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Abstract

Adaptive, model-based, dose-finding methods, such as the continual reassessment method, have 

been shown to have good operating characteristics. One school of thought argues in favour of the 

use of parsimonious models, not modelling all aspects of the problem, and using a strict minimum 

number of parameters. In particular, for the standard situation of a single homogeneous group, it is 

common to appeal to a one-parameter model. Other authors argue for a more classical approach 

that models all aspects of the problem. Here, we show that increasing the dimension of the 

parameter space, in the context of adaptive dose-finding studies, is usually counter-productive and, 

rather than leading to improvements in operating characteristics, the added dimensionality is likely 

to result in di culties. Among these are inconsistency of parameter estimates, lack of coherence in 

escalation or de-escalation, erratic behaviour, getting stuck at the wrong level and, in almost all 

cases, poorer performance in terms of correct identification of the targeted dose. Our conclusions 

are based on both theoretical results and simulations.
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 1 Introduction

 1.1 Background

Model based Phase I designs guide dose escalation and de-escalation by appealing to some 

simple model structure. The aim is twofold: first, to locate the maximum tolerated dose 

(MTD) as accurately as we can and, second, to concentrate as many patients as possible at 
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doses close and at the MTD itself. Many of these designs come under the heading of the 

Continual Reassessment method (CRM) [1]. The CRM, leaning on an assumption of a 

strictly monotonic relationship between dose and the probability of observing a DLT (dose 

limiting toxicity), postulates a particularly simple 1-parameter model. In the long run, the fit 

of this model at the MTD itself should be perfect (almost sure convergence) but, at other 

dose levels the fit will typically only provide an approximation to the truth that worsens as 

we move away from the MTD. In the light of the sequential, adaptive nature of the trial, we 

can see that at doses other than the MTD the accumulating information, relative to that at the 

MTD, diminishes with sample size.

The crucial point to keep in mind is that the purpose of these studies is not to provide any 

kind of estimate of the overall dose-toxicity curve but, instead, to sensibly guide dose 

escalation and deescalation, to identify the MTD with the greatest possible accuracy and to 

treat as many patients as we can at and close to the MTD. This di ers from the more general 

aim of estimating the dose-response curve itself as is the case in some studies; examples 

include comparative studies involving randomization to dose levels or pharmaco- kinetics/

dynamic studies. In practice, sample sizes of Phase I studies are quite small, in many cases 

no more than 20 observations. It is still necessary to consider both large and small sample 

behaviour. Large sample theory helps us to anticipate the finite sample behavior of 

estimators but can be difficult in view of models being misspecified, while small sample 

theory is yet more complex and is typically addressed via simulations for plausible 

situations.

We first recall the statistical structure to dose-finding problems. We have available k doses 

labeled as d1, . . . , dk, and these can be multidimensional. The doses are ordered in terms of 

the probabilities, R(di), for toxicity at each of the levels, i.e. R(di) ≤ R(dj) whenever i < j. 
The most appropriate dose, the ‘target’ dose in any study and the dose defined to be the 

“maximum tolerated dose (MTD)”, denoted d0 ∈ {d1, . . . , dk} is that dose having an 

associated probability of toxicity, R(d0), as close as we can get to some target “acceptable” 

toxicity rate θ. Specifically we define d0 ∈ {d1, . . . , dk} such that

(1)

The binary indicator Yj takes the value 1 in the case of a toxic response for the j th entered 

subject (j = 1, . . . , n) and 0 otherwise. The dose for the j th entered subject, Xj is viewed as 

random, taking values xj ∈ {d1, . . . , dk}; j = 1, . . . , n. Thus Pr (Yj = 1|Xj = xj) = R(xj). We 

write  and  to be any general model 

based estimate of the MTD using the available data. We then have two statistical goals; (1) 

estimate d0 consistently and efficiently and, (2) during the course of the study, concentrate as 

many patients as possible around d0, specifically we treat the j th included patient at the 

same level we would have estimated as being d0 had the study ended after the inclusion of j 
− 1 patients.
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 1.2 Local modeling of the dose-toxicity curve

We can choose a specific model to represent R(xj), the true probability of toxic response at 

Xj = xj ; xj ∈ {d1, . . . dk} by

where ψ(xj, a) is a working model. The parameter a could be multidimensional although, in 

the standard setting, it is usually taken to be of dimension one. Dose allocation follows the 

algorithm as [1], where given the visited dose levels and toxicity outcomes, we estimate a 
sequentially and the predicted toxicity rates given by ψ(xj,â) provide a sequential estimate of 

the MTD. For every a, the working model ψ(x, a) should be monotone increasing in x and, 

for any x, in the one dimensional case, ψ(x, a) should be monotone in a. For every di there 

exists some  such that R(di) = ψ(di, ai), i.e. the model is rich enough, at each dose, to 

exactly reproduce the true probability of toxicity at that dose. We have a lot of flexibility in 

our choice for the working model ψ(x, a), the simple choice:

(2)

where 0 < α1 < . . . < αk < 1 and −∞ < a < ∞, being a common one. In the Bayesian setting, 

the αi are often viewed as our prior best guesses of the probability of DLT at level i. In the 

pure likelihood setting it is difficult to interpret the αi since, at every step, for any w > 0, a 

model based on αi and a model based on  produce identical results. For any model 

, an important theorem known as the impossibility theorem is the following;

 Theorem 1—Suppose the current estimator of the MTD,  satisfies 

 where  is the sigma-algebra generated by the sample. 

