003). We refer to those as RHK and 

RMG, respectively. These summaries combine simple local bounds across different genomic 

regions to generate a more stringent global bound. Based on simulated samples of sequences 

with a small number of segregating sites (s = 14), we observed that among the three 

summaries, b1 has the largest fraction of variance explained by the recombination rate 

(Figure 2B). In particular, b1 has better sensitivity to high recombination rates, as it does not 

saturate as early as other summaries of recombination. This conclusion was also confirmed 

by comparing Fisher information of the three summaries as a function of the recombination 

rate (Figure 2C). For samples with a large number of segregating sites (s = 40), the 

performance of RMG and b1 was comparable, with RMG having a larger fraction of explained 

variance than b1 (Figure S1A) but similar Fisher information (Figure S1B).

To investigate whether saturation of b1 occurs in practical applications, we assumed a 

mutation rate of 10−8 mutations per base per generation and an effective population size of 

Neff = 25,000 individuals. With these assumptions, saturation effects for a sample of 200 

sequences became important at genetic map distances above ~0.2 centimorgans (cM) over 

2.6 kb (for s = 14), or ~0.4 cM over 7.5 kb (for s = 40). These recombination rates are rarely 

found in the human genome (Kong et al., 2010).

Taking these results together, we concluded that b1 is a robust summary of recombination at 

fine-scales, where the number of segregating sites is small, and used Pearson's method of 

moments to build an estimator of recombination rate, ρPH, based on b1 (Supplemental 

Experimental Procedures).

 Comparison to Linkage Methods

Currently, the most commonly used methods to estimate recombination rates are based on 

linkage disequilibrium, as defined above. Practical methods implement Markov Chain 

Monte Carlo algorithms to approximate a likelihood function, built from the observed 

genetic linkage between pairs of sites (Hudson, 2001; McVean et al., 2002), or from the 

reconstructed segments of exchanged genetic material (Crawford et al., 2004; Li and 

Stephens, 2003). These methods have great accuracy, producing low-variance unbiased 

recombination rate estimates, but their applicability to very large datasets can be hindered by 

their computational cost.

We compared our estimator, ρPH, to the ones generated by widely used software packages 

LDhat (McVean et al., 2002; McVean et al., 2004) and PHASE (Crawford et al., 2004; Li 

and Stephens, 2003). The three estimators produced comparable results on simulated data at 

constant recombination rate and fixed number (s = 14) of segregating sites (Figure S1C), 

observing some advantage of PHASE over the other two estimators in terms of accuracy. 

Our estimator, ρPH, however, was on average 12 times faster than LDhat and 30 times faster 

than PHASE (Figure S1D). At a large number (s = 40) of segregating sites, both LDhat and 

PHASE offered some advantage over ρPH in terms of precision (Figure S1C), although ρPH 

was still 2 – 6 times faster than these estimators.
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We evaluated the power of ρPH to resolve variation in the recombination rate across narrow 

genomic loci, using simulations at non-constant recombination rate. Our estimator ρPH 

produced lower variance estimates than LDhat and PHASE on a sliding window of variable 

length and fixed number (s = 14) of segregating sites (Figure S1E). To enhance the 

sensitivity of our estimator to variation in the recombination rate, we implemented a second 

sliding window with fixed length (L = 500 bp). Counting the number of times that each 500 

bp segment had ρPH > 0, over multiple simulations, was sensitive to relative fine-scale 

variation in the recombination rate, allowing for detection of sub-kilobase scale variations 

(Figure 2D). In these simulations, our persistent homology estimator was 150 – 1,500 times 

faster than LDhat and PHASE, making it uniquely suited to very large genomic samples. We 

exploited this property of our approach and built recombination maps across human 

populations from the 1,000 Genomes Project.

