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Abstract

Motivation: Similarity-based methods have been widely used in order to infer the properties of

genes and gene products containing little or no experimental annotation. New approaches that

overcome the limitations of methods that rely solely upon sequence similarity are attracting

increased attention. One of these novel approaches is to use the organization of the structural do-

mains in proteins.

Results: We propose a method for the automatic annotation of protein sequences in the UniProt

Knowledgebase (UniProtKB) by comparing their domain architectures, classifying proteins based

on the similarities and propagating functional annotation. The performance of this method was

measured through a cross-validation analysis using the Gene Ontology (GO) annotation of a sub-

set of UniProtKB/Swiss-Prot. The results demonstrate the effectiveness of this approach in detect-

ing functional similarity with an average F-score: 0.85. We applied the method on nearly 55.3 mil-

lion uncharacterized proteins in UniProtKB/TrEMBL resulted in 44 818 178 GO term predictions for

12 172 114 proteins. 22% of these predictions were for 2 812 016 previously non-annotated protein

entries indicating the significance of the value added by this approach.

Availability and implementation: The results of the method are available at: ftp://ftp.ebi.ac.uk/pub/

contrib/martin/DAAC/.

Contact: tdogan@ebi.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The reduction in the cost of sequencing has led to the accumulation

of a vast amount of data in biological databases. These data are

stored in public repositories such as the UniProt Knowledgebase

(UniProt Consortium, 2015) for protein sequences, and NCBI

GenBank (Benson et al., 2008) and the EMBL Nucleotide Archive

(Leinonen et al., 2011) for gene sequences. In order to make sense of

these data, the stored sequences need to be annotated with respect to

their functional and evolutionary properties. Defining the functions

of genes and gene products is a difficult task due to the biological

complexity of organisms. There are various projects aiming to

standardize the description of the functional attributes of biological

sequences by introducing controlled vocabularies. The Gene

Ontology (GO) project provides the most comprehensive functional

standardization system for proteins (Gene Ontology Consortium,

2015). GO uses a directed acyclic graph (DAG) structure to define

the functions from generic to specific in three main categories

namely: molecular function, biological process and cellular

component.

Discovery of functional properties for proteins is a key step

in biomedical research, yet experimental identification of proteins is

still a quite laborious and expensive task. This has led to many
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similarity-based computational methods being developed to

infer the unknown properties of proteins based on their similarity

to experimentally annotated proteins. The most widely used ap-

proach is sequence alignment (Altschul et al., 1990; Pearson and

Lipman, 1988). A significant proportion of the unknown functional

space has been covered thanks to this procedure where similarity is

inferred in terms of the shared evolutionary history of the sequences.

Nevertheless, different approaches have been tried lately for the

prediction of protein properties, to augment the performance of se-

quence methods. One approach is to exploit information on the physi-

cochemical properties of the amino acids in the protein sequence to

infer subcellular localization (Sarda et al., 2005). A different approach

is the prediction of the structure of the proteins using their sequences

(Drozdetskiy et al., 2015; S€oding et al., 2005). Yet another one is to

identify evolutionary conserved regions in the sequences (such as

motifs and domains) and to relate these sequence segments to specific

functions (Bailey et al., 2009; Do�gan and Karaçalı, 2013; Tompa

et al., 2014). The idea is that genes with mutations in these regions are

selected against because changes in these functionally active segments

may cause a decrease in efficiency or even the loss of function, decreas-

ing the fitness of the gene. Combinatorial approaches are gaining

popularity, where different methods are combined to increase

the coverage and the quality of predictions; either by gathering to-

gether different features under one classifier (Chou, 2011) or by using

multiple classifiers at the same time (Saraç et al., 2010). Critical

Assessment of Protein Function Annotation was initiated in 2011, in

order to evaluate various methods in terms of their performance in the

prediction of GO terms on a standard dataset (Radivojac et al., 2013).

Many of the methods using evolutionary conserved sub-se-

quences focus on protein domains. These are the structural building

blocks in proteins that are able to function and fold independently

from the rest of the protein (Wetlaufer, 1973). There are many well-

established biological databases dedicated to the identification and

search of functional domains and the grouping of similar protein se-

quences into families. These databases attempt to assign functional

annotations to the domains and families, and approach a protein se-

quence as a functional combination of its domains. Some of the

widely used sequence-based domain/family databases are Pfam

(Finn et al., 2014), PROSITE (Sigrist et al., 2012), HAMAP

(Pedruzzi et al., 2015), SUPERFAMILY (Wilson et al., 2009) and

InterPro (Mitchell et al., 2014). InterPro incorporates all of the

above databases and more to provide a comprehensive classification

of proteins.

