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Loss of 14-3-3� has been observed in multiple tumor types;
however, the mechanisms by which 14-3-3� loss leads to tumor
progression are not understood. The experiments in this report
demonstrate that loss of 14-3-3� leads to a decrease in the
expression of epithelial markers and an increase in the expres-
sion of mesenchymal markers, which is indicative of an induc-
tion of the epithelial to mesenchymal transition (EMT). The
EMT was accompanied by an increase in migration and invasion
in the 14-3-3��/� cells. 14-3-3��/� cells show increased stabi-
lization of c-Jun, resulting in an increase in the expression of the
EMT transcription factor slug. 14-3-3� induces the ubiquitina-
tion and degradation of c-Jun in an FBW7-dependent manner.
c-Jun ubiquitination is dependent on the presence of an intact
nuclear export pathway as c-Jun is stabilized and localized to the
nucleus in the presence of a nuclear export inhibitor. Further-
more, the absence of 14-3-3� leads to the nuclear accumulation
and stabilization of c-Jun, suggesting that 14-3-3� regulates the
subcellular localization of c-Jun. Our results have identified a
novel mechanism by which 14-3-3� maintains the epithelial
phenotype by inhibiting EMT and suggest that this property of
14-3-3� might contribute to its function as a tumor suppressor
gene.

14-3-3 proteins are evolutionarily conserved and ubiqui-
tously expressed in all eukaryotes (1, 2). Seven 14-3-3 isoforms
have been identified in mammals: �, �, �, �, �, �, and �. They
form homodimers and heterodimers that recognize phospho-
serine/phosphothreonine-containing consensus motifs (mode
1 (RSXpSXP where pS is phosphoserine) and mode 2 (RXXX-
pSXP) (3, 4)) in their ligands. Some 14-3-3 ligands do not con-
tain mode 1 or mode 2 consensus sequences but still form a
complex with 14-3-3 proteins (5, 6).

14-3-3� also known as stratifin and HME1 (human mam-
mary epithelium-specific marker) was originally identified as a
protein expressed only in epithelial cells (7). Unlike other
14-3-3 isoforms, 14-3-3� exclusively forms homodimers (8, 9),
leading to the hypothesis that 14-3-3� performs a unique set of
functions that are not performed by the other 14-3-3 isoforms.
14-3-3� expression can be activated by p53 and p63, resulting
in a cell cycle arrest in G2 in response to DNA damage in part by
sequestering the cdk1-cyclinB complex to the cytoplasm, thus
preventing mitotic progression (10 –13). In addition, 14-3-3�
also regulates mitotic translation, which is required for accu-
rate progression through mitosis (14). 14-3-3� can positively
regulate p53 transcription and stability, suggesting the pres-
ence of a positive feedback loop between p53 and 14-3-3� (15).
14-3-3� is a tumor suppressor, and its expression is decreased
in multiple tumor types such as breast cancer (16, 17), ovarian
cancer (18), hepatocellular carcinoma (19), prostate cancer (20,
21), basal cell carcinoma (22), gastric cancer (23), and lung can-
cer (24). The decrease in 14-3-3� levels is due to the inhibition
of gene expression due to methylation of the 14-3-3� promoter
or increased degradation of 14-3-3� by the proteasome (16, 17).

The progression of a primary epithelial tumor to an invasive
and metastatic tumor is often accompanied by activation of the
epithelial to mesenchymal transition (EMT)3 (25–28). The
induction of EMT is also associated with the acquisition of
chemoresistance (29, 30), and EMT induction is mediated by a
group of transcription factors such as snail, slug, ZEB, and twist
(25, 27, 31, 32). These transcription factors have exclusive and
redundant functions in terms of regulating expression of epi-
thelial and mesenchymal genes (33–35); both snail and slug can
bind to the E box of E-cadherin promoter and repress transcrip-
tion of E-cadherin (33, 36). In addition to activating/repressing
the expression of other gene products, the EMT transcription
factors can induce the formation of a positive feedback loop by
activating either their own expression (37) or the expression of
other EMT transcription factors (38), thus resulting in activa-
tion of the EMT cascade.

Expression of the EMT transcription factors can be activated
by multiple cellular signaling pathways; e.g. TGF�-mediated
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induction of EMT is often observed in epithelial cancers such as
breast cancer (39, 40), hepatocellular carcinoma (41), cervical
carcinoma (42), and lung cancer (43). Activation of the MAPK
and ERK pathways is required for TGF�-mediated EMT and
directly stimulates the expression of snail and slug (44 – 46).
The process of EMT can also be induced by growth factors such
as EGF and hepatocyte growth factor, leading to the activation
of signaling pathways that stimulate the expression of EMT
transcription factors (31). AKT-mediated activation of NF-	B
leads to an increase in snail expression (47), whereas the acti-
vation of WNT signaling leads to a LEF1- and TCF1-mediated
increase in expression of snail, slug, and twist (48 –50).

Multiple conserved regions for AP1 and AP4 transcription
factors have been identified in the promoter regions of the snail
family of transcription factors (51). The AP1 transcription fac-
tor c-Jun has been shown to bind to the slug promoter, which
can result in an increase in expression of slug and induction of
EMT (52). c-Jun expression is found to be elevated in multiple
cancer types and shows a significant association with invasion
and metastasis (53–55). In epithelial cells, c-Jun is targeted for
degradation by the proteasome, and multiple E3 ligases that
mediate c-Jun ubiquitination, including COP1, ITCH, and
FBW7, have been identified (56 –58). Interestingly, it has been
observed that loss of FBW7 leads to EMT (59), although it is not
clear whether this is due to an increase in c-Jun levels.

Despite a strong correlation between a decrease in 14-3-3�
protein levels and progression of multiple human cancers of
epithelial origin, the mechanisms by which 14-3-3� loss leads
to tumor progression are unclear. 14-3-3� deficiency has been
shown to cause deregulation of epithelial cell polarity, which is
a hallmark of the activation of the EMT program (60). The
results in this report indicate that loss of 14-3-3� can lead to
activation of the EMT program in HCT116 cells. 14-3-3� binds
to c-Jun, resulting in the proteasome-dependent degradation of
c-Jun by FBW7. The increased nuclear localization and stability
of c-Jun in 14-3-3��/� cells leads to an increase in slug expres-
sion, leading to the induction of an EMT with an increase in
invasion and migration. These data suggest that one mecha-
nism by which loss of 14-3-3� leads to tumor progression is by
the induction of an EMT.