There exists a scenario satisfying the monotonicity constraint such that:

The theorem and a proof is given by Azriel et al.[2] Essentially it says, for general models 

with the above property, then, only for specific restricted situations can we claim to obtain 

large sample almost sure convergence when allocation corresponds to the current estimator 

for the MTD. Suppose however that we eventually settle on level di that is not the MTD. We 

still have,

 Theorem 2—If  as n → ∞ then, for ϵ > 0,

(3)

The theorem is almost immediate and follows from the Glivenko-Cantelli theorem and its 

extension to smooth functionals (see [3], Chapter 3). Almost sure convergence of the 1-
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parameter model used in CRM, under certain conditions, has been shown [4]. However, 

under very general conditions, Theorem 2 continues to apply and, in particular, shows that at 

whatever level we finally settle, we correctly estimate the probability of toxicity at that level. 

This provides a lot of information. If, for instance, the estimated probability is 0.19, and the 

target is 0.20, then although the MTD may not be at the level corresponding to 0.19 (eg, the 

MTD corresponds to 0.199), we can still make accurate statement about the rate of toxicity 

at the estimated MTD. However, for over parameterized models, not only does Theorem 1 

apply, Theorem 2 will generally fail to apply as seen below.

If we were allowed to randomly experiment at all available dose levels then, clearly, a more 

flexible model is going to be generally rewarded by more accurate inference. There is also 

value in fitting parsimonious models when there are only likely to be a few dozen 

observations. However, once we rule out randomization and experimentation at all available 

levels, then much of our intuitive thinking is put to the test. For instance, let us suppose that 

some simple 1-parameter model really does generate the observations. We would often guess 

that, in this situation, the best model for our purposes would be one belonging to this same 

1-parameter class. Perhaps surprisingly, this is not the case and it can be confirmed by 

simulation studies.

How important is overall fit? In almost any non-sequential, non-adaptive situation, fit is 

crucial; the better the fit the better the performance. In our adaptive situation that is no 

longer so. Only local fit matters. Overall fit is not important since it only relates very 

indirectly to measures of performance. We need to assess, directly, the relevant measures of 

performance. Indicators of performance refer to both asymptotic and finite sample 

behaviour. Almost sure convergence is an asymptotic property and while getting to the right 

place after an infinite effort may seem to have limited value, in fact, the almost sure 

convergence gives us more in that it indicates that increasing sample size is rewarded 

appropriately by more accurate inference. We might also view this as a very minimal 

attribute in as much as any method failing to show large sample convergence, whether in 

probability or almost surely, would fail to inspire confidence for finite samples. Finite 

sample behaviour on its own is of course very important and is typically investigated via 

broad collections of simulations. For a wide range of possibilities we would like to know 

how often any method locates the MTD, how concentrated at and around the MTD are those 

patients included in the study and, all else being equal, how many patients are needed for 

some given level of accuracy.

In this paper, we present several motivating examples, where a model that is not 

parsimonious and that may otherwise appear to be a reasonable choice, will show very poor 

operating characteristics as well as undesirable mathematical properties in the specific 

setting of adaptive sequential dose-finding designs. Although the performance of these 

models has been previously shown to be poor via simulated trials ([5, 6]) these models are 

being increasingly used in practice [7] raising concerns about safety and accuracy. In this 

work we describe, via both theoretical arguments and simulations, the potential negative 

consequences of using over parameterized models in dose finding studies.
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 2 Motivating example

Neuenschwander et al. [8] report on a 1-parameter CRM trial. The initial design indicated a 

total of 15 possible levels ranging from 1-250mg with the prior distribution indicating dose 

level 10 (50 mg) to be the likely MTD before seeing any data (Table 1). This example is 

referred to as a demonstration that CRM is aggressive in escalation since, having observed 

two DLTs out of two patients at dose level 7, the subsequent recommendation is to treat at 

dose level 9. The authors conclude that this undesirable behaviour can be attributed to the 

lack of flexibility of the 1-parameter model. Such a conclusion is erroneous.

Details of the trial parameters and data are given in Table 1 for the first 10 dose levels. The 

trial design was constructed in such a way to make the most likely MTD to be dose level 10 

and this was reflected by a large probability weight at level 10. If we were to allow the prior 

to guide our experimentation then we will treat the first patient or cohort of patients at dose 

level 10. This would correspond to a correct implementation of the CRM as described in 

O'Quigley et al (1990). However, clinical investigators often want to be cautious and start 

experimentation at dose level 1. This can be readily achieved although, if we wish to 

implement the CRM correctly, then we need to either match the planned experimentation to 

the design or match the design to the planned experimentation. In the former case, we must 

treat the first entered patient at dose level 10. In the latter case we need to choose an 

appropriate prior, one centered at level 1 and not at level 10. Level 10, at more than 50 times 

the dose, is very far removed from level 1 at which experimentation began (Table 1). The 

early observed non-toxicities have the effect of very slowly moving the prior from being 

centered at level 10 to being centered at level 11. Thus, when, as a result of observing 2 out 

of 2 toxicities at level 7, the model recommends level 9, this is a shift from level 11 to level 

9. The recommendation to “escalate” was not a result of using a simple, under-

parameterized model. Had the CRM design been correctly implemented, this would have 

been a de-escalation. [9] If we correctly follow CRM, then coherence, i.e., no escalation 

after observing a DLT, is guaranteed mathematically [12]. We return to this in Section 2.1 

and relate the definitions to specific models. Section 5 describes the solution to the problem 

within the context of Bayes inference. In the next section, we show that the 2-parameter 

logistic model while generally behaving poorly also fails consistency.

 2.1 Operating characteristics

Several authors ([10],[11]) have identified large and small sample operating characteristics 

that are desirable, even necessary, for any dose-finding design to be used in practice. Cheung 

[12] showed that both Bayesian and likelihood based 1-parameter CRM designs enjoy the 

property of coherence, which means that the method cannot recommend escalation from any 

level following an observed dose limiting toxicity at that level or de-escalation following a 

non toxicity. This property ensures safety and e ciency. It has been argued that failing to use 

the more flexible 2-parameter model could result in CRM getting stuck at a level or 

aggressive escalations may follow a toxicity. This is not true. The definition of rigidity was 

given by Cheung (2011) [13] to describe the case when a design gets stuck at a dose level or 

when the parameter estimation remains at a particular location in the parameter space, 
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regardless of the updated data (refer to [13] for details). We describe these properties below 

and give examples in Section 4:

1. Consistency of estimators. By consistent we mean the usual convergence 

with probability one (almost sure convergence) to the population value. In 

particular we would like, under certain conditions, to be able to claim that 

the recommended dose converges almost surely to the true MTD.

