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Proliferation and differentiation of intestinal epithelial cells
(IECs) occur in part through precise regulation of key transcrip-
tion factors, such as SOX9. MicroRNAs (miRNAs) have emerged
as prominent fine-tuners of transcription factor expression and
activity. We hypothesized that miRNAs, in part through the reg-
ulation of SOX9, may mediate IEC homeostasis. Bioinformatic
analyses of the SOX9 3'-UTR revealed highly conserved target
sites for nine different miRNAs. Of these, only the miR-30 fam-
ily members were both robustly and variably expressed across
functionally distinct cell types of the murine jejunal epithelium.
Inhibition of miR-30 using complementary locked nucleic acids
(LNA30bcd) in both human IECs and human colorectal adeno-
carcinoma-derived Caco-2 cells resulted in significant up-regu-
lation of SOX9 mRNA but, interestingly, significant down-reg-
ulation of SOX9 protein. To gain mechanistic insight into this
non-intuitive finding, we performed RNA sequencing on
LNA30Obcd-treated human IECs and found 2440 significantly
increased genes and 2651 significantly decreased genes across
three time points. The up-regulated genes are highly enriched
for both predicted miR-30 targets, as well as genes in the ubiq-
uitin-proteasome pathway. Chemical suppression of the protea-
some rescued the effect of LNA30bcd on SOX9 protein levels,
indicating that the regulation of SOX9 protein by miR-30 is
largely indirect through the proteasome pathway. Inhibition of
the miR-30 family led to significantly reduced IEC proliferation
and a dramatic increase in markers of enterocyte differentia-
tion. This in-depth analysis of a complex miRNA regulatory pro-
gram in intestinal epithelial cell models provides novel evidence
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that the miR-30 family likely plays an important role in IEC
homeostasis.

The intestinal epithelium is vital for a wide range of physio-
logical functions, including pathogen defense, nutrient absorp-
tion, and metabolic homeostasis. It is also the most rapidly
renewing tissue in the body, with cellular turnover occurring
every 3—5 days in humans. This rate is dependent on the stabil-
ity of intestinal epithelial stem cells, which give rise to transit
amplifying progenitor cells that go on to differentiate into var-
ious types of mature IECs, such as enterocytes, enteroendo-
crine cells, Paneth cells, and goblet cells. Precise regulation of
gene expression in these cell types is vital for the proper balance
between proliferation and differentiation in the intestinal
epithelium.

miRNAs” are prominent members of gene regulatory net-
works and are known for their roles in buffering and fine-tuning
target gene expression (1-3). However, their functions in the
intestinal epithelium are understudied, particularly in relation
to other metabolic tissues such as liver and muscle. The very
few published studies suggest that miRNAs are likely important
in shaping intestinal epithelial architecture, barrier function,
and proliferation (4—6). More recently, it has been proposed
that miRNAs likely produced from IECs may regulate resident
microbial communities (7). Because miRNAs are attractive
therapeutic targets in an increasing array of disorders (8), iden-
tifying specific miRNAs and their regulatory pathways that gov-
ern key physiological processes in the intestine is an important
step toward the development of novel, effective therapeutic tar-
gets for gastrointestinal diseases associated with altered intes-
tinal epithelial proliferation and differentiation.

To identify miRNAs potentially involved in intestinal epithe-
lial homeostasis, we started by in silico prediction of miRNAs
with putative target sites in SOX9, which encodes a transcrip-
tion factor that is well known for its regulatory role in gastroin-
testinal biology. Like other members of the SRY box family of
transcription factors, SOX9 is tightly regulated by a complex

2 The abbreviations used are: miRNA, microRNA; IEC, intestinal epithelial cell;
LNA, locked nucleic acid; HIEC, human intestinal epithelial cell; CPM,
counts per million; FC, -fold change; FDR, false discovery rate; RQV, relative
quantitative value.
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network of transcriptional, post-transcriptional (9), and post-
translational (10) modifiers. It is known to regulate prolifera-
tion and differentiation of diverse stem and progenitor cells,
including but not limited to gonad (11), chondrocyte (12), neu-
ral crest (13), lung (14), pancreas (15), and intestinal epithelium
(14-17). The functional effect of Sox family members in gen-
eral is frequently described as dosage-dependent, with relative
expression levels driving either cellular renewal or differentia-
tion (18, 19). Notably, varying levels of Sox9 have been shown to
mark functionally distinct cell types of the mouse intestinal
epithelium. Accordingly, a transgenic reporter mouse (Sox9-
EGFP) has been developed to identify and isolate both differen-
tiated cell types and actively cycling intestinal epithelial stem
cells and progenitors based on the levels of cellular EGFP
expression driven by the Sox9 promoter (20 —24).