Experimental Procedures

Cell Culture and Transfections—HCT116 (ATCC), HCT116-
derived 14-3-3��/� cells (10), HEK293, and HCT116 14-3-
3��/� cell-derived stable cell lines were cultured in complete
Dulbecco’s modified Eagle’s medium (DMEM) as described
(61, 62). Transfections were performed by either of the follow-
ing methods: calcium phosphate precipitation as described (63)
or Lipofectamine LTX (Invitrogen), PEI (Polysciences Inc.), or
FuGENE Xtremegene HP (Roche Applied Science) according
to the manufacturer’s instructions.

Plasmids and Generation of Stable Cell Lines—HA-14-3-3�
has been described previously (61). HA-14-3-3� was cloned in
pcDNA3 puro vector. Wild type (WT) c-Jun was cloned in
HA-pcDNA3 vector using BamHI and XhoI sites to generate
HA-c-Jun WT. c-Jun S58A and c-Jun S267A were generated by
site-directed mutagenesis (see supplemental Table 1 for prim-
ers) and cloned as described above. Stable clones expressing

HA-tagged 14-3-3�, namely HA-14-3-3�-1 and HA-14-3-
3�-2, and the respective vector control (vector) clones were
generated in HCT116 14-3-3��/� cells, and clones were
selected in medium containing 1 
g/ml puromycin. Published
shRNA sequences for slug (sh-1Slug and sh-2Slug) and c-Jun
(sh1-c-Jun and sh2-c-Jun) (64, 65) cloned in pLKO.1 vector
were used to generate viral particles in HEK293FT as described
previously (66). The viral particles were used to transduce 14-3-
3��/� cells to generate stable knockdown clones. These clones
were selected in medium containing 1 
g/ml puromycin.
FBW7, c-Jun WT, c-Jun S263A, and 14-3-3� were cloned into a
mammalian expression vector expressing an S-protein/FLAG/
streptavidin-binding protein triple epitope tag (SFB) and a
Myc-tagged destination vector described previously (67) using
a Gateway cloning system (Invitrogen). Bacterial expression
vectors for GST-c-Jun WT, GST-c-Jun S263A, maltose-bind-
ing protein (MBP)-FBW7, and MBP-14-3-3� vectors were gen-
erated by transferring the appropriate cDNA into destination
vectors as described previously (67). FBW7 constructs (68)
were a kind gift from Dr. Sagar Sengupta (National Institute of
Immunology, India) and Dr. Markus Welcker (Fred Hutchin-
son Cancer Research Center).

Immunofluorescence and Confocal Microscopy—Immunoflu-
orescence with antibodies against plakoglobin, desmocollin2/3,
desmoglein2, HA, plakophilin3, desmoplakin, ZO1, E-cad-
herin, �-catenin, �-tubulin, and keratin8 were performed as
described (66, 69, 70). Vimentin (Sigma; dilution, 1:500) or
N-cadherin (BD Transduction Laboratories; dilution, 1:10)
were immunostained using methanol fixation as described (66).
Images were obtained by using an LSM 510 Meta Carl Zeiss
confocal system.

Immunoprecipitation and Western Blotting—14-3-3��/�

cells were treated with MG132 (10 
M) for 6 h, and cell lysates
were prepared with EBC lysis buffer. 120 
l of 14-3-3� antibody
(hybridoma supernatant CS112) was used to immunoprecipi-
tate 14-3-3� as described (71). Myc antibody (9E10; mouse
monoclonal) was used as an isotype control. This was followed
by Western blotting with c-Jun and plakophilin 3 antibodies as
described (62). Suppliers and dilutions of antibodies for West-
ern blotting are described in supplemental Table 2.

Reverse Transcription-PCR and Quantitative Real Time
PCR—Reverse transcription assays and quantitative real time
PCR were performed as described (70, 72). Primers used for
both RT-PCR and quantitative real time PCR for PKP3, CK8,
CK18, vimentin, c-Jun, and different 14-3-3 isoforms were
described previously (65, 72, 73). Primer sequences are listed in
supplemental Table 3.

Wound Healing, Dispase Assays, and Hanging Drop Assays—
Wound healing and hanging drop assays were performed as
described earlier (62). For Dispase assays, cells were cultured
as a confluent monolayer in complete medium. The spent
medium was removed, and the cells were washed twice with 1�
PBS followed by incubation with 0.6 –1.2 units/ml Dispase II
(Roche Applied Science) in 1� Dulbecco’s PBS for 30 min at
37 °C. The cells were subjected to mechanical orbital shaking at
150 rpm for 10 –20 min and imaged under a dissecting micro-
scope. The number of monolayer fragments was counted using
ImageJ software.
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Matrigel Invasion Assay—Boyden chamber (BD Biosciences)
Matrigel invasion assays were performed in 24 -well plates. The
inner side of the chamber was washed two to three times with
1� PBS and then once with DMEM. The inner surface of the
insert was coated with 100 
l of a 300 
g/ml working solution
of Matrigel (BD Biosciences). After incubation at 37 °C for 1 h,
unpolymerized Matrigel was removed from the upper cham-
ber. 50,000 cells were resuspended in 200 
l of DMEM without
FBS and seeded in the insert. 700 
l of DMEM with FBS was
added in the lower chamber to act as a chemoattractant. 36 h
postincubation in a 37 °C incubator with 5% CO2, the inserts
were cleaned with a cotton swab and fixed in 100% chilled
methanol. The inserts were stained with 1% crystal violet and
mounted on slides with DPX. Images of 20 random fields were
taken with a 10� objective on an Upright Axio Imager Z1
microscope.

Determination of 14-3-3 Binding Motif in c-Jun—The c-Jun
sequence was examined for the presence of the 14-3-3 binding
consensus motifs ((mode 1 (RSXpSXP) and mode 2 (RXXX-
pSXP)) (4, 74). Two sequences, which have similarity to the
mode 2 site, RAKNSDL and RIAASKC, were identified.
These sequences had serine residues at positions 58 and 267,
respectively.

In Vitro GST Pulldown Assays—To determine in vitro bind-
ing, GST-14-3-3� and c-Jun WT or point mutant (S58A and
S267A) HEK293 cells were transfected with HA-c-Jun WT,
HA-c-Jun S58A, and HA-c-Jun S267A. GST pulldown assays
were performed as described (70, 71).