 Recombination maps of seven human populations

We built recombination maps of seven human populations (one African, two Asian, and four 

of European ancestry, Table S2), using phased genotype data of ~38 million single 

nucleotide polymorphisms (SNPs) from the 1,000 Genomes Project (1000 Genomes Project 

Consortium et al., 2012). Our dataset included a total of 647 individuals. We scanned the 

entire genome three times for each population, using two sliding windows with fixed 

number of segregating sites (s = 14 and 40) and a sliding window with fixed length (L = 500 

bp). For each window and genomic position, a Hamming distance matrix was obtained, from 

which b1 and ρPH were computed. Windows with a large number of segregating sites give 

accurate estimates of the recombination rate over relatively large (5-10 kbp) genomic 

intervals; whereas windows with a small number of segregating sites provide information 

about the precise genomic location of recombination events. As a first consistency check of 

our method, we detected no signature of recombination along the Y and mitochondrial 

chromosomes with either window, as expected from the predominantly uniparental 

inheritance of these chromosomes. Nevertheless, the relative dearth of SNPs in these 

chromosomes may also reduce detection sensitivity.

A snapshot of the output produced by this method is shown in Figure 3A. Median detected 

recombination rates for non-African populations are ~15,000/Neff cM/Mb, and the highest 

10% of recombination rates are ≥ 100,000/Neff cM/Mb (Table S2). Population 

recombination rates ρ were approximately doubled in the African population. This is 

consistent with a larger effective population size and an out-of-Africa human expansion 

model (Templeton, 2002). Our method was therefore able to capture the expected 

differences in population recombination rates due to known population structure effects.

To check the consistency of the TDA approach across different datasets, we performed a 

pairwise comparison between the seven maps. We found a high degree of consistency 

between the location and intensities of recombination peaks identified in distant populations 

(Figure 3). Position-dependent recombination rates were correlated between pairs of 

populations, with Spearman's r ranging from 0.53 to 0.78. Hierarchical clustering of 

populations based on these correlations followed known ancestral relationships, with 

African, Asian, and European populations grouped in different clusters (Figure 3B).
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We also compared our recombination maps to other maps in the literature. Specifically, we 

considered the deCODE map (Kong et al., 2010), based on a half million crossovers 

identified in 15,000 Icelandic meioses; the African-American (AA) map (Hinch et al., 2011), 

based on more than 2 million crossovers in 30,000 unrelated African-Americans; and the 

HapMap recombination map (International HapMap et al., 2007), based on linkage 

disequilibrium breakdown using 3 million SNPs genotype data. Although the nature, 

content, and underlying assumptions of each of these maps differ from each other, 

comparison with our recombination maps across ~300 kbp regions within the major 

histocompatibility complex and the MS32 mini-satellite loci revealed a large degree of 

consistency between different maps (Figures S2A and S2B). To perform a more quantitative 

comparison, we binned all maps at 10 kbp. Whole-genome Spearman's correlation with our 

recombination maps was in the range 0.54 – 0.63, 0.53 – 0.61, and 0.43 – 0.48, respectively 

for HapMap, AA, and deCODE maps. These correlations were comparable to those 

observed between HapMap and deCODE (r = 0.60), and between deCODE and AA (r = 

0.62) maps. Furthermore, recombination rates at exons, introns, and intergenic regions 

matched those observed in pedigree-based studies (Table 1), providing additional 

consistency checks of our maps.

From these results we inferred the merit of the high-resolution recombination maps 

produced by TDA.

 Recombination enrichment at transcription factor binding sites

Because we hypothesized that the human recombination landscape is largely affected by the 

epigenome and transcriptome of meiotic germ cells, we focused our analysis on the loci of 

transcription factor binding sites and piRNAs. We considered the DNA binding sites of 118 

TFs detected by ChIP-seq in at least one of 91 cell lines studied by the ENCODE Analysis 

Working Group (Gerstein et al., 2012). For each cell line and transcription factor we 

computed the recombination enrichment across binding sites, observing little variation 

across cell lines. We found TF binding sites to be, on average, depleted of recombination 

with respect to the whole-genome average (fold enrichment (FE) = 0.96, p < 10−37). This 

observation is consistent with previous work showing a depletion of recombination at 

transcription start sites (Coop et al., 2008; Lu et al., 2012).