2. Coherence of design. Given that the current level at which the patient is 

treated has been recommended by the model, then a toxicity should result 

in recommending either the same level or a lower one and a non-toxicity 

should result in a recommendation for the same level or a higher one [12].

3. Rigidity. Informally, the accumulating information should guide us in the 

right direction. In particular, we should be able to move away from a level 

when the data do not support that level being the MTD. [13].

4. Efficiency. Any design should make e cient use of the data, in particular 

performance should be satisfactory when contrasted with the non-

parametric optimal design. [5]

 2.2 Statistical properties

Suppose that Pr(Y = 1|di) = ψ(di; a, b), is a two parameter-model, specifically let,

(4)

i.e., the usual logistic model. Let us also suppose that g(a, b) is a two-dimensional prior 

distribution for the pair (a, b). This set up was first studied in the context of dose finding by 

O'Quigley, Pepe, Fisher 1990 [1], described here as 2 parameter CRM. Elsewhere this set-up 

has been called ADEPT [14, 15], LDRS [16], BLR [8].

 Lemma 1—Let ψ(a) = ∂ψ(a, b)/∂a and ψ(b) = ∂ψ(a, b)/∂b and the symbol → to denote 

almost sure convergence, then

(5)

where
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PROOF: See Appendix

 Lemma 2—Let πn(di) ∈ [0, 1] be the frequency that the level di has been used by the 

first n experiments, and an, ãn, bn, b̃
n are defined by In(an, bn) = Jn(an, bn) = 0, Ĩn(ã, b̃) = J̃n(ã, 

b ̃) = 0, we have that

and that |an − ãn| → 0, |bn − b̃
n| → 0 where, as before, → indicates almost sure convergence.

PROOF: See Appendix

Lemmas 1 and 2 establish the connection between the law of large numbers for the 

observations and theoretical properties of the chosen model. These lemmas provide the 

support to the following theorem. The corollary to the theorem below shows that, under 

adaptive sequential sampling, the two parameter logistic model is inconsistent. The theorem 

shows that the determinant of the Fisher Information, instead of increasing without bound as 

is required for consistency, will in fact converge almost surely to zero. Bringing these results 

together we have the main theoretical result:

 Theorem 3—Suppose that ψ = exp(a + bdi)/(1 + exp(a + bdi)), then

 Proof of the theorem: Let us assume that the working model ψ(a, b|di = xj) = exp (a + 

bxj)/1 + exp (a + bxj).

Then the likelihood after n patients have been treated is log  where Lj = (a
+bxj)I(yj = 1)−log[1+exp (a + bxj)] is the contribution from the j th patient. Let us calculate 

the first and second derivatives of Lj so that we can calculate the Fisher Information matrix 

for this likelihood function. We have, ∂Lj/∂a = yj − 1/[1 + exp (a + bxj)], ∂Lj/∂b = xjyj − xj/[1 

+ exp (a + bxj)] = xj∂Lj/∂a, ∂2Lj/∂a2 = exp (a + bxj)/[1 + exp (a + bxj)]2, 

, ∂2Lj/∂a∂b = xj∂2Lj/∂a2 and ∂2Lj/∂b∂a = xj∂2Lj/∂a2. Using the above 

components we can see that the observed Fisher Information can be written,
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(6)

As n → ∞ then all patients are being treated at the MTD thus xj → dm where dm is the 

MTD. It was shown that contributions to the likelihood function from patients being treated 

at levels different than the MTD, i.e. at xj ≠ dm are negligible asymptotically [4]. Under the 

conditions listed in Appendix specific to the logistic model and Lemma 2, we have 

. Note, from the above, that all of 

the partial derivatives can be expressed in terms of partial derivatives with respect to a alone, 

from which we have,

where the terms i11, ... , i22 are all O(n−1) and where nm denotes the number of patients 

treated at dm. The determinant of  since nm/n is bounded by 1 and the 

terms i11, ... , i22 are all O(n−1). Assuming that the prior g(a, b) is a non degenerate prior, 

then g(a, b) is bounded so that, as n → ∞, then n−1 log g(a, b) → 0. It follows that

 Corollary 1—The 2-parameter logistic model is not consistent.

By not consistent we mean that the parameter estimates fail to converge almost surely to 

their population counterparts. This is true whether or not the model is misspecified. It may 

be true that we have almost sure convergence to the MTD or possibly the weaker result, 

convergence in probability to the MTD (where we would not settle at the MTD but the 

probability of sampling there would go to one) but it is not at all clear how either of these 

could be shown. Our view is that a failure to obtain consistency for the parameter estimates 

is a serious shortcoming and a hint of things to come for finite samples.

 3 Small sample impact of over-parameterization

It may be thought that failing to achieve large sample convergence is not important in this 

setting and that, in practice, with small samples the structure of the model should be su 

ciently solid to enable reliable results. The main complication caused by the 2-parameter 

logistic model occurs because the design points, xi's, are not sufficiently spread out. Thus, in 

this sense, the problem of dose-finding differs from that of the classical bioassay problem, 
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which can lead to such problems as being confined indefinitely to suboptimal doses 

(rigidity). When dose allocation is guided by the 2-parameter model other issues may arise. 

These difficulties include a negative or a near zero slope being estimated and/or incoherence. 