In Vivo Ubiquitination Assays—Cells were transfected with
various combinations of plasmids. At 24 h post-transfection,
cells were treated with MG132 (10 
M) for 6 h, and whole-cell
extracts were prepared by NETN lysis or denaturing lysis and
subjected to immunoprecipitation of the substrate protein.
Ubiquitination was determined by immunoblotting with sub-
strate antibody or anti-ubiquitin antibody.

In Vitro Ubiquitination Assays—The reactions were carried
out at 30 °C for 15 min in 25 
l of ubiquitylation reaction buffer
(40 mM Tris-HCl, pH7.6, 2 mM dithiothreitol (DTT), 5 mM

MgCl2, 0.1 M NaCl, 2 mM ATP) containing the following com-
ponents: 100 M ubiquitin, 20 nM E1 (UBE1), and 100 nM

UbcH5b (all from Boston Biochem). Bacterially purified MBP-
FBW7 and MBP-14-3-3� were added to the reaction mixture.
Bacterially purified GST, GST-c-Jun, and GST-c-Jun S267A
bound to glutathione-Sepharose beads (Amersham Biosci-
ences) were used as substrates in the reaction mixture. After the
reaction, beads were washed three times with NETN buffer and
boiled with SDS-PAGE loading buffer, and ubiquitination of
substrates was detected by Western blotting with anti-GST
antibody.

Nuclear-Cytoplasmic Fractionation Assays—14-3-3��/�

and 14-3-3��/� cells or 14-3-3��/� cells transfected with plas-
mids expressing either HA-c-Jun WT, HA-c-Jun S58A, HA-c-
Jun S267A, or the vector control were harvested by trypsiniza-
tion, and nuclear and cytoplasmic fractions were prepared
according to the manufacturer’s instructions using the NE-PER
kit from Promega. Protein lysates were separated by SDS-
PAGE. �-Tubulin and lamin A antibodies were used as controls
for cytoplasmic and nuclear fractions, respectively.

Results

Loss of 14-3-3� Leads to Induction of the EMT Program—A
decrease in the levels of the desmosomal plaque protein plako-
globin and a consequent decrease in cell-cell adhesion have
been observed upon loss of 14-3-3� (70). To determine whether
these observations could be extended to other epithelial mark-
ers required for cell-cell adhesion, the levels of several epithelial
markers were determined in the 14-3-3��/� cells. A decrease
in the levels of both the protein and mRNA of epithelial mark-
ers such as plakoglobin, plakophilin 3, desmoplakin, desmog-
lein 2, desmocollin 2, E-cadherin, �-catenin, ZO1, keratin 8,
and keratin 18 was observed in 14-3-3��/� cells as compared
with the 14-3-3��/� cells, and this was accompanied by an
increase in the protein and mRNA levels of mesenchymal
markers such as N-cadherin and vimentin (Fig. 1, A and B). The
levels of the other 14-3-3 isoforms were not altered in the 14-3-
3��/� cells (Fig. 1C), and immunofluorescence assays demon-
strated that although the protein levels of plakoglobin, plako-
philin 3, desmoplakin, desmocollin 2, E-cadherin, P-cadherin,
�-catenin, and ZO1 decreased upon 14-3-3� loss, no significant
change in the localization of these proteins was observed
in 14-3-3��/� cells (supplemental Fig. S1, A and B). The
decreased levels of keratin 8 resulted in the loss of a well defined
filamentous structure in 14-3-3��/� cells, whereas the mesen-
chymal intermediate filament protein vimentin was completely
absent in 14-3-3��/� cells (69) and formed a filament network
in 14-3-3��/� cells (supplemental Fig. S1C). These results sug-
gest that the loss of 14-3-3� leads to an EMT.

As the changes identified above are indicative of the acquisi-
tion of the EMT program, the levels of the EMT transcription
factors were determined in the 14-3-3��/� and 14-3-3��/�

cells. Western blotting (Fig. 1D) and quantitative real time PCR
(Fig. 1B) demonstrated that although snail was expressed at
relatively low levels in both 14-3-3��/� and 14-3-3��/� cells,
the expression of slug and ZEB1 was induced only in the 14-3-
3��/� cells. In addition to the molecular changes observed
above, loss of 14-3-3� led to a decrease in cell-matrix adhesion
(Fig. 2A). This was accompanied by a decrease in cell-cell adhe-
sion (Fig. 2, B and C), an increase in cell migration (Fig. 2, D and
E), and an increase in cell invasion through Matrigel (Fig. 2, F
and G). All these properties are consistent with the induction of
the EMT program, tumor progression, and metastasis. These
results suggested that loss of 14-3-3� leads to the induction of
an EMT program.

Ectopic Expression of 14-3-3� in 14-3-3��/� Cells Leads to
Reversal of EMT—To determine whether the EMT observed in
the 14-3-3��/� cells was due to 14-3-3� loss, HA epitope-
tagged 14-3-3� was transfected into these cells, and two stable
clones (HA-14-3-3�-1 and HA-14-3-3�-2) were generated.
The HA-14-3-3�-expressing clones showed decreased expres-
sion of the EMT transcription factors slug and ZEB1 (Fig. 3, A
and B) as well as increased expression of the epithelial markers
E-cadherin and plakoglobin and decreased expression of the
mesenchymal markers N-cadherin and vimentin when com-
pared with the vector control (Fig. 3C). Expression of HA-14-
3-3� in the 14-3-3��/� cells led to a decrease in cell migration
in wound healing assays (Fig. 3, D and E) and an increase in
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cell-cell adhesion in hanging drop assays (Fig. 3, F and G). These
results suggest that 14-3-3� inhibits the EMT program.

Loss of 14-3-3� Leads to EMT and Increase in Slug Expression
Due to the Stabilization of c-Jun—The EMT program in 14-3-
3��/� cells is associated with an increase in the levels of slug
and ZEB1. Previous reports have demonstrated that slug can
induce the expression of ZEB1 (38), suggesting that the increase
in slug levels might be responsible for the EMT observed in the
14-3-3��/� cells. To test this hypothesis, slug expression was
inhibited in the 14-3-3��/� cells, and two clones, sh-1Slug and
sh-2Slug, that had diminished slug levels were generated (Fig. 4,
A and B). Western blotting analysis demonstrated that a
decrease in slug expression led to an increase in the levels of
epithelial markers like E-cadherin and plakoglobin, a decrease
in the levels of mesenchymal markers like N-cadherin and
vimentin, and a decrease in levels of the EMT transcription
factor ZEB1 (Fig. 4, A and B).