Disaggregating TF binding sites by type of transcription factor, we identified systematic 

differences across transcription factor families (Figures 4A, 4B, S3A and S3B). Several 

types of TF binding sites show significant recombination enrichments with respect to the 

whole-genome average (log-likelihood ratio test as described in Supplemental Experimental 

Procedures, Benjamini-Hochberg adjusted p < 10−5). These binding sites are found to 

associate mostly with TFs that have a bias towards proximal promoters according to the 

ENCODE categorization (Gerstein et al., 2012). Some of those TFs are members of the E2F 

family, with key roles in the regulation of cell cycle progression and differentiation blockage 

(DeGregori and Johnson, 2006). In particular, promoters containing binding sites of the 

transcriptional repressor E2F6, regulating the expression of meiosis-specific genes (Kehoe et 

al., 2008; Velasco et al., 2010), were found to be enriched for recombination (Figure 4B and 

4C). In addition, binding sites of RNA polymerase II and regulatory subunits of MLL1/2 
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protein complexes were also found to be enriched for recombination (FE 1.28 – 1.68, p ~ 

10−2 – 10−7) (Figure 4B). These results were independently confirmed using HapMap and 

AA recombination maps, despite the lower resolution of these maps (Figure 4C).

The above analysis demonstrates that instances of recombination are enriched within the 

binding sites of specific TF families. This observation is in accord with the local nucleotide 

sequence. We observed a strong association between recombination and CpG content at 

these sites (Pearson's r = 0.95, p < 10−50); the observed CpG abundance within regions of 

recombination enrichment is partially explained by local enrichments for G and C 

nucleotides (Figure S3C). CpG enrichment at highly recombinant regions is thought to occur 

through biased gene conversion in the repair of meiotic DSBs (Duret and Galtier, 2009). In 

addition, we observed a statistically significant association of recombination at TF binding 

sites with predicted PRDM9 binding sites at these loci (Pearson's r = 0.96, p < 10−50) 

(Figure 4D and S3B), suggesting that PRDM9 drives recombination towards these loci 

during meiosis.

Motivated by our findings on the type of TF binding sites that are enriched for 

recombination, we decided to interrogate whether these binding sites are part of active 

promoters in the germline. To that end, we assessed the DNA methylation state of these sites 

in sperm (Molaro et al., 2011) and human primordial germ cells (PGCs) (Gkountela et al., 

2015). Our analysis revealed a statistically significant association (Pearson's r = 0.92, p < 

10−50) between recombination at TF binding sites and CpG hypo-methylation of these loci 

in sperm (Figures 4D, 4E and S3B). Hypo-methylation was also detected at earlier stages of 

gametogenesis, with similar associations in PGCs of male 19.5-week and female 16.1-week 

embryos (Figure S3D).

DNA hypo-methylated TF binding sites in germ cells and embryonic stem cells have been 

related to bivalent developmental gene promoters (Bernstein et al., 2006; Hammoud et al., 

2009), characterized by simultaneous H3 Lys-4 and Lys-27 tri-methylation (H3K4me3 and 

H3K27me3) marks on their nucleosomes. The simultaneous presence of these marks defines 

a poised transcriptional state for the promoters, which remain off until the appropriate 

developmental stage. To find whether recombination-enriched TF binding sites are part of 

bivalent promoters in the germline, we considered the profile of these epigenetic marks in 

sperm (Hammoud et al., 2009). Whereas male germ cells are mostly depleted of 

nucleosomes after meiosis, we found that loci of recombination-enriched TF binding sites 

retain nucleosomes (Figure S3E). In addition, our analysis revealed a statically significant 

association between recombination at TF binding sites and simultaneous H3K4me3 

(Pearson's r = 0.82, p < 10−50) and H3K27me3 (Pearson's r = 0.80, p < 10−50) marks in 

sperm (Figure 4F). Taken together, these results suggest that PRDM9 drives meiotic 

recombination towards certain active or poised promoters in germ cells.