Before illustrating these problems, we recall the conditions in which the MLE's of a and b 
exist. Silvapulle [17] shows that, assuming there are at least two distinct xj's, the MLE's â 
and b̂ exist and are unique if and only if any of the following conditions hold:

(1)

where , , , and 

. Recall that, in the case of the 1-parameter CRM, the MLE of a in 

model (2) exists as soon as there is heterogeneity in the responses (i.e. at least one DLT and 

one non-DLT). Since Condition (1) is a stronger condition than that of response 

heterogeneity, it requires more observations before the MLE's, and the model-recommended 

dose, can be obtained using the 2-parameter model. A simulated trial based on the 

NeuSTART design (Neuroprotection with Statin Therapy for Acute Recovery Trial; [18]) 

illustrates that the MLE's for a and b do not exist until after observing the response of the 

21st patient in a 33 patient trial [13]. Therefore, approximately two-thirds of the final sample 

size is used before the MLE's exist, so Condition (1) may not allow for effective use of the 

2-parameter model given the sample size constraints of a dose-finding trial.

 3.1 Problems resulting from estimation at the boundary of the parameter space

Single stage trials follow the model from the beginning and employ a Bayesian prior, as 

opposed to two stage trials where the first stage is not guided by a model. The model is fit 

after the conditions for the existence of MLE's are met. Using initial DLT rates as (0.1, 0.2, 

0.3, 0.4, 0.5, 0.6, 0.7) and initial values as a0 = 3, b0 = 1, we obtain standardized dose units 

as (−5.197, −4.386, −3.847, −3.405, −3.0, −2.594, −2.153) using model (4). Suppose we are 

conducting a two-stage design using an initial escalation scheme which replicates the 

traditional 3+3 design. Let us assume the first three patients have been treated at dose level 

1, and 1/3 experienced DLT. At this point, although we do have heterogeneity in the 

response data, the MLE's for the 2-parameter model do not exist because Condition (1) has 

not been satisfied. Therefore, investigators decide to continue following the 3+3 design and 

enroll 3 more patients on dose level 1. None of these next three patients experience DLT, so 

the trial escalates to a higher dose level. The next patient is treated at dose level 2, and does 

not experience a DLT. With 1/6 DLT's on level 1, and 0/1 DLT's on level 2, the conditions 

for the existence of â and b̂ exist. The predicted DLT rates are 1.67 × 10−1, 8.65 × 10−9, 1.10 

× 10−11, 1.07 × 10−17, 2.23 × 10−21, 4.63 × 10−25, 4.50 × 10−29 with â = −110.28 and b̂ = 

−20.91 showing the models’ instability as this curve is decreasing and higher levels have 

lower DLT rates. If we restrict b > 0, which is almost always done in practice, then b̂ = 1.05 

× 10−7, â = −1.609 resulting in ties in the predicted rates at all levels (0.17), since b is 

estimated at the boundary of the parameter space. Given these same data, the 1-parameter 

power model with the same initial rates (skeleton) would result in exp(â) = 0.873, where a 
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corresponds to Equation 2 and predicted rates as (0.13, 0.25, 0.35, 0.45, 0.55, 0.64, 0.73) for 

the 7 levels respectively. This is an example where the 2-parameter model breaks down.

The following example also shows problems with estimation at the boundary of the 

parameter space. The data are in the form shown in Table 2, (Example 1). Given the data 

from the first 20 patients from stage 1, the model is fit and the recommendation is level 3 

based on â = −1.89, b̂ = −0.20, and predicted rates equal to 0.30, 0.27, 0.25, 0.23, 0.22, 0.20, 

0.19. At level 3 one patient is treated with non DLT and the estimated parameters are b̂ = 

−0.21, â = −1.99 leading to estimated DLT rates of 0.257 and 0.236 at d2 and d3. The fact 

that d2 is recommended, ie de-escalation, after a non DLT is not acceptable. In all these 

recommendations b can take any value, i.e. it is not restricted to be positive. Negative values 

for b result in decreasing rates with dose, which means the condition that the probability of 

toxicity strictly increases with dose fails. Restricting b > 0, results in b being estimated close 

to 0, b̂ = 4.42 × 10−8 again indicating estimation problems at the boundary of the parameter 

space.

 3.2 Rigidity

The instability associated with 2-parameter estimation may confine the trial to suboptimal 

doses, known as rigidity. In this section we present such examples and show that even with 

weakly informative prior information, rigidity still exists in the Bayesian context. For an 

illustration of rigidity, we return to the NeuSTART example. The study investigated high-

dose lovastatin given to patients for 3 days after stroke, followed by a standard dose for 27 

days. There were five escalating dose levels 1, 3, 6, 8, 10 mg/kg/day under consideration, 

and the primary objective of the trial was to identify a dose with DLT rate closest to θ = 

10%. The first cohort of three patients were treated at dose level 1, and 0 out of 3 

experienced DLT. The trial escalated to dose level 2, and 1 DLT was observed in the second 

cohort of 3 patients. At this point in the trial, Condition (1) is satisfied, and the MLE's of the 

2-parameter logistic model exist. Using skeleton values (0.02, 0.06, 0.10, 0.18, 0.3) and 

initial values as a0 = 3, b0 = 1, we obtain standardized dose units as (−6.892, −5.751, −5.197, 

−4.516, −3.84) using model (4). The estimated DLT rates are (0.00, 0.33, 1.00, 1.00, 1.00) 

with â = 94.50 and b̂ = 16.55. As a result, the recommendation is level 1 for the next entered 

patient (closest to θ = 0.10). It is straightforward to confirm, using standard logistic 

regression software (such as R function glm) that the 2-parameter model will recommend 

level 1 from this point on in the trial, regardless of what outcomes are observed at this dose. 