Signaling through the MAPK pathway has been reported to
result in an increase in slug expression, leading to EMT (44 –
46). However, 14-3-3� loss did not lead to any changes in the
activation of the MAPK signaling pathway (Fig. 4C). Previous
reports suggest that c-Jun can induce slug transcription (51,
52). Western blotting analysis demonstrated that 14-3-3�-null
cells showed increased c-Jun protein levels (Fig. 4D), whereas

reverse transcription-PCRs demonstrated that c-Jun mRNA
levels were not elevated in 14-3-3��/� cells when compared
with the 14-3-3��/� cells (Fig. 4E). Expression of HA-14-3-3�
in the 14-3-3��/� cells led to a reduction in c-Jun protein levels
(Fig. 4F). Furthermore, a stable knockdown of c-Jun generated
in 14-3-3��/� cells (sh1-c-Jun and sh2-c-Jun) resulted in an
increase in the levels of epithelial markers such as E-cadherin
and plakoglobin, a decrease in the levels of mesenchymal mark-
ers like N-cadherin and vimentin, and a decrease in the levels of
the EMT transcription factors slug and ZEB1 (Fig. 4, G and H).
Loss of slug in the 14-3-3��/� cells did not lead to an alteration
in c-Jun levels, suggesting that the increase in c-Jun protein
levels was driving the increase in slug expression as reported
previously (52) (Fig. 4B). Finally, loss of either slug or c-Jun in
the 14-3-3��/� cells led to a decrease in cell migration in
wound healing assays (Fig. 4, I and J), which is consistent with a
reversal of the EMT phenotype. These results suggest that the
stabilization of c-Jun in the 14-3-3��/� cells leads to the
expression of slug, thereby inducing the EMT program.

14-3-3� Induces the FBW7-dependent Ubiquitin-mediated
Degradation of c-Jun—The ubiquitin-mediated proteasomal
degradation of c-Jun is mediated by multiple E3 ligases such as
COP1, ITCH, and FBW7 (56 –58). To determine whether
14-3-3� induced the ubiquitin-mediated degradation of c-Jun,

FIGURE 1. Loss of 14-3-3� leads to an increase in epithelial markers and a decrease in mesenchymal markers. A, protein extracts from 14-3-3��/� cells
and 14-3-3��/� cells were resolved by SDS-PAGE followed by Western blotting with the indicated antibodies. Western blots for �-actin served as a loading
control. B, quantitative PCR was performed using cDNA synthesized from total mRNA isolated from 14-3-3��/� cells and 14-3-3��/� cells. ��ct values were
calculated and normalized against GAPDH. The -fold change in gene expression is plotted on the y axis for the indicated genes. p values were calculated using
a non-parametric t test (*** indicates a p value �0.001, ** indicates a p value �0.01, * indicates a p value �0.05, and ns indicates not significant). C, total mRNA
was isolated from 14-3-3��/� cells and 14-3-3��/� cells. cDNA was synthesized, and reverse transcription-coupled PCR was performed with equal amounts of
cDNA using primers for different 14-3-3 isoforms. GAPDH was used as a control. D, protein extracts from 14-3-3��/� cells and 14-3-3��/� cells were resolved
by SDS-PAGE, and Western blotting was performed with the indicated antibodies. �-Actin served as a loading control. The error bars represent S.D.
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14-3-3��/� cells were treated with the proteasome inhibitor
MG132 (Fig. 5A). c-Jun was stabilized, and higher molecular
weight forms of c-Jun were observed in the presence of MG132
in the 14-3-3��/� cells but not in the 14-3-3��/� cells (Fig. 5B).
In addition, 14-3-3� co-immunoprecipitated with c-Jun only in
the presence of MG132 but not in cells treated with the vehicle
(DMSO) control. This suggests that 14-3-3� forms a complex
with c-Jun in 14-3-3��/� cells under conditions where c-Jun is
stabilized. In contrast, another 14-3-3� ligand, plakophilin 3
(75), forms a complex with 14-3-3� in the presence and absence
of MG132 (Fig. 5A), indicating that MG132 does not lead to
alterations in the interaction of 14-3-3� with other ligands.
When 14-3-3��/� cells were treated with MG132, no increase
in c-Jun protein levels was observed in comparison with the
vehicle control (Fig. 5B), suggesting that loss of 14-3-3� led to a
decrease in the proteasome-mediated degradation of c-Jun.
The loss of the E3 ligase FBW7, which induces the ubiquitina-
tion and degradation of c-Jun, has been reported to lead to EMT
(59). Ubiquitination assays performed by exogenous expression
of FLAG-tagged c-Jun with or without Myc-FBW7 in 14-3-
3��/� as well as 14-3-3��/� cells demonstrated that c-Jun was
ubiquitinated only in the presence of 14-3-3�, and the ubiquiti-
nation of c-Jun in 14-3-3��/� cells was enhanced in the pres-
ence of Myc-FBW7 (Fig. 5, C and D). The ubiquitinated species

were not observed in 14-3-3��/� cells, indicating that 14-3-3�
is essential for the ubiquitination and subsequent degradation
of c-Jun in these cells and that 14-3-3� induces the ubiquitin-
mediated proteolysis of c-Jun in an FBW7-dependent manner.