 Recombination enrichment at loci targeted by piRNA

Inspired by the association between developmental promoters and PRDM9-mediated 

recombination at these loci, we decided to explore recombination rates at the loci of other 

important transcriptional regulators in the germline. Piwi-interacting RNAs attain their 

broadest expression in germ cells, and have a central role in post-transcriptional regulation 
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(Watanabe et al., 2015) and transposon control (Aravin et al., 2007). We studied 

recombination across genomic loci with 100% sequence identity to known human piRNA 

sequences (Sai Lakshmi and Agrawal, 2008). We observed an enrichment for recombination 

(FE = 2.67, p < 10−49) at these loci with respect to the whole-genome average. The 

enrichment was also present, although reduced (FE = 1.31, p ~ 10−9), when restricting to 

piRNA-producing clusters as defined and annotated by (Ha et al., 2014).

A large fraction of piRNAs are repeat-derived. We estimated the enrichment for 

recombination at piRNA-matched loci derived from repetitive elements (Figure 5A). All 

main families (LTR, LINE and SINE) are enriched for recombination compared to 

neighboring genomic regions. In terms of specific transposable elements, some of the most 

recent L1 elements (L1Hs, L1PA1-4), human endogenous retroviruses (HERVK, HERVH, 

HERVL), LTRs (LTR12C, MER11C), and most Alu and SVA elements present the highest 

recombination rates. These elements have been found to be expressed during germ cell 

development (Guo et al., 2015) and early embryogenesis (Smith et al., 2014). We observed a 

systematic pattern for the recombination rate at these loci, peaking in most cases at the 5’- 

and 3’-ends of the transposon, with the 5’-end presenting the highest recombination rate 

(Figure 5B). Our analysis also reproduced known recombination enrichments at THE1A/B 

repeat elements (Myers et al., 2005) (Figure S4A). These findings were also confirmed using 

linkage-based methods on 1,000 Genomes Project data (Figure S4B).

Being aware that repetitive elements are particularly prone to misalignment, we looked for 

additional evidence supporting the enrichment for recombination at these loci. We found that 

the enrichment is also accompanied by conserved PRDM9 binding motifs (Figures 5B and 

5C). Furthermore, recombination at these loci is strongly correlated with CpG abundance 

(Figures 5B and S4C). As occurred with TF binding sites, a large fraction of the CpG 

abundance is explained by a local enrichment for G and C nucleotides, being suggestive of 

extensive biased gene conversion from meiotic DSB repair. All these features added strong 

support to the observed recombination enrichment at repeat-derived loci targeted by piRNA, 

and were different in the case of uniquely mapped piRNAs (single locus piRNA genes) 

(Figure 5C), suggesting that only repeat-derived loci are enriched for recombination.

 Discussion

In the last few years, technological advances have allowed the identification of highly 

localized molecular features such as TF binding sites, methylation sites, loci of noncoding 

RNAs, and regions of open chromatin, at unprecedented resolution. Population-based 

methods tailored for the analysis of large datasets at the relevant fine genomic scales are 

needed to explore the relationship between recombination and these highly localized 

molecular features. We have presented an efficient method, based on TDA, to estimate 

recombination rates from very large samples of genomic sequences. Our method detects a 

topological signature of recombination distinct from the linkage-based information upon 

which existing methods depend. The performance and accuracy of this approach have 

allowed us to build high-resolution recombination maps of seven human populations (Figure 

3). These maps can be used to establish new associations between recombination and 

genomic features, as we have demonstrated for TF binding sites (Figure 4) and piRNA loci 
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(Figure 5). These associations are supported by enrichments for predicted PRDM9 binding 

motifs, CpG content, and epigenetic marks in germ cells. Overall, these findings provide 

confidence in the application of TDA to human genomic data and demonstrate its utility for 

overcoming some of the limitations of conventional methods and for generating hypotheses 

about fine-scale human recombination.