One view in the field of protein function inference states that the

function of a protein is not simply the sum of the functions of the inde-

pendent domains it contains, but rather is a unique property emerging

from the contribution of all of the structural blocks synergistically

(Bashton and Chothia, 2007). This has led to the concept of domain

architectures/arrangements (DA) defined as the organizational proper-

ties of a protein regarding the domains it contains. These

properties may include the domain content, linear order of the domains

in the protein sequence and recurrence of the domains in the protein.

In DA-based methods, statistically significant similarities between test

proteins are identified using the above-mentioned properties.

Examples of DA information being employed in biological data

analysis methods include Bj€orklund et al. (2005), Geer et al. (2002),

Lin et al. (2006) and Song et al. (2007). Although the methodology

used varies greatly between the different studies, most of them try to

predict the pairwise similarities/homologies between proteins (Lin

et al., 2006 and Song, et al., 2007). Earlier studies mostly focused

on similarities in the domain content of proteins (Geer et al., 2002),

whereas information regarding domain order, position, recurrence

and promiscuity is more frequently used in later studies (Fang and

Gough, 2013; Kummerfeld and Teichmann, 2009; Lee and Lee,

2009; Messih et al., 2012; Song et al., 2007; Terrapon et al., 2014).

The study by Bj€orklund et al. (2005) was the first to incorporate in-

formation about the sequential order of domains into the similarity

search (Bj€orklund et al., 2005). In most of these studies, the authors

set out to quantify the similarities between proteins using domain in-

formation, mostly with the aim of identifying pairwise homologies.

Here, we present the UniProt Domain Architecture Alignment

and Classification (DAAC) procedure for the automatic annotation of

uncharacterized proteins in UniProtKB based upon domain architec-

tural similarity to manually reviewed sequences in the UniProtKB/

Swiss-Prot. Four attributes are incorporated into the measurement of

domain architectural similarity: domain content, order, position and

recurrence. The proposed method incorporates domain annotation

from InterPro in order to obtain comprehensive domain information

coverage for the proteins.

This study is the first that we are aware of to use DA comparison

and classification in the automatic functional annotation of large

protein sets. The proposed method also brings new approaches to

the field by (i) employing InterPro as the domain annotation source,

(ii) the use of multi-label classification technique to annotate pro-

teins with multiple functions in one run and to be able to optimize

the parameters for each functional term independently and (iii) ap-

plication of domain weights during the alignment step to direct the

procedure to the optimal solution. Multi-label classification is a

technique used to classify each sample into one or more classes. This

method is frequently employed to analyze examples with multiple

attributes as opposed to the traditional single-label or binary classifi-

cation (Tsoumakas et al., 2010). In the latter, each of the objects

under consideration can be assigned to only one class among a set of

mutually exclusive classes. However, in the real world, objects can

belong to multiple classes that are not necessarily disjoint, e.g. a pro-

tein may interact with ATP (attribute 1) in the plasma membrane

(attribute 2). There are two ways to address these cases. The first

is to perform several separate processes of binary classification, each

for one class, and then to aggregate the results. The second option is

to perform a multi-label classification, which allows assigning an

object to more than one class and in one single process.

The proposed method has been validated using protein sequences

from UniProtKB/Swiss-Prot together with their experimentally vali-

dated GO annotations. By doing so, we hope to demonstrate that

the results of the analysis have biological relevance for protein func-

tion prediction. Finally, we applied the method to UniProtKB/

TrEMBL to obtain functional predictions for the protein entries in

the database.

It is important to emphasize that the proposed method is not de-

signed to replace conventional sequence-based methods but to com-

plement them. The case for using DA comparison methods to

complement sequence-based approaches has been reported in previ-

ous studies (Lee and Lee, 2009; Messih et al., 2012; Terrapon et al.,

2014).