In other words, no amount of non-DLT's will result in an escalation back to dose level 2. In 

the presence of non-DLT's, the predicted DLT rate for level 1 will remain close to zero, 

whereas a lack of experimentation at level 2 will result in it's predicted rate remaining at 

0.33. Therefore, level 2 will never have an estimated DLT closer to 0.10 than dose level 1, no 

matter what sequence of outcomes are observed at level 1. Similar arguments can be made to 

illustrate rigidity if 0/2 and 1/2 DLT's are observed at the lowest two levels, respectively, in a 

trial targeting θ = 0.20. The 2-parameter model was heavily influenced by the single DLT 

that occurred early in the trial at level 2. Rigidity is still present when incorporating a 

weakly informative prior distribution such as that recommended for logistic regression 

models by [19]. Using the default priors a ~ Cauchy(0, 10) for the intercept and b ~ 

Cauchy(0, 2.5) for the slope, the 2-parameter logistic will be confined to level 1 based on the 
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data observed from the first six entered patients. This can easily be confirmed using the 

function bayesglm in R package arm. In contrast, a 1-parameter logistic model with the 

intercept fixed at a0 = 3 would result in more stable probability estimates of (0.03, 0.09, 

0.14, 0.23, 0.36), thus recommending level 2 for the 7th patient.

A further illustration of the restrictive nature of the 2-parameter model can be seen using the 

initial data from a study by Dougherty et al.[20]. The trial aimed to find the dose with DLT 

rate closest to θ = 20%, among four doses 0.25, 0.50, 0.75, 1.00 μg/kg of nalmefene. Patients 

were treated in cohorts of 1, and a 1-parameter logistic model with the intercept fixed at a0 = 

3 was used to predict DLT rates. The study used skeleton values (0.10, 0.20, 0.40, 0.80) and 

initial values a0 = 3, b0 = 1 to obtain the standardized dose units (−5.197, −4.386, −3.405, 

−1.614). The first two patients were treated on the first two dose levels, respectively, and 

neither had DLT. The third patient was entered onto dose level 3, and experienced a DLT. 

Heterogeneity in the observed data now exists, so we are able to fit a 1-parameter model, 

which recommends de-escalation back to level 1. After a non-DLT for the 4th patient, the 1-

parameter model recommends escalation to level 2, at which level the next patient does not 

have a DLT. The 6th patient suffers DLT on level 2 (Table 2, Example 2, data from first 6 

patients). The authors used the 1-parameter logistic model where the intercept is held 

constant, and correctly identified d2 as the MTD with an observed DLT rate of 3/18 and a 

target rate of 20%. However, for the purposes of illustration here we use the 2-parameter 

logistic model. After 6 patients, Condition (1) is satisfied, and we would be able to fit a 2-

parameter model. In doing so, the estimated DLT rates are (0.00, 0.33, 1.00, 1.00) with â = 

98.68 and b̂ = 22.66, from which level 2 has predicted rate closest to 0.20 and is 

recommended. It can again be confirmed via R function glm that, based on this early data, 

the trial will be confined to dose 2, no matter how many consecutive non-DLT's happened to 

be observed at this level. Of course, a DLT at level 2 could result in de-escalation to level 1, 

but the 2-parameter model will never allow escalation to return to level 3. A potential 

solution to the amount of patients required for Condition (1) to be satisfied is o ered by 

Piantadosi et al. [21], which is that of including pseudo-data into the model fitting so as to 

establish the existence of MLE's. Although this approach o ers a practical solution from a 

computational standpoint, it is still possible for the 2-parameter model to overfit based on 

few observation early in the study. Consequently, care should be taken in using pseudo-data 

prior approaches.

Example 3 (Table 2) also shows the rigidity of the 2-parameter model under a scenario that 

is very plausible in real trials. A DLT at level 6 among 8 possible levels (k = 8, θ = 0.25, 

skeleton= (0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7)) leads to de-escalation to level 5, and no matter 

how many non-DLTs are observed at d5, the method stays at level 5 indefinitely. The 

predicted rates are (0, 0, 0, 0, 0.0097, 1, 1, 1) at the 8 levels respectively after 100 non-DLTs 

are observed at d5, showing that a single DLT at d6, although it might be an isolated clinical 

adverse event, it is an influential observation. The estimated dose-toxicity curve is so steep 

that escalation to d6 is no longer permitted.
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 3.3 Simulations

Table 3 shows the performance of the 1-parameter power model, the 2-parameter logistic 

model and the theoretical benchmark optimal design defined in [5]. The skeleton values used 

for this simulation were (0.06, 0.11, 0.20, 0.30), k = 4, N = 25, B = 2000, θ = 0.20, where B 
is the number of simulations, along with pseudo-data given as DLT rates of (0.20,0,0,0.33) 

with 2 patients in total. Dose allocation started at the lowest dose and dose jumps were not 

allowed. The true DLT rates shown in Table 3 are close to the 1 parameter model and Table 

5 describes a situation in which the actual observed data are generated by a 2-parameter 

logistic model and 1 versus 2 parameter models are fit to the data. We present percent of 

correct selection, dose-patient alloccation, and summarize the results using an accuracy 

index summarizing the entire distribution of selected doses levels. Higher values of accuracy 

index are desirable. The accuracy index is given by

where Δl measures the distance of the true DLT rate at dose l from the target rate.

Across all scenarios we see higher performance with 1-parameter power model with average 

percent correct selection at the MTD given by : 0.58, 0.52, and 0.65 for the 1-parameter 

model, 2-parameter model and optimal design respectively, and average index across levels 

given by 0.57, 0.49, and 0.63 for the 1-parameter, 2-parameter and optimal design 

respectively. Table 4 shows the number of patients treated per dose level, and the overall 

observed DLT rate.

Several authors have previously examined the behavior of 1 versus 2-parameter models 

within dose escalation designs. Over a large number of simulations, accuracy of 

recommendation was clearly superior for the misspecified 1-parameter CRM against the 2-

parameter CRM even though the data were generated by 2-parameter CRM (0.57 versus 

0.48; Table 5).