SOXO9 is not uniquely expressed in IECs, and a few studies to
date have assessed miRNA targeting of SOX9 in other tissues.
For example, miR-145 has been shown to target SOX9 in vari-
ous cancer subtypes (25, 26) and chondrocytes (27). Both miR-
145 and miR-495 target SOX9 in mesenchymal stem cells (9,
28), and miR-101 targets SOX9 in hepatocellular carcinoma
(29). Because both miRNA expression and mRNA 3’-UTR
usage can vary across cell types and conditions, these findings
are not necessarily generalizable to the intestinal epithelium.
To date no study has investigated miRNA-mediated regulation
of SOX9 in the context of IECs. More importantly, roles of
specific miRNAs in the control of intestinal epithelial prolifer-
ation and differentiation are poorly characterized. In this study,
we work toward bridging this knowledge gap using in silico, in
vitro, and in vivo analyses.

Results

miR-30Is Predicted to Target SOX9 and Is Robustly Expressed
in the Intestinal Epitheliumm—We carried out a bioinformatic
strategy using TargetScan6.2 (30 —33) to predict miRNA target
sites in the SOX9 3'-UTR that are conserved between mouse
and human. We identified putative target sites for nine miRNA
families. To narrow this list of possible miRNA regulators of
SOX9in the intestinal epithelium, we analyzed the only data set
of publically available small RNA sequencing data from mouse
intestinal mucosa (4). Only four miRNA families were
expressed at a minimum of 10 reads/million mapped: miR-145,
miR-101, miR-320, and miR-30 (Fig. 1a). Of these, miR-30 has
the strongest predicted base pairing with SOX9, consisting of an
8-mer seed as well as supplementary 3’-end pairing for two of
the family members. Moreover, the miR-30 target site and
flanking ~15 bases are highly conserved among most mammals
including human, rodent, dog, opossum, and horse, as well as
distant vertebrates such as lizard.

Because the intestinal mucosa includes diverse cell types not
limited to epithelia, we next sought to evaluate the expression
of the members of these four miRNA families across four main
epithelial cell types. Specifically, we sorted functionally distinct
IECs by FACS from the jejunum of female conventionally raised
Sox9-EGFP mice. This model allows for the isolation of four
populations based on cellular EGFP, including enteroendocrine
cells (Sox9''e"), intestinal epithelial stem cells (Sox9°%), tran-
sit amplifying cells (Sox95"'°"), and differentiated enterocytes
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and Paneth and goblet cells (Sox9™°&"¢), We then performed
RT-PCR for each of the four miRNA families across each IEC
population. miR-101 and miR-145 were very lowly expressed,
indeed barely detected, in any cell type of the intestinal epithe-
lium (Fig. 1b). It is worth noting that although miR-145 was
reported to have robust expression in the study by McKenna et
al. (4) of the entire intestinal mucosa, it was recently demon-
strated that miR-145 is specific to mesenchymal cells in the
intestine (34). By using FACS, we obtain a highly pure epithelial
population, whereas the earlier data from McKenna et al. (4)
were generated using an intestinal scraping method, which
could lead to some mesenchymal, lymphatic, and/or vascular
contamination. Based on these differences, we conclude that it
is likely that both miR-145 and miR-101 are robustly expressed
in a non-epithelial mucosal tissue, but not in IECs. In contrast,
members of the miR-30 family and miR-320a showed robust
expression in IECs (Fig. 1b). Moreover, only miR-30 family
members exhibited differential expression across functionally
distinct IECs, leading us to select this miRNA family for fol-
low-up analyses.

