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Abstract Mosquito-borne viruses are important causes
of death and long-term neurologic disability due to en-
cephalomyelitis. Studies of mice infected with the
alphavirus Sindbis virus have shown that outcome is
dependent on the age and genetic background of the
mouse and virulence of the infecting virus. Age-
dependent susceptibility reflects the acquisition by neu-
rons of resistance to virus replication and virus-induced
cell death with maturation. In mature mice, the popula-
tions of neurons most susceptible to infection are in the
hippocampus and anterior horn of the spinal cord.
Hippocampal infection leads to long-term memory defi-
cits in mice that survive, while motor neuron infection
can lead to paralysis and death. Neuronal death is im-
mune-mediated, rather than a direct consequence of vi-
rus infection, and associated with entry and differentia-
tion of pathogenic T helper 17 cells in the nervous
system. To modulate glutamate excitotoxicity, mice were
treated with an N-methyl-D-aspartate receptor antago-
nist, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic
acid receptor antagonists or a glutamine antagonist.
The N-methyl-D-aspartate receptor antagonist MK-801
protected hippocampal neurons but not motor neurons,
and mice still became paralyzed and died. α-Amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid receptor
antagonists GYKI-52466 and talampanel protected both
hippocampal and motor neurons and prevented paralysis

and death. Glutamine antagonist 6-diazo-5-l-norleucine
protected hippocampal neurons and improved memory
generation in mice surviving infection with an avirulent
virus. Surprisingly, in all cases protection was associated
with inhibition of the antiviral immune response, re-
duced entry of inflammatory cells into the central ner-
vous system, and delayed virus clearance, emphasizing
the importance of treatment approaches that include pre-
vention of immunopathologic damage.
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Introduction

Viral encephalomyelitis can be a devastating disease for
the infected individual and for society as a whole be-
cause those who recover are frequently left with neuro-
logical sequelae such as seizures, paralysis, and cogni-
tive deficits [1]. Arthropod-borne (arbo) viruses are im-
portant causes of encephalomyelitis with widespread
seasonal outbreaks of fever, encephalitis, and arthritis,
and pose increasing threats to human populations
through continued expansion into new geographic areas
[2, 3]. Alphaviruses are mosquito-borne plus-strand-
enveloped RNA viruses that cause both encephalomyeli-
tis (Venezuelan, western and eastern equine encephalitis
viruses) and arthritis (Sindbis, Ross River, and
Chikungunya viruses). The encephalitic alphaviruses
are endemic in the Americas, while the rapidly emerg-
ing arthritic alphaviruses that can also cause neurologic
disease are now found worldwide [2, 4–7]. Currently,
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there are no treatments or vaccines licensed for these
infections.

For all arboviruses, severity of disease and outcome
after infection varies widely from one person to another.
This review will cover our current knowledge of the
pathogenesis of fatal encephalomyelitis, the determinants
of variable outcome, and potential treatments for severe
disease through the study of central nervous system
(CNS) infection by the prototype alphavirus, Sindbis
virus (SINV), in mice.

Neuronal Damage

Neurons are the primary target cells of encephalitic
alphaviruses and the outcome of infection is determined
both by neuronal maturity and infecting virus virulence.
Susceptibility to fatal encephalomyelitis diminishes with
increasing age [8], and this is not due to changes in the
adaptive immune response, but rather to changes in the
intrinsic susceptibility of immature and mature neurons
to infection [9]. Neuroadapted strains of SINV (e.g.,
NSV) with improved replication in mature neurons can
cause fatal encephalomyelitis in older mice, providing a
model system for evaluation of therapeutic interventions.
Populations of mature neurons that are particularly sus-
ceptible to infection are in the hippocampus and anterior
horn of the spinal cord. NSV-infected motor neurons die
by a nonapoptotic process [10], and mice develop weak-
ness that progresses to paralysis and death within 7–
10 days [11, 12].

Role of Neuronal Maturity

Immature neurons of all types replicate SINV (and other
neurotropic arboviruses) to high titers that result in
death due to apoptosis, while mature neurons restrict
virus replication, are relatively resistant to virus-
induced apoptosis, and can become persistently infected
(Fig. 1a) [13–15]. Maturation-dependent restriction of
virus replication is also observed in cultured primary
neurons (e.g., dorsal root ganglia cells) and neuronal
cell lines differentiated in vitro (e.g., CSM14.1, AP-7)
(Fig. 1b), facilitating mechanistic studies [13, 16–18].