Over a much wider class of situations, O'Quigley et al. [5] compared the performance in 

terms of accuracy of recommendation of the correct MTD of the optimal design, 1-

parameter CRM and 2-parameter CRM and confirmed the superior performance of 1-

parameter CRM as illustrated in Figure 1. Paoletti and Kramar [6] also found that the 

performance of 2-parameter model is inferior consistently to the 1-parameter model within 

the Bayesian and Likelihood framework regardless of the choice of other design parameters. 

They examined cases where the number of levels and sample size varies, and illustrated 

examples where the behavior of 2-parameter logistic model is unstable. They also described 

the performance of each model relative to the optimal method when performance is 

measured via the errors on the probability scale.

A question that often comes up in this context is the following: does the current estimate of 

the MTD contain all of the useful information needed for efficient estimation? In terms of 

the goals of the study, i.e. accurate estimation of the MTD and experimentation at and 
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around the MTD, does the distribution of the estimated MTD, rather than just the summary 

statistic alone, e.g. the estimated mean, provide any way to improve performance? The 

answer is that it does not [22]. Taking into account the uncertainty in the estimation of the 

MTD in terms of identifying when to stop the trial or which levels to take into the expansion 

phase can be useful [23] but this uncertainty does not help in terms of dose allocation and 

the recommended MTD at the end of the trial [24]. Although designs such as EWOC are 

conceptually interesting, controlling the risk of overdosing can be achieved without the 

addition of extra parameters and this was shown by Chu et al. [24].

 4 Dimensionality in more complex models

In this paper we have mostly focused on the relatively simple situation of a single agent and 

no additional complicating features. However, one of the main attractions of model based 

designs when compared to the old standard 3+3 design is that they can readily address more 

involved problems. Such problems include patient heterogeneity, making use of information 

on grades, partially ordered combination studies, finding the most successful dose (MSD) 

that makes use of efficacy as well as toxicity outcomes and many other more complex 

situations. What is the impact of model dimensionality in these yet more involved studies? 

Our intuition, based on the results of this paper and others looking at the 1-parameter versus 

2-parameter CRM models [6], would suggest that not only are richly parameterized models 

not going to be rewarded with improved performance but the opposite is likely to be true.

Consider for example the case of partial ordering when studying the safety of drug 

combinations. The results of Wages et al,[25] are generally superior to those obtained from 

models that try to model all marginal and secondary effects. The reason for this is due to the 

ethical necessity of treating patients at the currently best estimate of the MTD. Richer 

models with more parameters require more sources of information, including 

experimentation at various levels, than can be provided by algorithms that tend to 

concentrate at and around the MTD. As a result, the parameter estimates can be highly 

correlated resulting in unstable information matrices (non-invertible matrices). Strong 

Bayesian priors can help overcome this weakness but have their own weakness in that when 

prior assumptions are not correct the resulting biases can be large [26].

Another interesting illustration can be seen when we attempt to deal with simultaneous 

binary information on both toxicity and efficacy. Correlation or dependency between these 

two binary outcomes can be expressed via the odds-ratio which quantifies the difference 

between two conditional probabilities; that of efficacy given non-toxicity and that of efficacy 

given toxicity. The problem is fully specified via 3 rates; that of toxicity and those of 

efficacy given toxicity or no toxicity. O'Quigley et al [27] argued that the probability of 

efficacy given toxicity is not very relevant in terms of locating the most successful dose 

(MSD) and that overall success hinges on only 2 rates; that of toxicity and that of efficacy 

given no toxicity. Bypassing the need to model the rate of efficacy given toxicity reduces the 

dimension of the parameter space from 3 to 2. The results were very good and allowed 

accurate and reliable estimation of the MSD based only on two rates, both of which can be 

viewed as marginal rates if, in addition, we assume that the probability of efficacy and the 

probability of toxicity are independent given dose. Such an assumption may well be wrong 
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but, as shown in Iasonos and O'Quigley [28] the algorithm is completely insensitive to 

different odds-ratios and so, in particular, why not simply fix the odds-ratio at the value 1 

(conditional independence given dose). This parallels the situation we have for elementary 

dose-finding with, say, a two-parameter logistic model reduced to a one-parameter model by 

fixing the intercept at some arbitrary value. Regardless of the value, we know that this works 

very well when the goal is to locate the MTD. If the goal is to estimate the whole curve then, 

unless we experiment away from the MTD, we will not obtain good results.

Including an association parameter into a dose-finding study can present a considerable 

challenge and the performance of the resulting method can depend upon unknown 

quantities. An example is given in the simulations by Thall and Cook [29], where the 

percentage of selecting a specific dose decreases from 82% to 14% on the basis of 

differences in the value of the association parameter. This case again illustrates that when 

modeling additional parameters such as the association parameter in a bivariate endpoint 

setting, correct specification of the additional parameter is crucial for the design's 

performance . In the clinical setting such exact information is not usually available and 

methods that avoid the inclusion of such association parameters into the model seem to be 

preferable. [26]

 5 Recommendations

In this paper we showed that the 2-parameter model is not consistent and will behave 

erratically when compared to the 1-parameter model. The solution to ensure safety and e 

ciency is not to be found by adding more parameters to the model. We suggest several 

possible solutions as follows:

1. If we use the Bayesian CRM then we need to choose an appropriate prior 

so that the dose at which we carry out the experiment (eg. dose level 1) is 

a dose indicated by the prior. A CRM design requirement is to experiment 

at the level indicated by the model and, while a gap of one or two levels 

between the dose actually being used and the one indicated by the prior/

posterior is not problematic, a gap of too many levels, such as 9 levels as 

in the motivating example will be problematic [9].