14-3-3 proteins bind to substrates containing phosphoserine
or phosphothreonine residues that may or may not match pre-
viously identified consensus motifs or may bind to ligands that
are not phosphorylated on either serine or threonine (3– 6).
Two putative 14-3-3 binding sites at serine residues 58 and 267
were identified in c-Jun. The serine residues were altered
to alanine (S58A and S267A, respectively) by site-directed
mutagenesis, and WT and mutant cDNAs were cloned down-
stream of the HA epitope tag and transfected into HEK293
cells. Biochemical assays using bacterially purified GST-14-
3-3� or GST alone demonstrated that although WT c-Jun and
the S58A mutant formed a complex with 14-3-3�, the S267A
mutant did not form a complex with 14-3-3�, suggesting that
Ser-267 was required for the association between 14-3-3� and
c-Jun (Fig. 6A). In vitro ubiquitination assays with bacterially
purified c-Jun WT and c-Jun S267A proteins in the presence of
FBW7 and 14-3-3� confirmed that the presence of 14-3-3� as
well as the Ser-267 residue in c-Jun was necessary for ubiquiti-
nation of c-Jun by FBW7 (Fig. 6, B and C). Consistent with the
in vitro data, exogenous expression of FLAG epitope-tagged

FIGURE 2. Loss of 14-3-3� leads to EMT. A, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-based cell-ECM adhesion assays were performed
with 14-3-3��/� and 14-3-3��/� cells. The percentage of cells adhered to the individual matrix components was calculated as described under “Experimental
Procedures,” and the mean and S.D. from three independent experiments were plotted. B and C, to determine whether loss of 14-3-3� led to changes in cell-cell
adhesion, Dispase assays were performed for both 14-3-3��/� and 14-3-3��/� cells. Representative images of the different cell types are shown (B). The
number of cell aggregates was measured using the particle counting module in ImageJ Particle, and the mean and S.D. are plotted (C). D and E, scratch wound
healing assays were performed with 14-3-3��/� and 14-3-3��/� cells to determine whether loss of 14-3-3� affects migration rates. Phase-contrast images of
wound closure taken at 10� are shown for 0 and 20 h (D). Cell migration was measured using Axiovision software, and the mean and S.D. were plotted (E). F and
G, Boyden chamber invasion assays were performed with 14-3-3��/� and 14-3-3��/� cells after coating the inserts with Matrigel. Images of 0.1% crystal violet
stained inserts were taken with a Zeiss inverted microscopes using a 10� objective (F). The number of cells invading was determined in 20 random fields per
insert, and the mean and S.D. were plotted (G). Where indicated, the p values were calculated using a non-parametric t test (*** indicates a p value �0.001, **
indicates a p value �0.01, and * indicates a p value �0.05). The error bars represent S.D.
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c-Jun WT or FLAG epitope-tagged c-Jun S267A and Myc-
FBW7 in 14-3-3��/� cells showed that the Ser-267 residue was
necessary for c-Jun ubiquitination (Fig. 6, D and E). Cumula-
tively, these results suggest that the Ser-267 residue in c-Jun is
required for the interaction between c-Jun and 14-3-3�, and
this interaction is sufficient and necessary for c-Jun protea-
somal degradation mediated by the E3 ligase FBW7.

c-Jun Nuclear Export Is Required for Ubiquitin-mediated
Proteolysis—14-3-3 proteins often regulate the subcellular
localization of their target proteins, thereby regulating cellular
signaling pathways (76, 77). To determine whether 14-3-3�
regulated the subcellular localization of c-Jun, 14-3-3��/� and
14-3-3��/� cells were treated with either MG132, the nuclear
export inhibitor leptomycin B (LMB), or the corresponding
vehicle controls. Western blotting performed on nuclear and
cytoplasmic fractions demonstrated that in the 14-3-3��/�

cells treated with the vehicle controls c-Jun was present in the
nuclear fraction, whereas it was not detectable in the 14-3-
3��/� cells (Fig. 7A). However, upon treatment with MG132,
c-Jun levels in the 14-3-3��/� cells were elevated to levels com-
parable with those in the 14-3-3��/� cells, and c-Jun was pres-
ent only in the nuclear fraction (Fig. 7A). Similar results were
observed when the 14-3-3��/� cells were treated with LMB
(Fig. 7A). The integrity of the nuclear and cytoplasmic fractions
was tested by Western blotting with antibodies to lamin A and
�-tubulin, respectively (Fig. 7A). These results suggested that

the enforced nuclear localization of c-Jun resulted in stabiliza-
tion of c-Jun. To determine whether disruption of complex for-
mation between c-Jun and 14-3-3� resulted in an increase in
the nuclear localization of c-Jun, 14-3-3��/� cells were trans-
fected with constructs expressing HA epitope-tagged versions
of WT c-Jun, S58A, or S267A, and the transfected cells were
treated with the nuclear export inhibitor LMB or vehicle con-
trol. Western blotting performed on nuclear and cytoplasmic
fractions prepared from the treated cells demonstrated that
LMB treatment resulted in stabilization of WT c-Jun and the
S57A mutant in nuclear fractions (Fig. 7B). The similarity of
these results with those observed for endogenous 14-3-3� sug-
gests that the HA epitope tag does not alter cellular localization
and that 14-3-3� might regulate the subcellular localization of
c-Jun. However, the S267A mutant was stable and localized to
the nucleus both in the presence and absence of LMB (Fig. 7B).
Similar results were obtained when immunofluorescence
assays using antibody to the HA epitope were performed on the
transfected cells (Fig. 7C). The presence of enhanced GFP was
used to identify transfected cells (Fig. 7C). Inhibition of nuclear
export or proteasome-mediated degradation in 14-3-3��/�

cells led to the stabilization of c-Jun and the induction of EMT,
leading to an increase in the levels of slug and vimentin and a
decrease in the levels of E-cadherin (Fig. 8A). Similarly, the
expression of S267A, which localizes to the nucleus and is not
targeted for degradation, leads to an increase in slug and vimen-

FIGURE 3. Ectopic expression of 14-3-3� in 14-3-3��/� cells leads to reversal of EMT. A–C, equivalent amounts of whole cell lysates from 14-3-3��/� cells,
14-3-3��/�-derived vector control (Vector), or HA-14-3-3�-expressing (HA-14-3-3�-1 and HA-14-3-3�-2) cells were resolved by SDS-PAGE, and Western
blotting was performed with the indicated antibodies for EMT-specific transcription factors (A and B) and epithelial and mesenchymal markers (C). Western
blots for �-actin served as a loading control. D and E, scratch wound assays were performed for vector, HA-14-3-3�-1, and HA-14-3-3�-2 cells. Phase-contrast
images of wound closure taken at 10� are shown for 0 and 20 h (D). Cell migration was measured using Axiovision software, and the mean and S.D. from three
independent experiments were plotted (E). p values were calculated using a non-parametric t test (*** indicates a p value �0.001, and ** indicates a p value
�0.01). F and G, to determine whether cell-cell adhesion was increased upon reintroduction of 14-3-3� into the 14-3-3��/� cells, hanging drop assays were
performed with vector, HA-14-3-3�-1, and HA-14-3-3�-2 cells. Images (F) of cell aggregates were acquired with a Zeiss invested microscope, and the size of
the cell aggregates were measured using ImageJ software and are shown in the table (G). Note the increase in size and number of aggregates observed upon
restoration of 14-3-3� expression. The error bars represent S.D.
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tin levels and a decrease in E-cadherin levels (Fig. 8A). These
results suggest that 14-3-3� stimulates both the nuclear export
of c-Jun and its degradation via FBW7-dependent ubiquitin-
mediated proteolysis, thus preventing the activation of the
EMT program.