2 Methods

Figure 1A displays the representation of DAAC. The method first

generates the DAs for both training and test proteins as explained

in Section 2.1. Training of the system takes place as the second

step where DAs of reference proteins are aligned pairwise in an all-

against-all manner using the InterPro domain hits as the strings in-

stead of amino acids. Then training proteins are grouped under
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classes representing unique GO terms. Class-specific similarity

thresholds are determined at the end of the training (as discussed

in Section 2.3). The third step is the application. DAs of the query

proteins are aligned to the training samples and classified into the

annotation term classes considering their similarity measure

from the alignment. Query proteins receive the GO term of the cor-

responding classes as predictions.

2.1 Generation of the DAs
DAs are generated using the InterProScan results for UniProtKB pro-

teins. InterPro combines information on protein attributes from 11

different Consortium member databases. The individual compo-

nents of this information are sequence signatures responsible for cer-

tain properties of the protein. Signatures from the different member

databases are merged under distinct entries in InterPro by manual

curation (Mitchell et al., 2014).

In this way more than 35 000 signatures are integrated into

InterPro(v.49) from the different member databases; resulting in

7518 domain, 18 218 family, 277 repeat and 847 site type InterPro

entries.

In order to generate the DAs, v.49 release files were downloaded

from the InterPro database. DAs were generated using the InterPro

domain type hits to UniProtKB proteins. A DA is composed of the

linear arrangement of domains in the protein sequence from the N

to C terminus. In addition, non-annotated regions in the sequences

longer than 30 amino acids are annotated with hypothetical ‘GAP’

domains in DAs. The reason behind is that these regions may con-

tain domains that are yet to be identified. Two sample proteins

from UniProtKB (P77334 and P64826) and their DAs are shown in

Figure 1B.

2.2 Weighted DA alignment
DA alignment is the pairwise optimal alignment between two pro-

teins using the linear arrangement of their domains instead of amino

acids. The Needleman-Wunsch Global Sequence Alignment algo-

rithm (Needleman and Wunsch, 1970) is the core of the proposed

DA alignment algorithm. However, the algorithm has been modified

to carry out global alignment using DAs. The algorithm employs

more than 7500 distinct InterPro domains as its alphabet as opposed

to 20 kinds of amino acids in the conventional sequence alignment.

Alignments are scored using equal values (with opposite signs) for

matches and mismatches, half of the mismatch value for gap open-

ings and half of the gap opening value for gap extensions.

Domain hits are weighted before the alignment procedure in

order to reduce the contribution of promiscuous domains (the ones

appearing in a variety of proteins families and have minimal effect

on the total function of the protein) to the final similarity measure.

Inverse domain frequency is a measure of how frequently a domain

appears in different proteins. Highly frequent domains appearing in

various non-related proteins are less informative compared with the

rarely occurring domains (Song et al., 2007). As a result, frequent

domains are weighted less in order to decrease their contribution to

the scoring. Inverse domain frequency is defined as:

Ad ¼ log 2
Nt

Nd
(1)

where Nt is the total number of proteins in the set and Nd is the

number of proteins containing domain d. To reduce the computa-

tional burden, scoring matrices are generated on the fly during the

alignment, only using the domains in the test protein pair. The sub-

stitution values for each domain pair in the raw scoring matrix are

multiplied by the inverse domain frequency values of both domains

in the corresponding pair prior to the alignment to obtain the final

scoring matrix. An example pairwise DA alignment is shown in

Figure 1B. Alignment score is calculated considering gaps, matches

and mismatches. The following equation displays the score calcula-

tion for the example in Figure 1B:

S1;2 ¼ Gopp2
þ IIPR 000014; IPR 003018 þMIPR 000160 þMIPR001633 (2)

where Gop2 represents gap opening penalty for the second protein,

I is the mismatch score between the corresponding InterPro domains

and M is the match score for the corresponding InterPro domain.

Any matches between an actual domain and a GAP domain or be-

tween two GAP domains are mildly negatively scored with gap

Fig. 1. (A) Schematic representation of the method; (B) Representation of pairwise DA alignment between two proteins; (C) GO MF DAG; nodes: all terms (blue),

predicted terms (red)
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opening penalties, instead of mismatches, since there is no know-

ledge about the information hidden in these regions. The finalized

DA similarity (between 0 and 1) is obtained by normalizing the

alignment score using the self-alignment scores of the two DAs.