2. Keep the prior chosen by the investigators but then make sure to actually 

evaluate the sensitivity of the dose-allocation algorithm to the choice of 

model and prior. This was emphasized by Gatsonis and Greenhouse in 

1992 [30] who showed that the marginal posterior distribution of the MTD 

was not sensitive to the form of the model but it was sensitive to the choice 

of the prior distribution. Simulations above showed that the 2-parameter 

model cannot override the prior in certain cases even as the sample size 

increased (inconsistent). We suggest the use of a non-informative prior 

making each dose equally likely to be the MTD, when reliable data cannot 

be the basis of an informative prior.

3. When available, relevant historical data can be used to form an informative 

prior then this is a viable option in certain clinical scenarios. The data can 

Iasonos et al. Page 14

Stat Med. Author manuscript; available in PMC 2016 September 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be from another Phase I study in a similar patient population or it can be 

from a study evaluating a different schedule. These ideas have been 

studied under bridging and different models have been used depending on 

the clinical scenario [25, 31]. The weight of the prior data needs to be 

examined via simulations and the operating characteristics will determine 

how informative a prior can be. It is important that the design remains 

robust and various levels can be reached as the final MTD even when the 

trial data are at odds with the historical data. [32, 33]

4. Abandon the use of any prior and use a two-stage likelihood based design, 

the first stage being necessarily a non model based design since, until 

heterogeneity in the responses is observed, we do not have parameter 

estimates in the interior of the parameter space. This requires that the first 

entered patients be treated according some scheme decided by the clinical 

investigators. This approach can be very attractive and allows the 

investigators to make use of great flexibility. For instance, we can use 

intermediary grades to guide initial escalation whereby only one or two 

patients are included at any level in the presence of low-grade toxicities 

and more, three say, in the presence of intermediary toxicities. [34] As 

soon as the first DLT is observed then we switch to the second stage of the 

2-stage design and base escalation or de-escalation on the 1-parameter 

working model. Two stage designs are very useful when we have many 

dose levels such as > 10, so that we can eliminate levels far away from the 

MTD. Paoletti and Kramar [6] used the 1 parameter model with a strongly 

informative prior at the lower levels, and observed that there was difficulty 

reaching levels beyond level 8. This is very interesting since it would 

appear to show very conservative behavior as opposed to the aggressive 

behavior described by Neunschwander et al. In fact both examples 

illustrate the same error; that of supposing that a very strong prior can be 

easily overwritten by the data. In the Paoletti and Kramar example the 

prior corresponded to approximately 7.7 DLTs out of 8.7 patients, on the 

basis of exponential prior and skeleton value of 0.88 at level 9 (or > 0.75 

to levels above 6) . Given such information, any method would require to 

observe many non-toxicities at level 8 before taking the risk of returning to 

level 9.

 6 Conclusion

The essential difficulty for over-parameterized models is that they can be too flexible. In this 

paper we have presented examples where just a few observations, sometimes a single 

observation, will exercise an undue influence on the 2-parameter logistic model. This 

influence can even last indefinitely and not be overwritten by any amount of data. In 

practice, this means poor performance when compared with an efficient parsimoniously 

parameterized model, and, in some cases, the algorithm becomes completely stuck at an 

obviously incorrect dose level. In contrast, the 1-parameter model, although rigid in shape is 
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not rigid in nature and is able to escalate and de-escalate appropriately in response to the 

observations and quickly homing in on the vicinity of the MTD.

While more complex clinical problems call for more complex models such as the 2-group 

heterogeneity problem where an additional parameter is needed - the principle of parsimony 

is always a good guide. Include only as many parameters as are necessary in order to 

characterize those key aspects of the problem that our interest is focused on. We can often 

avoid estimating secondary or nuisance parameters. If the purpose is to estimate the whole 

dose-toxicity curve and not just locate the MTD, as is often the case in PK studies, then 

more parameters will be needed. In order to estimate these additional parameters in any 

satisfactory way, we will need to spread the observations and follow a different allocation 

rule. Randomization may or may not be used to do this and, only if we obtain information 

across a broader spectrum of levels can we hope to tackle the more difficult problem of 

estimating the whole dose-toxicity curve rather than locating a single point. Other problems 

include evaluation of efficacy in the dose expansion setting or Phase I/II trials.

Lastly, particular care is needed when using Bayesian methods in the Phase I setting. Unlike 

later phase clinical trials, Phase I trials will rarely have the opportunity to fully overcome the 

prior influence due to the small sample size. Priors that amount to high rates of toxicities or 

zero rates of toxicities will affect how conservatively or aggressively the method escalates 

respectively. Prudence in choosing an appropriate prior is required and the choice of a 

suitable model still requires careful consideration. Priors and model parameters are not 

always easily interpreted and it can be of great value to transform these, if only 

approximately, to more concrete quantities such as the equivalent number of toxicities and 

the total number of patients in terms of pseudo observations at given levels. As described in 

this paper, such information allows us to understand and avoid model behavior that is 

clinically unacceptable.
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 Appendix

 Proof of Lemma 1

Let us assume ψ = exp(a + bxj)/(1 + exp(a + bxj)) is the usual logistic model and that g(a, b) 

is a two-dimensional prior distribution that is non degenerate for the pair (a, b).

(A.1)

(A.2)
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(A.3)

(A.4)

(A.5)

(A.6)

Observe that for each dose level xj,  and  are uniformly continuous 

in a and b over the finite interval [A1, A2], [B1, B2]. Then for any ϵ > 0 and for each xj there 

must exist a partition A1 = t0 < t1 < ... < tk = A2 and B1 = r0 < r1 < ... < rk = B2 such that for 

any a ∈ [A1, A2], b ∈ [B1, B2], there is a tk0 ∈ [A1, A2] and rk0 ∈ [B1, B2] such that

It follows that supa∈[A,B] |In(a, b)| ≤ ϵ and supa∈[A,B] |În(a, b)| ≤ ϵ since . 