Our results raise broad questions about the control and evolution of recombination in 

humans. Prdm9 knockout experiments in mice suggest that the protein encoded by this gene 

plays a role in sequestering recombination away from gene promoters and other functional 

genomic elements (Brick et al., 2012). We find that hypothesis to be consistent with the 

overall depletion of recombination at TF binding sites observed in our study. However, by 

disaggregating different TF binding site types, we have shown that binding sites of specific 

TFs are systematically enriched for recombination. This constitutes a clear exception to the 

general rule described above. These TF binding sites include binding sites of the E2F family 

and regulatory subunits of MLL1/2 complexes, which play prominent regulatory roles in 

germ cell development and early embryogenesis. This circumstance in humans is analogous 

to the case of homologous recombination at Saccharomyces cerevisiae promoters, where an 

H3K4 methyltransferase forms part of the COMPASS protein complex and links H3K4me3 

marks to the formation of meiotic DSBs at promoters (Acquaviva et al., 2013). Accordingly, 

MLL complexes are human homologues of the COMPASS complex in yeast (Miller et al., 

2001).

From an evolutionary perspective, an increased recombination rate at gene promoters 

regulating germ cell development and embryogenesis would render selection at these loci 

more effective by unlinking selective forces that act on different positions (Hill and 

Robertson, 2007; Iles et al., 2003). A similar argument can be made regarding the 

enrichments for recombination observed at repeat-derived loci matched by piRNA 

sequences, particularly in light of recent work uncovering the role of transposons and 

piRNAs in post-transcriptional regulation in the germline (Watanabe et al., 2015). The rapid 

genetic divergence of genes involved in meiosis suggests that these regions undergo 

extraordinary positive selection (Keeney, 2008; Richard et al., 2005; Schwartz et al., 2014); 

it stands to reason that elevated recombination at these loci would be selected for. On the 

other hand, DSBs targeted to regions active during meiosis may deprive the cell of necessary 

transcripts. Our findings highlight a potential evolutionary trade-off in regulation of 

recombination that merits further study.

 Experimental Procedures

 Expected b1

We performed 3.5×105 neutral population simulations using the program ms (Hudson, 2002) 

and seq-gen (Rambaut and Grassly, 1997). Simulated haplotypes were produced for the 

population recombination rate, ρ, the population mutation rate, θ, and the number of 

sampled sequences, n, taking values in the ranges 0 – 25,000/Neff cM, 0 – 62.5/Neff 

mutations per generation and 0 – 160 sampled sequences, respectively. Pairwise distances 

were defined using Hamming distance. For each distance matrix we built a filtration of 

Vietoris-Rips complexes and computed b1 using the software Dionysus (http://
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www.mrzv.org/software/dionysus/index.html). For each configuration of the parameters, we 

estimated E[b1] based on 500 simulations (Table S1). Simulated data was empirically 

described by the equation

(1)

where the parameters f, g, and h depend on the number of sequences and segregating sites in 

the sample. We performed 6.4×104 neutral population simulations of samples with fixed 

number (s = 14 and 40) of segregating sites, for ρ and n taking values in the ranges 0 – 

4,500/Neff cM and 0 – 160 sampled sequences, respectively. Based on these simulations, we 

determined by least squares fitting the following structure for the parameters in equation (1),

(2)

(3)

where f1 = 0.04404, f2 = 1.5734, g1 = 0.50663, g2 = −2.3129, for s = 14, and f1 = −0.08225, 

f2 = 3697124, g1 = 0.11483, g2 = 8.4455, for s = 40. For convenience, we fixed h = 0 in 

equation (1).

 Persistent homology estimator of recombination

From population genetics simulations we observed that the first Betti number b1 of a set of 

sequences sampled from a Wright-Fisher population with recombination is Poisson 

distributed. From this fact and relation (1) with h = 0, we proved that

(4)

is an estimator of the population recombination rate ρ (see Supplemental Experimental 

Procedures). Comparison of this estimator to linkage methods was performed as described in 

the Supplemental Experimental Procedures.

 Genome scan implementation

We implemented ρPH in three sliding windows, acting on the phased SNP genotype data of 

1,000 Genomes Project. Two of the sliding windows had a fixed number of segregating sites 

(s = 14 and s = 40), and were moved in steps of 7 and 20 segregating sites, respectively. The 

other sliding window had fixed length (L = 500 bp), and was moved in steps of 250 bp. We 

included both chromosomes in the case of autosomal chromosomes, and only one of the two 

X chromosomes for females. Sources used for recombination map annotation, and methods 
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for estimating relative recombination rates and similarity across human populations are 

described in the Supplemental Experimental Procedures.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Topological data analysis captures recombination from large genomic 

samples.