Discussion

Loss of 14-3-3� has been observed in multiple human
tumors, suggesting that it might function as a tumor suppressor

(16, 18 –21, 23, 78). However, the mechanisms by which it
might inhibit tumor progression remain unclear. The results in
this report suggest that loss of 14-3-3� leads to the stabilization
of c-Jun, leading to increased expression of the EMT transcrip-
tion factor slug and the activation of EMT, a pathway that is
often associated with tumor progression and metastasis (79).
Therefore, the inhibition of EMT by 14-3-3� loss represents
a novel pathway by which 14-3-3� might inhibit tumor
progression.

FIGURE 4. Loss of 14-3-3� leads to an increase in the levels of slug and c-Jun. A and B, 50 
g of protein extracts prepared from 14-3-3��/� or the
14-3-3��/�-derived vector control (Vec) and slug knockdown (sh-1Slug and sh-2Slug) cells were resolved by SDS-PAGE followed by Western blotting with the
indicated antibodies. �-Actin served as a loading control. C, protein extracts from 14-3-3��/� cells and 14-3-3��/� cells were resolved by SDS-PAGE gels
followed by Western blotting with the indicated antibodies for various kinases involved in the MAPK signaling pathway. �-Actin served as a loading control. D,
protein extracts from 14-3-3��/� cells and 14-3-3��/� cells were resolved by SDS-PAGE followed by Western blotting with c-Jun antibody. �-Actin served as
a loading control. E, mRNA prepared from the 14-3-3��/� cells and 14-3-3��/� knockdown cells was used as a template in reverse transcription-coupled PCRs.
GAPDH was used as an internal control. Note that the levels of c-Jun mRNA are not different in the two cell types. F, 50 
g of protein extracts prepared from
14-3-3��/�, vector, HA-14-3-3�-1, and HA-14-3-3�-2 cells were resolved by SDS-PAGE, and Western blotting was performed with the indicated antibodies.
�-Actin served as a loading control G and H, 50 
g of protein extracts prepared from 14-3-3��/�, 14-3-3��/�-derived vector control (Vec), or c-Jun knockdown
(sh1-c-Jun and sh2-c-Jun) cells were resolved by SDS-PAGE followed by Western blotting with the indicated antibodies. �-Actin served as a loading control.
Western blots for �-actin served as a loading control in all experiments. I and J, scratch wound assays were performed for the 14-3-3��/�-derived vector,
sh-1Slug, sh-2Slug, sh1-c-Jun, and sh2-c-Jun cells. Phase-contrast images of wound closure taken at 10� are shown for 0 and 18 h (I). Cell migration was
measured using Axiovision software, and the mean and S.D. from three independent experiments were plotted (J). p values were calculated using a non-
parametric t test (** indicates a p value �0.01, and * indicates a p value �0.05). The error bars represent S.D.
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Our data suggest that one of the mechanisms by which
14-3-3� might execute its tumor suppressive function is by pre-
venting expression of EMT-inducing genes by restricting c-Jun
to the cytoplasm and inducing c-Jun degradation via the ubiq-
uitin pathway. This is consistent with previous reports that
have shown that loss of 14-3-3� leads to loss of polarity in
MCF10A cells (60). Loss of polarity is a hallmark of EMT (31),
but it was unclear whether 14-3-3� induced an EMT. The
results in this report indicate that loss of 14-3-3� results in the
acquisition of mesenchymal markers and the loss of epithelial
markers due to the stabilization of c-Jun, which leads to the
increased expression of the EMT transcription factor slug.
These properties are accompanied by a decrease in cell-cell
adhesion and an increase in invasion and migration, all proper-
ties of invasive tumor cells. In contrast, two reports have sug-
gested that other 14-3-3 isoforms, particularly 14-3-3�, can
form a complex with the EMT transcription factor snail (80)
and that 14-3-3� is over-expressed in hepatocellular carcinoma
and it contributes to the acquisition of the EMT phenotype
(81). Importantly, 14-3-3� did not form a complex with snail
(80), which is consistent with our observations that it preserves
the epithelial phenotype. Therefore, these observations suggest
that distinct 14-3-3 isoforms have different effects on the
acquisition of the EMT phenotype with 14-3-3� inhibiting
EMT progression and 14-3-3� promoting EMT. The two

14-3-3 isoforms affect EMT progression by targeting differ-
ent components in the EMT pathway, 14-3-3� by inducing
c-Jun degradation and therefore preventing expression of slug
(this report) and 14-3-3� by forming a complex with the EMT
transcription factor snail and stimulating snail-dependent tran-
scription (80). These results are also consistent with the obser-
vation that 14-3-3� expression is low in multiple tumor types
(16 –24), whereas 14-3-3� expression is associated with the
acquisition of EMT in hepatocellular carcinoma (81). There-
fore, these are two distinct molecular mechanisms, and they
reflect the diversity of mechanisms by which the 14-3-3 protein
family regulates cellular pathways. These results are also con-
sistent with data from our laboratory and from other laborato-
ries suggesting that different 14-3-3 isoforms form complexes
with and alter the function of different ligands, leading to dif-
ferences in phenotype both in cells in culture and in mouse
models (70, 82– 85).