Define

In2(a, b) converges to 0 almost surely because of the limit theorem of martingales 

(Shiryayev, A. N. (1984), Probability. (Trans. R. P. Boas). New York: Springer-Verlag) and 

since for fixed (tk0, rk0), {nIn2 : n ≥ 1} forms a martingale. Since there is a finite number of 

partition points it follows that

The same arguments can be used to show supa∈[A,B] |Jn(a) − J̃
n(a)| → 0, since
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 Proof of Lemma 2

Condition 1: ψ is strictly increasing,; it is continuous and strictly monotone in a, b in the 

same direction for all x. Condition 2: ,  and , 

 are continuous and strictly monotone in a, b. Condition 3: The parameters a, b 
belong to a finite interval [A1, A2], [B1, B2] respectively. Let

(A.7)

(A.8)

Let us assume the conditions 1- 3 hold. It follows from conditions 1-3 and the monotonicity 

assumption that unique solutions exist for Ĩn(a, b) = 0 and J̃
n(a, b) = 0. Since an, bn solve 

In(an, bn) = Jn(an, bn) = 0, Lemma 1 ensures that almost surely for n large enough, the 

solution of In(an, bn) = Jn(an, bn) = 0 is close to the solution of Ĩn(an, bn) = J̃
n(an, bn) = 0. 

Since ãn, b̃
n solve Ĩn(an, bn) = J̃

n(an, bn) = 0 for each 1 ≤ i ≤ k the definition of ãn, b̃
n, and 

condition 2 imply that ãn, b̃
n are the unique solution of

(A.9)

(A.10)

As n tends to infinity, all the πn(di) → 0 for di ≠ dm in A.7 and A.8 and πn(di) → 1 for di = 

dm. Thus if ãn, b̃
n are the solution of Equations A.9 and A.10, will be close to the solution 

of:
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The solution of the above equation is ãn, b̃
n and Lemma 1 ensures the consistency of an, bn.
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Figure 1. 
Cumulative distribution of errors. Optimal design, 1-parameter CRM and 2-parameter CRM 

as shown in O'Quigley, Paoletti and Maccario, 2002.
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Table 2

Example 1 is described in Section 3.1; (*) indicates that model estimation initiates after the 20th patient has 

been treated at level 6. Examples 2 and 3 illustrate rigidity (Section 3.2); the trial is confined to d2 and d5 

respectively, no matter how many consecutive non-DLT's occur at that level.

Example 1 Example 2 Example 3

Dose No of DLTs No of patients treated Patient No of DLTs Dose Dose No of DLTs No of patients treated

1 1 4 1 0 1 1 0 1

2 1 3 2 0 2 3 0 1

3 1 4 3 1 3 5 1 3

4 1 4 4 0 1 6 1 1

5 1 3 5 0 2

6 0 2* 6 1 2

3 0 1
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Table 3

Percent of trials that selected each dose for 5 scenarios and accuracy index (γ). The first row in each scenario 

shows the true DLT rates. The true MTD is the dose closest to θ = 0.20.

Scenario 1 0.10 0.20 0.30 0.45 γ 

1-parm 0.24 0.51 0.23 0.02 0.53

2-parm 0.25 0.49 0.21 0.06 0.47

optimal 0.20 0.52 0.26 0.02 0.54

Scenario 2 0.02 0.11 0.20 0.35

1-parm 0.01 0.29 0.52 0.17 0.48

2-parm 0.03 0.35 0.51 0.11 0.49

optimal 0 0.23 0.56 0.2 0.51

Scenario 3 0.01 0.07 0.10 0.20

1-parm 0 0.05 0.28 0.67 0.68

2-parm 0.04 0.09 0.41 0.46 0.42

optimal 0 0.05 0.18 0.76 0.76

Scenario 4 0.20 0.29 0.36 0.44

1-parm 0.65 0.27 0.07 0.01 0.70

2-parm 0.55 0.26 0.08 0.11 0.48

optimal 0.66 0.24 0.09 0.02 0.68

Scenario 5 0.01 0.07 0.20 0.40

1-parm 0 0.23 0.64 0.13 0.57

2-parm 0.01 0.28 0.64 0.08 0.59

optimal 0 0.13 0.75 0.12 0.6812
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Table 4

Number of patients treated at each dose level out of 25 patients and overall % of patients with dose-limiting 

toxicities (DLT). The first row in each scenario shows the true DLT rates; θ = 0.20.

Scenario 1 0.10 0.20 0.30 0.45 % of patients with DLT

1-parm 7.80 9.50 6.06 1.64 0.213

2-parm 7.05 9.79 5.43 2.72 0.223

Scenario 2 0.02 0.11 0.20 0.35

1-parm 2.64 7.18 10.37 4.81 0.187

2-parm 2.81 8.21 9.72 4.26 0.179

Scenario 3 0.01 0.07 0.10 0.20

1-parm 1.65 3.14 7.79 12.42 0.142

2-parm 2.95 3.97 8.31 9.77 0.128

Scenario 4 0.20 0.29 0.36 0.44

1-parm 14.62 6.24 3.17 0.97 0.256

2-parm 11.69 6.54 3.10 3.67 0.282

Scenario 5 0.01 0.07 0.20 0.40

1-parm 2.06 7.68 11.63 3.64 0.176

2-parm 1.92 7.44 12.03 3.61 0.175
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Table 5

Performance 2-parameter logistic (2-parm CRM) versus 1-parameter power model (1-parm CRM) when the 

true underlying model is the 2-parameter logistic; entries represent proportion of trials recommending each 

dose (as shown in O'Quigley, Pepe, Fisher 1990). R(di) denotes the true DLT rates at each dose level; the target 

was 0.2, and true MTD was level 4.

Dose 1 2 3 4 5 6

R(di) .06 .08 .12 .18 .40 .71

1-parm CRM .00 .04 .23 .57 .15 .00

2-parm CRM .01 .11 .16 .48 .19 .05
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