Thus, alignment scores from various DA pairs become comparable

with each other. The DA similarity between two protein 1 and 2 is:

SIM1;2 ¼ min
S1;2 � Smn1;2

Sself1
� Smn1;2

;
S1;2 � Smn1;2

Sself2
� Smn1;2

� �
(3)

where S1,2 is the DA alignment score, Smn1,2 is the minimum align-

ment score that could be obtained from these two proteins and

Sself1 is the self-alignment score of protein 1. The minimum align-

ment score is calculated as if the two proteins have no common do-

mains. This is done by the placement of gaps in sequence 1 equal in

number to the number of domains in sequence 2, followed by the

placement of gaps in sequence 2 equal in number to the number of

domains in sequence 1; and calculating the total negative score for

this alignment. Placing gaps is favored over mismatches here due to

the values of the selected penalties. The reason for incorporating the

minimum alignment score in the equation is to compensate for nega-

tive alignment scores that would otherwise result in negative DA

similarity values.

2.3 Classification and function prediction
The reference data for GO term prediction was composed of the

DAs for the protein entries in the UniProtKB/Swiss-Prot (v2014_11)

and the associated GO annotation (with experimental evidence

codes) taken from the UniProt-GOA database (Dimmer et al.,

2012). Evidence codes marked as ‘experimental’ in the GO system

(codes: EXP, IDA, IPI, IMP, IGI and IEP) are of the highest quality

and reliability. After mining the dataset from UniProt-GOA, the an-

notations are extended to include all parents of the terms found,

excluding the root (top level) terms for all GO categories.

For the training/learning step, the DAs of proteins bearing ex-

perimentally validated GO annotation are grouped into unique GO

term classes. Here, each class represents a specific GO term and the

proteins containing the corresponding annotation are the members

of the class (Fig. 1A.2). The DAs of all reference proteins are aligned

to each other in an all-against-all manner and their similarities are

calculated using the procedure explained in Section 2.2. Next, class-

specific similarity thresholds are determined. For each GO class we

run the cross-validation process using similarity thresholds varying

from 0 to 1 with 0.02 increments. An F-score value is calculated for

each threshold and the one yielding the best performance is selected

as the similarity threshold for the corresponding GO class.

Modeling each GO term as an independent classifier provides the

means to optimize their thresholds. In the end, specific GO terms

usually have high threshold values; whereas, generic GO terms tend

to obtain low values. These thresholds are later used for the classifi-

cation decision during the application phase.

Considering the application step: classification of proteins is car-

ried out with the help of the reference data and the pairwise DA

alignment similarity values. Following the alignment of a query pro-

tein’s DA to all members of a class (Fig. 1A.3), the mean DA similar-

ity (SIMavQ,Y: for protein Q to class Y in the example) of the test

protein to the GO term class is calculated. For the cases where this

similarity exceeds the class-specific similarity threshold (TY), the

method classifies the test protein into the corresponding class and

the term is given as a prediction for the query protein. The proced-

ure is carried out using all training classifiers, with a multi-label

classification approach. A query protein can be classified to more

than one class and thus has multiple labels.

3 Results and discussion

Currently DAs are generated for all UniProtKB records at each re-

lease and stored in the UniProt Domain Architecture Database.

Table 1 shows the statistics for the DA generation process separately

for the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases

(v2014_11). As observed from Table 1, 74% and 64% of

UniProtKB/Swiss-Prot and UniProtKB/TrEMBL entries, respectively,

are covered with DAs. Also from Table 1, the number of unique

DAs generated in UniProtKB/Swiss-Prot is �13% of the number of

entries with domain hits. This rate is only 2% for UniProtKB/

TrEMBL, and the reason for this can be attributed to the higher re-

dundancy in UniProtKB/TrEMBL compared to UniProtKB/Swiss-

Prot.

3.1 Performance of the method
A cross-validation experiment was carried out in order to observe

the performance of DAAC on data with known labels (methodo-

logical details of this run are given in the Supplementary

Information). Figure 2A shows the ROC and precision versus recall

curves for an example GO term class: Endopeptidase activity

(GO:0004175) and the performance at the selected class-specific op-

timum similarity threshold (marked with the dashed line). It should

be noted here that it would not be possible to display the overall per-

formance of the method in an ROC curve because each term was

evaluated separately as an independent classifier. Figure 2B and C

display the performance of the method in the cross-validation pro-

cedure where each value on the horizontal axis represents a different

GO term and the vertical axis corresponds to the performance meas-

ure for these terms in F-score and precision, respectively (GO terms

are sorted in descending order according to performance).