Knockdown of miR-30 in Vitro Results in Increased SOX9
mRNA Expression, but Decreased Levels of SOX9 Protein—To
evaluate miR-30 regulation of SOX9 in IECs, we knocked down
miR-30 expression using locked nucleic acids complementary
to miR-30b, miR-30c, and miR-30d (LNA30bcd), in human
intestinal epithelial cells (HIECs). Upon knockdown of these
miR-30 family members, we observed a significant increase in
SOX9mRNA at48 and 72 h post-transfection (Fig. 2a), which is
consistent with alleviation of negative post-transcriptional reg-
ulation of SOX9 by miR-30. However, we unexpectedly found
that SOX9 protein was significantly down-regulated (Fig. 2, a
and b). In fact, SOX9 mRNA and protein expression were
strongly inversely correlated (Pearson’s r = —0.93, p = 0.006;
Fig. 2a) across three time points post-transfection with
LNA30Obcd. We confirmed that this inverse relationship
between SOX9 mRNA and protein exists in a second intestinal
cell culture model, Caco-2 (Fig. 2b), indicating that the finding
is not unique to HIECs. To test for a direct relationship between
miR-30 and the SOX9 3'-UTR, we performed a luciferase
reporter assay in Caco-2 cells. We observed increased relative
luciferase activity in cells transfected with 100 nm LNA30bcd
(Fig. 2d), consistent with direct targeting of SOX9 by miR-30
that has been previously shown in cartilage (35). We hypothe-
sized that the opposite effect of miR-30 inhibition on SOX9
mRNA and protein levels could be due to miR-30-mediated
regulation of factors that modify SOX9 protein stability with-
out affecting SOX9 RNA levels, such as post-translational mod-
ifiers (Fig. 2e).

Next Generation High Throughput RNA Sequencing Reveals
That miR-30 Regulates Genes Enriched in the Ubiquitin Ligase
Pathway—To evaluate this hypothesis, we next sought to define
the regulatory program that miR-30 directs in HIECs and to
identify potential miR-30 targets that may be regulating SOX9
protein levels. Specifically, we performed next generation high
throughput RNA sequencing on total RNA isolated from mock
and LNA3Obcd transfected HIECs at three time points (see
“Experimental Procedures”). Following read alignment and
transcript quantification, we identified differentially expressed
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FIGURE 1. miR-30 is predicted to target the 3'-UTR of SOX9 and is differentially expressed across functionally distinct cell types of the intestinal
epithelium. g, cartoon depicting the SOX9 3'-UTR. miRNAs with predicted target sites conserved between mouse and human are labeled. Below, we show the
conservation of the predicted miR-30 target site (red text) across various species (TargetScan6.2). miR-30b and miR-30e targeting are shown in detail with
predicted base paring colored in red. b, RT-PCR of Sox9 and miRNAs with predicted target sites in the Sox9 3’-UTR across functionally distinct mouse jejunal

intestinal epithelial cells (n = 2—-4). Significance was determined by Student’

0.001; §, p < 0.01; #, p < 0.05.

genes using edgeR (36). To avoid bias from lowly expressed
genes, we filtered out genes that did not reach an expression
threshold of 10 counts per million (CPM) in at least three of the
samples. A total of 10,096 genes were included in our analysis.
We first normalized gene counts using the generalized linear
model in edgeR to account for both the treatment and time
variables in our experimental design. Samples were tightly clus-
tered by treatment and time point according to multidimen-
sional scaling, principal components, and hierarchical cluster-
ing analyses (Fig. 3, a—c). Notably, cells treated with 100 nm
LNA30bcd at 24 h post-transfection clustered with mock trans-
fected samples (Fig. 3c). However, cells treated with 100 nm
LNA30Obcd at 48 and 72 h post-transfection clustered into a
distinct subclade, indicating that the regulatory effect of
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s two-tailed paired t test relative to non-sorted intestinal epithelial cells. b, p <

LNA30bcd was greatest at the later time points. Next, we per-
formed differential expression analysis and found that half of all
genes (50.1% or 5055) included in the analysis are significantly
differentially expressed (FC * 1.5 and FDR < 0.05) between
mock and LNA30bcd transfected cells in at least one time point
post-transfection (Fig. 4, a—c, and supplemental Table S1).
Notably, although SOX9 was found to be up-regulated as
expected by LNA30bcd treatment at 72 h post-transfection, it
was certainly not the most robustly or significantly altered gene
(Fig. 4d).