• High-resolution recombination maps of seven human populations are 

presented.

• Binding sites of specific transcription factors are enriched for 

recombination.

• Repeat-derived loci matched by piwi-interacting RNAs are enriched for 

recombination.
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Figure 1. Topology and evolution
(A) Topology is concerned with properties of objects that are invariant under continuous 

deformations. For instance, a “B”-shaped space can be continuously deformed into an “8”-

shaped space. Both have one connected piece and two inequivalent loops. These topological 

invariants are counted by Betti numbers, bn. Similarly, a circumference always has one 

connected component and a loop, no matter how it is deformed, as long as nothing is cut or 

pasted.

(B) A prominent tool in algebraic topology are simplicial complexes. These are finite set 

representations of the original space that share the same topology. Here, we present a 

simplicial complex that describes the topology of a circumference. The simplicial complex 

is given in terms of a finite set of elements (3 points and 3 segments). Algebraic operations 

on the simplicial complex can extract the topological features of the original circumference.

(C) Topological data analysis infers the topological features of a space from a finite set of 

sampled points by assigning simplicial complexes to the data. One such construction 

consists of taking balls of fixed radius ε centered on the points. Points at the center of 

intersecting balls are connected in the simplicial complex. From the resulting complex, it is 

possible to extract topological features associated to the data at scale ε.
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(D) In the context of evolution, genomic sequences can be represented as points in a high 

dimensional space, where the distance between points is given by the Hamming distance 

between the corresponding sequences. In the absence of back-mutation and recombination, 

subsequent mutations can only increase the distance between genomes, and the evolutionary 

space of the system does not have loops. When recombination events are present, the 

evolutionary space contains loops, whose presence can be inferred from the finite genomic 

sample using TDA methods.

Camara et al. Page 19

Cell Syst. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Persistent homology estimator of recombination
(A) Estimated expected first Betti number E[b1] as a function of the recombination rate 

(expressed in terms of the effective population size Neff) and sample size n. Each point is 

based on 500 simulations. Error bars represent 95% confidence level intervals. Red curves 

correspond to the best fit according to expression (1) in Experimental Procedures.

(B) Dependence of Hudson-Kaplan (left), Myers-Griffiths (center), and b1 (right) summaries 

of recombination on the recombination rate at fixed number of segregating sites (s = 14). 

Each plot is based on 4,000 coalescent simulations of a sample of 160 sequences. Colored 

bands represent the interdecile range and central lines correspond to the mean. Squared 

Pearson's correlation coefficient is shown in each case.

(C) Fisher information for each of the 3 summaries in (B) as a function of the recombination 

rate. Information was computed in increments of 12.5/Neff cM. A smoothed trend is plotted 

by averaging windows of 101 computed values, weighted by the number of simulations.

(D) Distribution of 500 bp segments with ρPH > 0 in simulated samples of 160 sequences, 35 

kbp long. The background recombination rate is 500/Neff cM/Mb. Six recombination 

hotspots of widths 4 kbp, 2 kbp, and 1 kbp are simulated. The local recombination rate is 

enhanced at hotspots by a factor 640 (left) and 160 (right). Intra-hotpot recombination rate 
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variation is also simulated, with a ½ decay of the local recombination rate at the central 

region of hotspots.

See also Figure S1 and Table S1.
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Figure 3. Recombination rate estimates across distant human populations
(A) Position-wise recombination rates for each of the 7 populations, for the cytogenic band 

1q24.1. Blue and orange line plots represent recombination rates estimated with sliding 

windows with fixed number of segregating sites (s = 40 and s = 14, respectively). Below 

each track, red segments represent genomic regions where a 500bp sliding window detects 

recombination (b1 > 0).

(B) Spearman correlation matrix for the position-wise recombination rate of different 

populations across the entire genome. Maps were binned at 10 kbp and correlation was 

computed for bins with an average recombination rate of at least 25,000/Neff cM/Mb in each 

of the maps. Tiles are colored according to the degree of correlation. Hierarchical clustering 

of the matrix components is also shown, with colored leaves corresponding to African 

(blue), Asian (green) and European (red) populations.