Previous work has demonstrated that 14-3-3 proteins regu-
late the nuclear to cytoplasmic transport of their ligands such as
the cdc25 phosphatase, COP1, forkhead transcription factors,
and many others (76, 77, 86 – 88). Some of these reports suggest
that the 14-3-3 proteins contain a nuclear export signal (NES)
in their N termini that seems to be required for nuclear export
(87, 88); however, other reports suggest that the NES identified
above is required for binding to the phosphopeptide and that

FIGURE 5. 14-3-3� induces the ubiquitin-mediated degradation of c-Jun. A, 14-3-3��/� cells were treated with either MG132 or DMSO for 6 h, protein
extracts were prepared, and immunoprecipitations (IP) were performed with antibody to either 14-3-3� or an isotype control (IgG). Immune complexes were
resolved by SDS-PAGE along with 5% input for whole cell extract (WCE) followed by Western blotting (WB) with the indicated antibodies. Note that 14-3-3� is
observed in a complex with c-Jun only in the presence of MG132. B, 14-3-3��/� cells were treated with either MG132 or DMSO for 6 h, protein extracts were
prepared, and protein extracts were resolved by SDS-PAGE followed by Western blotting with the indicated antibodies. �-Actin served as a loading control. C
and D, 14-3-3��/� and 14-3-3��/� cells were co-transfected with SFB-c-Jun in the presence or absence of Myc-FBW7�. At 24 h post-transfection, cells were
treated with MG132 for 6 h, and protein extracts were prepared and immunoprecipitated with antibody to FLAG. The reactions were resolved by SDS-PAGE
followed by Western blotting with antibody to FLAG (C) or ubiquitin (D). Note that the higher molecular weight forms of c-Jun are only present in 14-3-3��/�

cells, and the levels of these bands are elevated in the presence of FBW7.
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14-3-3 binding exposes a cryptic NES in the ligand, thus pro-
moting nuclear export (76). The results in this report suggest
that 14-3-3� is required for the retention of c-Jun in the cyto-
plasm either by promoting the nuclear export of c-Jun or the
complex between 14-3-3� and c-Jun is recognized by export
factors, leading to the export of the complex to the cytoplasm
where 14-3-3� mediates the FBW7-dependent degradation of
c-Jun via the ubiquitin-dependent pathway (Fig. 8B). A nuclear
import signal has been identified near the leucine zipper region
of c-Jun, but no NES has been reported so far for the c-Jun
protein (89). It is possible that 14-3-3� binding to c-Jun results
in exposure of a cryptic NES in c-Jun. An alternative explana-
tion for our data is that c-Jun is exported to the cytoplasm in a
14-3-3�-independent manner, and it is retained in the cyto-
plasm by 14-3-3� followed by c-Jun ubiquitination and degra-
dation (Fig. 8B). Our data demonstrate that 14-3-3� is present
in both the cytoplasm and nucleus (Fig. 7A), which is consistent
with either of the alternatives described above. Furthermore,
treatment of 14-3-3��/� cells with MG132 leads to the accu-
mulation of c-Jun in the nucleus (Fig. 7A). Although this could
suggest that 14-3-3� is not required to retain c-Jun in the cyto-
plasm and is consistent with the possibility that 14-3-3� is

required for the nuclear export of c-Jun, it does not completely
rule out the possibility that the inhibition of degradation by
MG132 could lead to a disruption of complex formation
between 14-3-3� and c-Jun, allowing for c-Jun nuclear import
and accumulation of c-Jun in the nucleus.

The results here also suggest that complex formation
between 14-3-3� and c-Jun is required for the ubiquitination of
c-Jun by FBW7. The in vivo and in vitro ubiquitination data in
our studies also reveal possible functions of 14-3-3� that are
required for proper presentation of substrates to the E3 ligase.
This is a novel finding as there have been no previous reports
suggesting that a 14-3-3 isoform is required for the ubiquitina-
tion of c-Jun. These findings are also consistent with previous
reports that suggest that 14-3-3� is required for the nuclear
export of another E3 ligase required for c-Jun degradation,
COP1, and that this interaction might contribute to the tumor
suppressive function of 14-3-3� (88, 90). Another study sug-
gests that 14-3-3� regulates the stability of c-Myc by inducing
the ubiquitin-mediated degradation of c-Myc, thus negatively
regulating the activation of c-myc genes that are required for
tumor progression (91). Taken together with our data, these
results suggest that loss of 14-3-3� might lead to the stabiliza-

FIGURE 6. 14-3-3� targets c-Jun to proteasomal degradation in an FBW7-dependent manner. A, HEK293 cells were transfected with HA-c-Jun WT,
HA-c-Jun S58A, and HA-c-Jun S267A. 24 h post-transfection, cell lysates were prepared and incubated with bacterially purified GST or GST-14-3-3�, and the
reactions were resolved by SDS-PAGE. 5% input for whole cell extract (WCE) served as the input. Western blotting was performed with the indicated antibodies
(upper panel), and the levels of GST and GST-14-3-3� are shown in the Ponceau-stained membrane (lower panel). B, in vitro ubiquitination experiments were
performed using bacterially purified GST-c-Jun WT and GST-c-Jun S267A as substrates in the indicated combinations with MBP-tagged 14-3-3� and MBP-
tagged FBW7� along with E1 (UBE1) and E2 (UbcH5B). Full-length and ubiquitinated species of GST-c-Jun WT and GST-c-Jun S267A were detected by
immunoblotting with anti-GST antibody. C, the protein levels of GST-c-Jun WT, GST-c-Jun S267A, MBP-14-3-3�, and MBP-FBW7� shown by Coomassie staining.
The * indicates the full-length protein; the lower molecular bands are probably degradation products. D, 14-3-3��/� cells were transfected with FLAG-tagged
c-Jun WT and c-Jun S267A with or without Myc-FBW7. 24 h post-transfection, cells were treated with MG132 for 6 h, and immunoprecipitated with anti-FLAG
antibody. c-Jun ubiquitination was detected by immunoblotting with FLAG antibody. E, 14-3-3��/� cells were transfected with FLAG-tagged c-Jun WT and
c-Jun S267A with or without Myc-FBW7. At 24 h post-transfection, cells were treated with MG132 for 6 h, and immunoprecipitated with anti-FLAG antibody.
c-Jun ubiquitination was detected by immunoblotting with ubiquitin (Ub) antibody. IP, immunoprecipitation; WB, Western blotting.
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tion of oncogenes such as c-Myc and c-Jun, resulting in tumor
progression. Previous studies have identified a role of FBW7 in
inducing the proteasome-mediated degradation of c-Jun. The
GSK3-mediated phosphorylation of residue Thr-239 in c-Jun is
necessary for the recognition of c-Jun by FBW7, which results
in subsequent ubiquitination of c-Jun (92). Phosphorylation by
GSK3 at the Thr-239 position in v-Jun may require a priming
phosphorylation at the Ser-243 position in c-Jun; both are sites
for ERK1 and DYRK1 (93, 94). However, the phosphorylation
status of c-Jun at Thr-239 and Ser-243was not investigated in
this study.