To evaluate the efficacy of our knockdown, we performed
analysis with miRhub (37-39), which tests for miRNA target
site enrichment among specific genes of interest. We found that
both highly conserved and species-specific predicted miR-30
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FIGURE 2. Knockdown of miR-30 increases SOX9 mRNA and decreases SOX9 protein expression. g, relative quantitative value (RQV), across three time
points, of SOX9 mRNA by RT-PCR (left panel) and protein by Western blot densitometry (right panel) in HIECs upon either mock transfection or 100 nm LNA30bcd
transfection. b, RQV of SOX9 mRNA by RT-PCR (left panel) and protein by Western blot densitometry (right panel) in Caco-2 cells upon mock transfection or 100
nm LNA30bcd transfection after 48 h (mock and 100 nm LNA30bcd mRNA n = 15 each, protein n = 6 each). ¢, images of representative Western blots are shown
for the protein expression data shown in a and b. d, correlation of mean RQVs of SOX9 mRNA and protein across time points and transfection conditions. e,
relative firefly luciferase activity in Caco-2 cells at 48 h after transfection with plasmids encoding both firefly (with and without the SOX9 3’-UTR) and Renilla

luciferase genes. Caco-2 cells were subjected to either mock co-transfection

or 100 nm LNA30bcd co-transfection (n = 10-11 each). f, model of miR-30

regulation of SOX9 in the intestinal epithelium. For a and b, standard box and whisker plots are shown, with the shaded boxes indicating inner quartile ranges
(IQR), the thick horizontal line showing median, and extending whiskers showing maximum and minimum points within 1.5*IQR. Actual data points are plotted
as filled circles superimposed on their respective box and whisker plots. b, p < 0.001; #, p < 0.05.

targets sites were significantly enriched (p < 0.05) in genes
up-regulated at both 48 and 72 h post-transfection, but as
expected not in down-regulated genes (Fig. 4e). At 24 h post-
transfection, predicted miR-30 target sites were not enriched.
Together, these data suggest that our knockdown of miR-30
using LNA30bcd was specific and highly effective in HIECs,
particularly in the later time points of our study.

To identify genes that might act as post-translational regula-
tors of SOX9 protein in response to LNA30bcd treatment, we
performed Gene Ontology Molecular Function enrichment
analysis (40, 41) using Enrichr (42) on genes with predicted
miR-30 target sites that were significantly up-regulated (FC >
1.5 and FDR < 0.05) relative to mock treated cells at each time
point (see supplemental Table S2 for gene lists). Only three
terms were identified as being significantly enriched (adjusted p
value < 0.05; Fig. 5, a and b) at any time point in the up-regu-
lated gene sets. Interestingly, these included “ubiquitin-protein
transferase activity” and “ligase activity.” Ubiquitin ligase-me-
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diated regulation of SOX9 has been shown previously in chon-
drocytes (43) and therefore is consistent with our hypothesis
that miR-30 may regulate SOX9 protein levels indirectly
through control of post-translational modifiers of SOX9.

To evaluate whether miR-30 influences ubiquitin ligase-me-
diated degradation of SOX9 protein, we subjected Caco-2 cells
to either mock or LNA30bcd transfection and then treated
them with vehicle or MG132, a potent proteasome inhibitor.
We found that MG132 treatment for 4 h was sufficient to rescue
SOXO9 protein expression following LNA30bcd treatment (Fig.
5c¢). This suggests that miR-30 is able to regulate SOX9 protein
expression through post-transcriptional regulation of ubiquitin
ligases (Fig. 5d).