Neuronal maturation in the absence of infection is
associated with increased expression of interferon
(IFN)-β, transcription factors IFN regulatory factor
(IRF)-3 and IRF-7, and several IFN-stimulated gene
(ISG) mRNAs (e.g., 2,5OAS, RNaseL, β2 m, IFIT1,
IFIT3, ISG20) [15]. IRF-7 is a key transcription factor,
with multiple splice variants, that regulates and am-
plifies the IFN response through induction of the
IFN-α genes, as well as ISGs [19]. The IRF-7 protein

produced by neurons evolves with maturation from the
short dominant negative γ isoform to the full-length
active α isoform necessary for transcribing antiviral pro-
tein genes [15]. With maturation, uninfected neurons
produce small amounts of IFN-β that results in priming
the cell for an antiviral response. Neutralization of IFN
increases replication of SINV, suggesting that the low
levels of IFN constitutively produced by mature neurons
are important for resistance [16]. In response to infec-
tion, differentiated, but not undifferentiated, neurons
rapidly produce IFN and upregulate ISGs to restrict vi-
rus replication. Therefore, neuronal maturation is asso-
ciated with antiviral priming characterized by increased
basal levels of important transcription factors that rapid-
ly activate antiviral signaling in response to infection,
and thus reduce virus replication in mature neurons
[15].

Role of Virus Strain

Alphaviruses have a message-sense RNA genome that
encodes 4 nonstructural replication proteins (nsP1–4), 3
main structural proteins (capsid and envelope proteins
E1 and E2), and 2 small proteins (6 K, TF). NSV is a
neuroadapted strain of SINV that is virulent for adult
C57BL/6 mice and provides a model for developing
an understanding of virus-induced fatal encephalomyeli-
tis in mature animals [20]. NSV has the same neuronal
tropism as less virulent strains of SINV but replicates to
higher titer and induces more intense inflammation in
the brain and spinal cord [11, 21].

Virulence determinants are primarily in the E1 and
E2 glycoproteins that regulate virus entry into neurons,
alter glycosylation, and change binding to heparan sul-
fate [22–27]. In addition, recent studies have identified
important roles for changes in nsP3, TF, and the 5’
nontranslated region that influence neuronal replication
and alter virulence [28–30].
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Fig. 1 Neuronal maturation leads to restriction of Sindbis virus
replication. aVirus replication in the brains of 1-day and 4-week-old mice
after intracerebral inoculation [8]. b Virus replication in immature
undifferentiated and mature differentiated AP-7 rat neuronal cells [15]
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Role of the Immune Response

Virus clearance from neurons is accomplished through a
synergistic process involving T-cell production of IFN-γ
and B-cell production of antibody to the E2 glycopro-
tein [13, 31, 32]. Therefore, in response to infection, T-
cell-mediated inflammation and B-cell infiltration into
the CNS are necessary for virus clearance but need to
be regulated to prevent damage to neural tissue [33].

Several observations have led to the conclusion that
neuronal damage in mature animals is primarily due to
the antiviral immune response rather than virus replica-
tion per se, and that fatal alphaviral encephalomyelitis is
a T-cell-mediated immunopathologic process. For in-
stance, initiation of virus clearance and the inflammato-
ry response are coincident with the onset of neurologi-
cal disease [21], and survival is improved in mice defi-
cient in αβ T cells, β2-microglobulin, transporter asso-
ciated with antigen processing (TAP), or CD4 but not in
mice deficient in production of antibody, CD8, perforin,
Fas, TNF-α receptor-1, IFN-γ, IFN-γ receptor-1, or IL-
6 [34–36]. Furthermore, mice protected from fatal dis-
ease by passive transfer of immune serum after NSV
infection clear infectious virus but develop a progressive
loss of parenchyma (ex vacuo hydrocephalus) associated
with infiltration of CD4+ T cells and macrophages into
the hippocampus [35].

IL-10 is an important regulatory cytokine that helps
to determine the balance between inflammation and im-
munoregulation [37, 38]. Deficiency of IL-10 accelerates
the onset of fatal NSV-induced paralytic disease with an
early increase in the CNS of CD4+ T cells expressing
the transcription factor RORγt and producing the cyto-
kine IL-17 [T helper (Th) 17 cells] [39]. Th17 cells are
multifunctional and can have pathogenic or nonpatho-
genic characteristics. In response to NSV infection,
Th17 cells in the CNS (but not in the draining lymph
nodes) had a pathogenic phenotype with production of
granulocyte macrophage colony-stimulating factor (GM-
CSF) and granzyme B. In addition, some Th17 cells in
the CNS developed into doubly pathogenic Th1/Th17
cells with additional expression of the transcription fac-
tor T-bet and production of IFN-γ. Although pathogenic
Th17 cells are recognized to be effectors in autoimmune
disease [40], they were not previously identified as con-
tributors to virus-induced immunopathology [41].