14-3-3 proteins preferably bind to ligands containing a phos-
phorylated serine residue in one of two consensus motifs (4, 74).
The experiments in this report suggest that the sequences sur-
rounding a serine residue at position 267 resembles a 14-3-3
protein binding consensus motif and might be required for
either the nuclear export or cytoplasmic retention of c-Jun and
subsequently facilitate proper presentation of c-Jun to FBW7
and help in degradation of c-Jun. There is no evidence in the

literature or in multiple databases (PhosphoSitePlus, Scansite,
Human Protein Reference Database, and UniProt), which
either document known sites of phosphorylation or identify
putative kinases for a given sequence, to suggest that Ser-267 in
c-Jun is phosphorylated or that this sequence can be recognized
and phosphorylated by a known kinase. In addition, there are
several 14-3-3 ligands that bind to 14-3-3 proteins in a phos-
phorylation-independent manner, and the Ser-267 site in c-Jun
might belong to this category of 14-3-3 binding sites (5, 6). The
overexpression of the S267A mutant leads to an increase in
expression of mesenchymal markers and a decrease in expres-
sion of epithelial markers in 14-3-3��/� cells, a phenotype also
observed upon treatment with the export inhibitor LMB and
the proteasome inhibitor MG132. Interestingly, an earlier
report shows that loss of FBW7 leads to EMT (59). These
results are consistent with our data and suggest that in HCT116
cells 14-3-3� stimulates the nuclear export of c-Jun and targets
it for ubiquitination by FBW7 and proteasomal degradation,
thus preventing activation of the EMT program. ITCH and

FIGURE 7. 14-3-3� stimulates the nuclear export of c-Jun, and this is required for c-Jun degradation. A, 14-3-3��/� and 14-3-3��/� cells were treated with
10 
M MG132, 20 ng/ml LMB, or the respective vehicle controls (DMSO and methanol, respectively) for 8 h. The cells were harvested by trypsinization, and the
whole cell extracts (wce) and nuclear (nuc) and cytoplasmic (cyto) fractions were resolved by SDS-PAGE followed by Western blotting (WB) with the indicated
antibodies. Note that c-Jun is present in the nucleus in vehicle-treated 14-3-3��/� cells but is not detectable in the vehicle-treated 14-3-3��/� cells. In contrast,
c-Jun is stabilized and localized to the nucleus in 14-3-3��/� cells treated with either MG132 or LMB. B, 14-3-3��/� cells were transfected with HA-c-Jun WT,
HA-c-Jun S58A, and HA-c-Jun S267A. 24 h post-transfection, cells were either treated or not treated with LMB for 8 h. Post-treatment, whole cell extracts (wce)
and nuclear (nuc) and cytoplasmic (cyto) fractions were resolved by SDS-PAGE followed by Western blotting with the indicated antibodies. Note that LMB
treatment leads to enrichment of c-Jun and S58A in the nuclear fraction, whereas S267A is always enriched in the nuclear fraction. C, 14-3-3��/� cells were
transfected with HA-c-Jun WT, HA-c-Jun S58A, and HA-c-Jun S267A along with a vector expressing GFP to identify transfected cells. 24 h post-transfection, cells
were either treated or not treated with LMB for 8 h. Post-treatment, cells were fixed and stained with antibody to the HA epitope tag (red) and counterstained
with DAPI (blue). GFP expression (green) was used to identify transfected cells. Merged images are shown in the fourth panel. Magnification, �630 with 4�
optical zoom. Scale bars, 5 
m. Note that WT c-Jun and S58A are only present in the nucleus in the presence of LMB in contrast to the S267A mutant. EGFP,
enhanced GFP.
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COP1 can function as E3 ligases for c-Jun (56, 58), and 14-3-3�
can form a complex with and stimulate the nuclear export of
COP1 (88); however, it is not clear whether 14-3-3� is required
for the ubiquitination of c-Jun by either ITCH or COP1.

Our results suggest that loss of 14-3-3� leads to the induction
of a slug-dependent EMT program. Slug and snail operate in a
positive feedback loop with each factor stimulating the expres-
sion of the other (37). However, in this report, an increase in
snail expression was not observed despite the increase in slug
expression. Slug has been shown to stimulate the expression of
ZEB1 (38), a finding that is consistent with our data, and the
increase in ZEB1 was indeed due to an increase in slug expres-
sion as a knockdown of slug in 14-3-3��/� cells results in a
decrease in ZEB1 protein levels. Slug expression has been pos-
itively associated with cancer progression, invasion, and metas-
tasis without a parallel increase in snail, which suggests that
snail and slug have different functions in tumor progression
(95–97). Slug expression can be regulated by multiple tran-
scription factors such as Myb, c-Jun (52, 98), growth factors
such as EGF (99) and TGF-� (100), and signaling pathways like
the MAPK pathway (46, 101). The results in this report demon-
strate that, in 14-3-3��/� cells, the AP1 transcription factor
c-Jun regulates slug expression as a decrease in c-Jun levels in
14-3-3��/� cells results in a decrease in slug protein levels (Fig.
4). c-Jun expression is found to be elevated in multiple cancer
types and is strongly associated with invasion and metastasis
(53–55). c-Jun function can be regulated by the ERK pathway
(52). No change in activation and expression of ERK or MAPK
pathway-related kinases was observed in this study (Fig. 4C),
suggesting that the increase in c-Jun activity in 14-3-3��/� cells
is not dependent on ERK or MAPK but is due to the inhibition
of c-Jun proteolysis.

In summary, the results in this report demonstrate that
14-3-3� is required for maintenance of the epithelial pheno-
type, and loss of 14-3-3� leads to EMT in HCT116 cells.

14-3-3� is required for the ubiquitination and degradation of
c-Jun by FBW7. The induction of EMT upon loss of 14-3-3� is
driven by the stabilization and nuclear localization of c-Jun,
leading to increased transcription of the EMT transcription fac-
tor slug (Fig. 8B). These results identify a novel pathway
through which 14-3-3� maintains the epithelial phenotype and
suppresses expression of the mesenchymal phenotype and
might contribute to the tumor suppressor function of 14-3-3�.
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