miR-30 Promotes IEC Proliferation and Inhibits IEC
Differentiation—Based on previous work, altered levels of
SOXO9 are expected to lead to changes in the balance between
proliferation and differentiation (15, 16, 44). Therefore, given
the strong regulatory effect of miR-30 on SOX9 protein, we
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FIGURE 3. Next generation high throughput RNA sequencing of
LNA30bcd-treated HIECs. a, multidimensional scaling plot of normalized
reads (counts per million or CPM > 10 in =3 samples) in HIECs subjected to
either mock transfection or 100 nm LNA30bcd transfection at 24 h (24H), 48 h
(48H), and 72 h (72H) post-transfection (n = 3 each). b, principle components
analysis of normalized reads (CPM > 10 in 3+ samples) across all time points
and transfection conditions. ¢, heat map showing all genes with CPM > 10in
=3 samples (n = 10,096). Samples are hierarchically clustered by Euclidean
distance. For each column, samples are listed along the bottom, with the first
letter indicating mock treated (M) or 100 nm LNA30bcd-treated (L) HIECs,
followed by the replicate number (replicate 1, 2, or 3), and the time point
post-transfection (24, 48, or 72 h).

hypothesized that treatment of HIECs with LNA30bcd would
affect this balance as well. Notably, we found by analysis of the
RNA sequencing data that the expression of genes previously
associated with proliferation in the intestinal epithelium (Fig.
6a), including CTNNBI (45), DLL4 (46), and LGR4 (47), were
significantly reduced. Consistent with this observation, we
found that knockdown of miR-30 significantly reduces HIEC
proliferation, as measured by [PH]thymidine uptake (Fig. 6b).
At 48 h post-transfection, HIECs showed a 65% reduction
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in [®H]thymidine uptake after treatment with 100 nm of
LNA30bcd (p < 0.001; Fig. 6b).

Given the reduced proliferation, we hypothesized that treat-
ment with LNA30bcd may promote differentiation of IECs. We
evaluated differential expression of genes known for their role
in regulating differentiation in the intestinal epithelium using
the RNA sequencing data. Interestingly, we observed a 5-fold
increase in HESI expression in HIECs transfected with 100 nm
LNA30bcd (Fig. 6b). HESI is an early marker of enterocyte dif-
ferentiation in the intestinal epithelium (48). The Caco-2 cell
line is one of very few cell models that will spontaneously dif-
ferentiate into small intestinal enterocyte-like cells and express
key markers of mature enterocytes upon reaching confluency
(49, 50). To test whether miR-30 regulates enterocyte differen-
tiation of IECs, we transfected Caco-2 cells with 100 nm
LNA30bcd and allowed the cells to differentiate on Transwell
membranes (see “Experimental Procedures”). With a single
transfection of LNA30bcd, we observed significant and sus-
tained knockdown of miR-30 levels for 21 days, the latest time
point measured (Fig. 6d). At 21 days post-transfection, we also
observed that Caco-2 cells transfected with LNA30bcd
expressed significantly higher levels of sucrose isomaltase, a
classic marker of differentiated enterocytes (51), compared
with mock transfected cells or those transfected with LNAs
against other miRNAs (Fig. 6e). Taken together, our data sug-
gest that miR-30 normally acts to promote proliferation and
inhibit enterocyte differentiation in the intestinal epithelium
through a broad regulatory program that includes the protea-
some pathway.

Discussion

In this study, we sought to investigate miRNA control of
intestinal epithelial proliferation and differentiation. Our start-
ing point was to identify miRNAs that might regulate SOX9, a
key transcription factor in intestinal epithelial homeostasis. We
focused on miR-30 because it has a SOX9 target site that is
broadly conserved across vertebrates, including human and
rodent, and it is robustly and variably expressed among stem,
progenitor, and differentiated cell types of the intestinal epithe-
lium. Upon knockdown of miR-30 in two intestinal-relevant
cell lines, we unexpectedly found inverse effects on SOX9
mRNA and protein expression. We performed next generation
high throughput RNA sequencing and found that up-regulated
genes with predicted miR-30 target sites were most signifi-
cantly enriched for ubiquitin ligases. Post-translation regula-
tion of SOX9 by UBE3A has been described previously (43).
Moreover, UBE3A does have a predicted miR-30 target site and
is up-regulated in LNA30Obcd-treated HIECS. However, the
predicted miR-30 target site in UUBE3A is human-specific. It is
therefore possible that the inverse relationship between SOX9
mRNA and protein in response to LNA30Obcd treatment is
human-specific. More research will be needed to identify the
specific miR-30-directed ubiquitin ligase protein that acts on
SOX9 protein in intestinal epithelial cells.