The performance of the method was calculated using the statis-

tical measures explained in the Supplementary Information.

The method performed well on 778 GO terms (F-score>0.7) out

of 13 826 tested terms with a mean recall: 0.84, precision: 0.89 and

F-score: 0.85, and the high-performance GO term set was composed

of 536 molecular function, 82 cellular component and 160 biolo-

gical process terms. Only the predictions for these 778 terms are

considered during application on UniProtKB/TrEMBL. In Figure 2B

and C, the performance of the overall method for the high perform-

ance GO classes is shown by the black curve (blue curve in online

version). Precision is displayed in Figure 2C to show the low number

of false positives for the selected GO classes; 675 of the 778 classes

have a precision >0.7. Additionally, the area under the ROC curve

(AUC) has been calculated. Because each GO term class is independ-

ent and has its own ROC curve, we have calculated an AUC value

for each one, giving an overall mean value of 0.88 6 0.10. The

mean AUC for non-selected (low performance) GO term classes was

calculated as 0.68 6 0.15.

Table 1. Statistics of the DA generation on UniProtKB databases

Database UniProtKB/: Swiss-Prot

(v2014_11)

TrEMBL

(v2015_12)

No. of input protein entries: 547 084 55 270 679

No. of entries with InterPro domain hits: 407 247 35 564 711

No. of unique DAs generated: 54 388 1 148 372

DAAC: domain architecture alignment and classification 2267
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In order to observe the effect of adding imaginary GAP domains

in DAs and the effect of weighting the domains on the performance,

the cross-validation experiment was repeated without making these

adjustments. The dark and light gray curves (red and yellow curves

in online version) in Figure 2B and C correspond to the performance

without the GAP domains and without the domain weighting, re-

spectively. Omitting GAP domains reduces the performance signifi-

cantly in terms of both F-score and precision (recall curves are given

in Supplementary Fig. S2). The mean AUC for this run was

0.8 6 0.10 (9% reduction compared to the normal procedure) and

only 293 GO terms were marked as high performance classes.

Omitting the domain weights resulted in a slight reduction in per-

formance with 706 GO terms marked as high performance classes

and a mean AUC of 0.87 6 0.10 (1% reduction compared to the

normal procedure). The results indicate that both including imagin-

ary GAP domains in DAs and weighting domains had a positive ef-

fect on the performance of the method in cross-validation.

Performance comparison within different GO categories is discussed

in the Supplementary Information.

Figure 1C shows the entire GO DAG for molecular function cat-

egory. Blue and red nodes represents all GO terms and the ones pre-

dicted by DAAC with high performance respectively; and the gray

edges correspond to the direct relations between the terms. As observed

from Figure 1C the terms predicted by DAAC are distributed among

the whole graph. This indicates that the DAAC approach is global con-

sidering the function space and the method has potential to predict the

functions of proteins from various families.

3.2 Performance versus protein complexity
Up to this point the performance of the method has been measured in

terms of classifiers (GO terms). Another important topic here is testing

the system in terms of input samples (proteins). Exploration of DAAC

performance on proteins with varying complexity is one way to ob-

serve if the method fails on test samples with certain attributes. The

number of domains on a protein can be employed to measure the

complexity. In order to observe how the method performs with chang-

ing number of domains on proteins, we divided the cross-validation

results by the number of domains contained in each protein. Figure 3

displays the F-score, recall and precision values from this analysis. As

observed, recall is at its maximum with single-domain proteins, is gen-

erally stable up to nine domains and starts to decrease afterwards;

F-score and precision have similar trends, rising with increasing num-

ber of domains, peaking around 5–7 domains and starting to decrease

after this point. The overall performance peak with six domains is

attributed to the method being based on architectural similarities

between multi-domain proteins. Normalized DA similarity values be-

tween single and multi-domain proteins usually remain higher com-

pared with the alignment of two multi-domain proteins if the only

domain in the single-domain protein is matched. This sometimes re-

sults in excessive propagation of annotations and thus, results in an

elevated recall but a lowered precision for single domain proteins.

Figure 3 shows that the performance is acceptable for the single

domain proteins (F-score: 0.73), however, similarity detection over

complex architectures provides better performance (F-score: 0.85).

The decrease after eight domains per protein can be explained as the

functions of these proteins become extremely complex so that the

method fails to capture the underlying signature combination.