See also Figure S2 and Table S2.
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Figure 4. Relation of recombination to TF binding sites
(A) Recombination enrichments at TF binding sites. Each point corresponds to a different 

combination of TF and cell line. Binding sites are based on ChIP-seq data from ENCODE 

(Gerstein et al., 2012). In total 118 TFs and 91 cell lines were considered. Recombination 

enrichments were computed with respect to neighboring regions using the 500bp 

recombination map of the British (GBR) population. Statistical significances are adjusted for 

multiple testing using Benjamini-Hochberg procedure. Pol2 and TFs that may for part of 

MLL1/2 complexes are indicated in blue and red, respectively.

(B) Recombination enrichment with respect to the whole-genome average for the TF binding 

sites considered in (A). Only TFs with the highest enrichments are shown. ChIP-seq peaks 

of each TF were merged across all cell lines. TFs that may for part of MLL1/2 complexes 

(indicated in red) are generally enriched for recombination.

(C) Recombination enrichment at E2F6 binding sites as a function of the distance to the 

binding site, according to TDA (L = 500bp and s = 14) recombination maps of the GBR 

population, as well as Hapmap (International HapMap et al., 2007) and African-American 

(Hinch et al., 2011) recombination maps. E2F6 binding sites were obtained from ENCODE, 

merging ChIP-seq peaks across K562 and Hela cell lines.

(D) Enrichment for predicted PRDM9 binding sites (defined by the motif 

CCNCCNTNNCCNC), and sperm CpG methylation, H3K4me3 and H3K27me3 marks as 

functions of the distance to E2F6 binding sites, for the binding sites considered in (C).

(E) Recombination enrichment at TF binding sites against enrichment for predicted PRDM9 

binding sites (left) and sperm CpG methylation (right), for the TFs and cell lines considered 

in (A). Color scale represents enrichments for sperm H3K4me3 marks at the loci of these TF 

binding sites.

(F) Enrichments for sperm H3K4me3 and H3K27me3 marks at the loci of TF binding sites, 

for the TFs and cell lines considered in (A). Color scale represents recombination 
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enrichment at the loci of these TF binding sites. Higher recombination enrichments occur for 

bivalent TF binding sites.

See also Figure S3 and Table S3.

Camara et al. Page 24

Cell Syst. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Relation of recombination to piRNA loci
(A) Recombination enrichment at repeat-derived piRNA-matched loci with respect to the 

whole-genome average. Repeat-derived loci with 100% identity to some sequence deposited 

in piRNA-Bank (Sai Lakshmi and Agrawal, 2008) were classified as belonging to SINE, 

LINE, SVA or other family of repetitive elements. Recombination enrichments were 

computed using the British (GBR) recombination map.

(B) Enrichment for recombination, CpG sites and sperm methylation for loci matched by 

four specific repeat-derived piRNA (piRNA-Bank accession numbers DQ577359, 

DQ579099, DQ577145 and DQ571358). The location of transposable elements and their 5’-

and 3’-ends are shown in black. Predicted PRDM9 binding motifs conserved across different 

loci are indicated in red. The origin of coordinates corresponds to the location of the piRNA-

matched sequence. In the four cases the piRNA sequence is antisense to the transposable 

element.
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(C) Enrichment for recombination (top left), predicted PRDM9 binding sites (top right) 

according to the motif CCNCCNTNNCCNC, sperm CpG methylation (bottom left), and 

sperm H3K4me3 and H3K27me3 marks (bottom right) for the loci considered in (A).

See also Figure S4.
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Table 1

Recombination rate estimates across different genomic loci and comparison to pedigree-based estimates (Kong 

et al., 2010).

Type Recombination rate, TDA (FE) Recombination rate, deCODE (FE)

Exon 0.84 ± 0.02 0.85

Intron 0.99 ± 0.01 1.02

Intergenic 1.02 ± 0.01 1.03
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