Knockdown of the miR-30 family in HIECs and Caco-2 cells
resulted in reduced proliferation and enhanced enterocyte dif-
ferentiation. This finding is consistent with the relatively higher
expression levels of miR-30 in proliferating subpopulations,
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FIGURE 6. miR-30 promotes proliferation and inhibits enterocyte differentiation. a, RQV of mean CPM of markers of proliferation in 100 nm LNA30bcd-
treated HIECs across time points. Significance was determined by using edgeR generalized linear model accounting for treatment and time. b, FDR < 0.001; 4,
FDR < 0.01; #, FDR < 0.05. b, RQV of [*H]thymidine incorporation in HIECs subjected to mock transfection or LNA30bcd transfection (10 or 100 nm) at 48 h
post-transfection (n = 12 each). Significance was determined by two-tailed unpaired Student’s t test. b, p < 0.001; §, p < 0.01; #, p < 0.05. ¢, RQV of mean CPM
of HES1 (Hairy and Enhancer of Split 1) in 100 nm LNA30bcd-treated HIECs across time points (n = 3 each). Significance was determined by generalized linear
model accounting for treatment and time. b, FDR < 0.001; , FDR < 0.01; #, FDR < 0.05. d, RQV of miR-30c by RT-PCR in Caco-2 cells at 72 h and 21 days after
either mock transfection (72 h, n = 9; 21 days, n = 6), 100 nm LNA30bcd transfection (72 h,n = 9; 21 days n = 6), 100 nm LNA101* (72 h, n = 6; 21 days, n = 3),
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e, RQV of sucrase isomaltase (S/) by RT-PCR in in Caco-2 cells at 72 h and 21 days after either mock transfection (72 h, n = 9; 21 days n = 8), 100 nm LNA30bcd
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two-tailed unpaired Student’s t test. b, p < 0.001; b, p < 0.01; #, p < 0.05.

such as the progenitors, compared with non-proliferating
enterocytes (Fig. 1b). Previous literature investigating the role
of miR-30 suggests a dosage- and cell type-specific response on
proliferation. Although increased proliferation has been seen in
many cancer cells in response to reduced miR-30 levels, a num-
ber of studies have found knockdown of miR-30 to result in
decreased proliferation (52). In terms of differentiation, the
miR-30 family has been shown to regulate myogenic and osteo-
blastic differentiation. Up-regulation of miR-30 family mem-
bers in myoblasts promotes differentiation (53). Alternatively,
knockdown of miR-30 in an osteoblast precursor cell line pro-
motes differentiation (54). Our results, and those of previous
studies, emphasize the importance of conducting cell type-spe-
cific analyses on miRNA regulatory networks. Moreover, fur-
ther research is warranted to evaluate miR-30 regulatory net-
works in the intestinal epithelium iz vivo.

More broadly, our RNA sequencing revealed a complex and
widespread network of genes influenced by knockdown of a
single miRNA family. Through time course mRNA profiling
following knockdown of a single miRNA family, we found that
the effect of treatment with LNA30bcd on miR-30 target genes
was only beginning to emerge at 24 h, evident at 48 h, and very
robust at 72 h post-transfection. Most studies using LNAs
against target miRNAs evaluate knockdown and gene expres-
sion changes at a single time point post-transfection. It is clear
from our data that there are highly variable effects of miRNA
knockdown across a span of only 2 days, emphasizing the
importance of evaluating multiple time points following treat-
ment with LNAs. In Caco-2 cells we observed significant
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knockdown of miR-30 even 21 days following a single transfec-
tion with LNA30bcd; therefore, it would of interest to evaluate
gene expression at this time point to determine whether the
effects on miR-30 target genes are still robust. Detailed time
course studies may help elucidate the short term and long term
effects of LNA treatment, which has relevance both for exper-
imental design and for therapeutic development.