Therefore, predictions for proteins with nine domains or higher were

considered un-reliable and input samples with this attribute were

removed from the query set in the data preparation step.

3.3 UniProtKB/TrEMBL annotation
The method is run on UniProtKB/TrEMBL to annotate nearly 55.3

million uncharacterized protein entries in this database. The statis-

tics of this run are shown in Table 2 as the number and percentage

of predictions and proteins (in brackets). The total of percentages

(for proteins) exceeds 100 because proteins may have multiple pre-

dictions. The output predictions are compared with the current GO

term annotations from automatic annotation systems in UniProtKB/

TrEMBL to observe the correspondence of DAAC with other sys-

tems and to see if there is an added value in this approach. In Table

2, ‘new’ predictions means the predictions given on previously non-

annotated proteins; ‘identical’ refers to the predictions that are the

same as the ones in the current database; ‘similar’ predictions are

those having a parent–child relationship with the GO term

Fig. 2. Cross-validation results: (A) ROC and precision versus recall curves for a GO term class; (B) Performance of the method as F-score and (C) as Precision

(Color version of this figure is available at Bioinformatics online.)
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annotation for that particular protein in the database; and lastly ‘dif-

ferential’ predictions are the ones that are unrelated to the current

annotations of that protein in the database.

As shown in Table 2, 2 812 016 of the previously non-annotated

protein entries received a GO term prediction from DAAC. These

results indicate the value of the DA-based approach. The low per-

centage of identical predictions can be attributed to the fact that

most of the current annotations in the database are given for generic

GO terms; however, DAAC mostly predicts very specific terms. This

also explains the relatively high ratio of similar predictions (46%).

In 74% of the similar prediction cases DAAC predicted a more spe-

cific GO term compared to the database annotation. The differential

prediction ratio of 17% can be considered acceptable for a compari-

son between different automated prediction systems; however, there

also is an ongoing work to survey the differential predictions be-

tween various predictions systems in UniProt. It is important to note

that only the classifiers (GO terms) with a high validation perform-

ance (F-score>0.7) were included in these runs. In this way we tried

to avoid giving false positive predictions as much as possible.

3.4 Biological inspection of the results
In order to comment on the biological relevance of the results and the

value added by the method, we would like to discuss two interesting

example cases here. The first example case: GO:0004653 (polypeptide

N-acetylgalactosaminyltransferase activity) is a molecular function cat-

egory term that is associated with two very similar DAs by the DAAC

method as shown in Table 3. The domains IPR001173 and

IPR000772 appear together in both of these architectures. Taken indi-

vidually, the InterPro entries have broad specificity. IPR001173

(‘Glycosyltransferase 2-like’) is found in a diverse family of glycosyl

transferases. IPR000772 (‘Ricin B lectin domain’) identifies a galactose

binding property found in a wide range of enzymes and recognition

proteins. However the combination of the two domains is a particular

feature of the UDP-GalNAc:polypeptide a-N-acetylgalactosaminyl-

transferases. The Ricin B domain, which is not involved (or required)

for activity, appears to direct transferase activity to sites near to previ-

ous N-acetylgalactose substitution on the polypeptide (Fritz et al.,

2006). In this example, the DA is associated with 26 reviewed entries

in UniProtKB/Swiss-Prot (during the training/learning step) with an F-

score of 1.00, allowing propagation of this GO term to 2090 unre-

viewed entries in UniProtKB/TrEMBL, which would otherwise only re-

ceive the more general annotation associated with the two separate

domains. Automatically annotating this GO term has particular value

because InterPro does not provide any direct InterPro2GO mappings

for this term. The reason is probably that InterPro does one-to-one

mappings between entries and functional terms; however, here two

different entries are required together for the function. This is a clear

example of the value added by the DA approach.