These studies and comparative studies of BALB/c
mice that are genetically resistant to fatal NSV-induced
encephalomyelitis indicate the importance of IL-10 in
regulating the immunopathogenic effects of antiviral T
cells [42]. CD4+ T cells infiltrating the brains of
BALB/c mice include fewer Th17 cells and more regu-
latory T cells producing IL-10 than similarly infected

C57BL/6 mice [42]. In the absence of IL-10 BALB/c
mice become susceptible to fatal infection. The primary
sources of regulatory IL-10 during infection are the in-
filtrating CD4+ and CD8+ lymphocyte populations, not
myeloid cells intrinsic to the CNS [43].

Determination of the role of Th17 cells in NSV-induced im-
munopathology and identification of the mechanism(s) by
which they influence outcome will be important for developing
interventions and for identifying host determinants of suscepti-
bility to severe disease. Th17 cells can directly target neurons
[44], and under conditions of stress in vitro, neurons express IL-
17 receptor and treatment with IL-17 can induce neuronal cell
death [45]. GM-CSF has also been identified as a potential me-
diator of neural damage [46–49]. GM-CSF activates microglial
cells and recruits myeloid cells into the CNS, but themechanism
by which this leads to disease has not been identified [47, 50,
51]. Furthermore, neutralizing antibody to neither GM-CSF nor
IL-17 altered the course of disease compared with control anti-
body in either IL-10−/− or wild-type mice [39].

Prevention of Fatal Disease

Our studies indicate that development of successful
treatments for viral encephalomyelitis requires a strategy
to decrease immunopathologic damage either as a pri-
mary approach or as an adjunct to use of an antiviral
drug. Damage to hippocampal and motor neurons sug-
gested that glutamate excitotoxicity might play a role in
inducing neuronal death. During infection, excess gluta-
mate may result from extracellular release by damaged
neurons or microglial cells [52], production by activated
CD8+ T cells entering the CNS [53], or from failure of
astrocytes to remove excess glutamate due to a
cytokine-induced decrease in expression of glutamate
transporter-1 [54, 55]. In vitro treatment of infected pri-
mary cortical neurons with N-methyl-D-aspartate recep-
to r an t agon i s t s MK-801 and D( - ) -2 -amino-5 -
phosphonopentanoic acid (APV) decreased cell death
[56]. Although treatment of NSV-infected mice with
MK-801 protected hippocampal neurons, it did not pro-
tect motor neurons or prevent paralysis and death of the
mice (Fig. 2a) [57]. However, treatment of NSV-infected
mice with α-amino-3-hydroxy-5-methyl-4-isoxazole
propionic acid (AMPA) receptor antagonists GYKI-
52466 or talampanel protected both hippocampal and
motor neurons, improved outcome, and indicated that
fatal disease is primarily due to infection of motor neu-
rons rather than hippocampal neurons (Fig. 2a) [57, 58].
Surprisingly, upon examination of the mechanism of
protection, it was discovered that AMPA receptor antag-
onists actually suppressed the antiviral immune response
and subsequent entry of inflammatory cells into the
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CNS (Fig. 2b) [57, 58]. Protection occurred despite a
resultant delay in virus clearance (Fig. 2c).

Nonfatal SINV infection of hippocampal neurons leads to
persistent behavioral abnormalities. At the peak of infectious
virus titers in brain (day 5), mice are hyperactive, have de-
creased anxiety, and memory deficits that persist after clear-
ance of infectious virus and resolution of clinical signs of
disease. Mice treated with 6-diazo-5-oxo-l-norleucine, a glu-
tamine antagonist that affects both the immune response by
inhibiting lymphocyte proliferation and glutamate
excitotoxicity by inhibiting neuronal glutaminase synthesis
of glutamate had decreased inflammatory cell infiltration and
cell death in the hippocampus [59]. Treatment inhibited de-
velopment of clinical signs and memory deficits revealed by
assessing contextual fear conditioning (Fig. 3), despite the
presence of infectious virus and high levels of viral RNA [60].

Future Directions

For both AMPA receptor and glutamine antagonists, in-
hibition of the inflammatory response in the CNS
prevented fatal disease, despite also slowing virus clear-
ance, further indicating that neuronal damage and fatal

disease are due to the immune response to virus-
infected neurons rather than virus infection per se.
However, when treatment is stopped, the immune re-
sponse may be initiated along with neurologic disease.
Therefore, although there are no approved drugs that
inhibit alphavirus replication, ideal treatment would like-
ly combine immune response inhibitors with an antiviral
drug.
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