Our analyses provide new evidence that miR-30 plays a sig-
nificant role in regulating proliferation and differentiation in
the intestinal epithelium. Further analyses in vivo (mouse) or
through ex vivo culture systems (mouse or human) are war-
ranted to extend the definition of the function of miR-30 across
distinct cell types of the intestinal epithelium in health and
disease. This study represents one of the very first to investigate
the regulatory activity of a specific miRNA in intestinal epithe-
lial cells using a highly interdisciplinary strategy and therefore
provides a blueprint for similar studies of other miRNAs.

Experimental Procedures

Animals—All animal studies were approved by the Univer-
sity of North Carolina at Chapel Hill Institutional Animal Care
and Use Commiittee (protocol 13-162). Sox9-EGFP female mice
(20-22) on a CD1 background were fed a standard chow diet
(Prolab RMH3000) ad libitum. Eleven-week-old mice were
euthanized with a lethal dose of Nembutal (150 ng/gram of
body weight) and were processed for jejunal IEC dissociation
and fluorescence-activated cell sorting.

IEC Dissociation for Flow Cytometry and FACS—The small
intestine was dissected and flushed with ice-cold PBS to remove
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contents and then divided into three equal sections. The middle
section was considered jejunum and was prepared for FACS as
previously described (21, 23). IECs were sorted using a Mo-Flo
XDP cell sorter (Beckman-Coulter, Fullerton, CA) at the Uni-
versity of North Carolina Flow Cytometry Core Facility using
previously described gating parameters (20, 21, 23). Cells that
stained for CD31 (BioLegend, San Diego, CA), CD45 (BioLeg-
end, San Diego, CA), and or annexin V (Life Technologies),
were excluded prior to sorting. Following sorting, cells were
pelleted by centrifugation, and total RNA was isolated using the
Norgen Total RNA kit (Norgen Biotek, Thorold, Canada) as per
the manufacturer’s instructions. Nanodrop 2000 was used to
quantify RNA.

Quantitative RT-PCR—TaqMan microRNA reverse tran-
scription kit (Applied Biosystems) and high capacity RNA to
c¢DNA kit were used as per the manufacturers’ instructions to
generate complementary DNA for miRNA and gene expression
assays, respectively. RT-PCR was performed using TaqMan
Universal PCR Master Mix (Applied Biosystems) for miRNA
RT-PCR and Gene Expression Master Mix (Applied Biosys-
tems) for mRNA quantification. RT-PCR assays were run on a
Bio-Rad CFX96 Touch real time PCR detection system (Bio-
Rad). The assays were performed in triplicate using either /6
(miRNA expression) or RPS9 (mRNA expression) as an internal
control. All TagMan assays were purchased from Applied Bio-
systems and include: miR-30a (assay 000417), miR-30b (assay
000602), miR-30c (assay 000419), miR-30d (assay 000420),
miR-30e (assay 002223), miR-101a (assay 002253), miR-101b
(assay 002531), miR-320a (assay 002277), miR-145 (assay
000467), U6 (assay 001973), Sox9 (assay Mm00448840_m]1),
Rps9 (assay Mm00850060_s1), SOX9 (assay Hs01001343_g1),
HESI (assay Hs00172878_ml), sucrose isomaltase (assay
Hs00356112_m1), and RPS9 (assay Hs02339424_g1).

Cell Culture and Transfections—HIECs were acquired from
the Beaulieu laboratory (55) and were cultured in OptiMEM 1
(Life Technologies) supplemented with 10% FBS (Life Technol-
ogies), 0.01 m HEPES (Life Technologies), and 5 ng/ml hEGF
(Invitrogen). The cells were used between passages 20 and 30
and were maintained at 70% confluency. HIECs were seeded
onto tissue-culture treated plates and transfected at 70%
confluency with 3.25 ul/ml Lipofectamine 2000 (Life
Technologies).

Caco-2 cells were cultured in high glucose DMEM (Sigma-
Aldrich) supplemented with 10% FBS. The cells were used
between passages 18 and 30 and were maintained at 70% con-
fluency. Caco-2 cells were seeded onto tissue-culture treated
plates and transfected at 70% confluency with 1.875 ul/ml Lipo-
fectamine 3000 (Life Technologies).

Locked Nucleic Acids were purchased from Exiqon
(Woburn, MA) including hsa-miR-101* (catalog no. 4101585—
101), mmu-miR-30bcd (catalog no. 199900), and hsa-miR-320a
(catalogno. 4101458 —-101). LNAs against mouse miR-30 family
members are cross-reactive with the human miR-30 family.

For MG132 treatment studies, 6 wl of 10 mm MG132 (Z-Leu-
Leu-Leu-al; Sigma-Aldrich, catalog no. C2211) or DMSO vehi-
cle was added to each well of a 6-well plate for a final concen-
tration of 25 um MG132 at 68 h post-transfection. Following a
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4-h treatment, the cells were isolated for RNA and protein as
described below.

Caco-2 Differentiation—Similar to methods previously
described (24, 56, 57), Caco-2 cells between passages 23 and 27
were grown on 100-mm tissue culture-treated plates (Corning
catalog no. 430167). At 70% confluency, cells were transfected
with 100 nm LNA against miR-30bcd, miR-320a, or miR-101*.
At 24 h post-transfection, the cells were trypsinized, and 2 X
10° cells were seeded onto Transwell inserts (Costar catalog no.
3460; Fisher Scientific). Reseeding onto the Transwells follow-
ing transfection was done to avoid differences in cell density
caused by cell death or changes in cell proliferation following
transfection with each LNA. Differentiation was monitored
every other day using transepithelial electric resistance begin-
ning at 72 h post-transfection. The cells were considered fully
differentiated after 1 week following the beginning of the tran-
sepithelial electric resistance plateau (58). Throughout differ-
entiation, the medium was changed from both the top and bot-
tom wells every other day following transepithelial electric
resistance measurement. At 72 h post-transfection, undifferen-
tiated cells were harvested for RNA. At 21 days post-transfec-
tion, differentiated cells were harvested for RNA.

Western Blot—Protein was isolated from cells as previously
described (38) and was quantified using the Pierce Microplate
BCA protein assay kit - reducing agent compatible (Thermo-
Scientific), run on Bio-Rad Any-kDa Mini-Protean TGX pre-
cast gels, and transferred to nitrocellulose membranes in the
Bio-Rad Midi Transfer Packs using the Bio-Rad Trans-Blot
turbo blotting system. The membranes were blocked 1 h in 5%
milk, before being probed overnight at 4 °C with SOX9 anti-
body (1:800, Abcam catalog no. ab26414). Secondary antibody
was applied for 2 h following wash steps at the following dilu-
tions: goat a-rabbit (1:4000, Abcam ab97069). Preconjugated
B-actin-HRP (1:40,000, Sigma-Aldrich catalog no. A3854) was
applied for 20 min and used as loading control. Western blot
densitometry analysis was done using Image].

RNA Sequencing—Total RNA from mock and miR-30bcd
LNA-treated HIECs were isolated at 24, 48, and 72 h post-
transfection. RNA quality was assessed using Agilent RNA
Nano 6000 kit (Agilent Technologies, Inc, Santa Clara, CA) and
then run on a Bioanalyzer 2100 (Agilent). All samples had high
RNA integrity numbers, with RNA integrity numbers above 9.2
(with an average of 9.7). Samples were submitted to the Univer-
sity of North Carolina High Throughput Sequencing Facility
for TruSeq Stranded Total RNA library preparation (Illumina,
San Diego, CA) and paired end 50-bp sequencing on a HiSeq
2000 (Illumina) multiplexing 6 samples/lane.

Bioinformatics—Following sequencing and demultiplexing
by the University of North Carolina High Throughput
Sequencing Facility, reads were aligned to the hgl9 genome
using MapSplice (59), and transcripts were quantified using
RSEM (60) by the University of North Carolina Bioinformatics
Core Facility. Samples had an average of 119 million reads, with
94.6% of reads uniquely mapping. Differential gene expression
analysis was conducted using edgeR (36). Genes with low
expression (CPM < 10 in more than half the samples) were
filtered out of our analysis. Gene counts were then normalized
using trimmed mean of the M-values (TMM) method and eval-

SASBMB

VOLUME 291 +NUMBER 31-JULY 29, 2016



uated for differential gene expression. Raw sequencing data, as
well as the raw and normalized count tables, are available
through GEO (accession no. GSE79923).
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