The second example case: GO:0042813 (Wnt-activated receptor

activity) is a molecular function category term that is associated with

seven DAs (some are shown in Table 3), the DAs forming two distinct

groups based on domain content. The interaction between Wnt pro-

teins and frizzled receptor proteins forms a complex signaling pathway

which plays an important role in embryogenesis, and is captured by

this GO term. The protein domain responsible for Wnt binding is rec-

ognized by IPR0260067, and in most cases the proteins are membrane

associated and contain a distinctive sequence of transmembrane do-

mains recognized by the domain entry IPR017981. However, a signifi-

cant number of proteins which have a role in modulating the signaling

pathway are soluble, extracellular proteins belonging to the secreted

frizzled-related protein (sFRP) family. The DA approach successfully

groups all these proteins together, based on the common presence at

the N terminus of the Wnt receptor domain IPR020067 followed in

the sequence by either the transmembrane domain IPR017981 or

IPR008993, a binding domain with beta-barrel topology, which is

characteristically present in the sFRP family. The DAAC method there-

fore provides a more complete grouping of the proteins involved in the

Wnt/frizzled signaling pathway than is achieved by using the domains

separately and individually. In this example, the DA is associated with

25 reviewed entries in UniProtKB/Swiss-Prot (during the training/learn-

ing step) with a F1 score of 0.91, allowing propagation of this GO

term to 1634 unreviewed entries in UniProtKB/TrEMBL .

3.5 Comparison with the state of the art
InterPro provides a semi-automatic annotation system called

InterPro2GO where InterPro entries are one-to-one mapped to GO

terms that defines the same property (Mitchell et al., 2014). Then the

sequences annotated with these InterPro entries receive the corres-

ponding GO terms as predictions. InterPro2GO is also included in the

UniProt GOA database. We compared the mappings of the DAAC

method (between GO terms and DAs) with InterPro2GO to study the

added value of using combinations of domains for defining specific

functions over the single domain approach. This is not a comparison

of the whole coverage of these systems on the protein universe where

InterPro2GO is very advanced; but an observation of the specificity of

protein function prediction that cannot be covered by the conven-

tional function prediction approaches. After all, the DAAC method

has been developed to work as a complementary method to the con-

ventional systems currently used in UniProtKB database. This com-

parison is also reasonable because both methods utilize the same

information as input (InterPro entries) and as a result, differences in

the output will indicate the value of DAAC. Here, we only considered

the mappings between domain type InterPro entries and GO terms for

the comparison as DAAC only uses domains. It’s also assumed that

the mappings between DAs/entries and GO terms do not contain

errors. This can be justified by high performance in cross-validation

for DAAC mappings and expert curation for InterPro2GO.

Table 4 shows the statistics of GO term mappings and the validation

performance for both systems. As observed, InterPro2GO maps to more

GO terms compared to DAAC. However, the number of mapped DAs is

higher compared to those mapped to InterPro domain entries. This is

due to mapping multiple very similar DAs to the same GO terms. In the

DAG of GO, 760 mapped GO terms from InterPro2GO and 625 from

DAAC have an ancestor-descendant relationship. We used these terms in

order to compare the specificity of the predicted functions between the

two systems. Considering all relations between the two groups of GO

terms, we found that DAAC predicted GO terms are more specific in

Table 2. Statistics of DAAC application results on UniProtKB/

TrEMBL and comparison to the current annotation in the database

Predictions

(No. of proteins in brackets)

Ratio

(on % of proteins)

Total no. of: 44 818 178 (12 172 114) 100% (100%)

No. of new: 10 020 251 (2 812 016) 22% (23%)

No. of identical: 6 607 303 (5 065 640) 15% (42%)

No. of similar (total): 20 755 459 (7 342 619) 46% (60%)

No. of similar (specific): 15 358 089 (5 877 438) 34% (48%)

No. of similar (generic): 4 966 612 (2 879 775) 12% (24%)

No. of differential: 7 435 165 (3 303 747) 17% (27%)

Coverage increase in UniProtKB/TrEMBL database: 8.0%.
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75% of the cases. This indicates that multi-domain association approach

is able to define more specific functions. In addition, 555 of the GO

terms predicted by DAAC could not be predicted by InterPro2GO do-

main type entry associations (this number is 313 considering the whole

InterPro2GO, including the GO term associations to the family type

entries). These results indicate the significance of the value added to the

protein function prediction in UniProt database by the DAAC method.

The performance comparison between the two systems has been carried

out considering the cross-validation of the systems for the 223 GO terms

that both methods annotate, in order to obtain a fair comparison. As

observed from Table 4, DAAC performed significantly better in terms of

recall and overall F-score. InterPro2GO had a higher performance in

terms of FPR, however, the precision of DAAC was slightly higher than

that of InterPro2GO. An AUC comparison was not possible here since

there is no scoring in InterPro2GO predictions and therefore it is not pos-

sible to draw ROC curves. The results indicate that the performance of

DAAC is overall better than an already established and safely used auto-

mated GO annotation system i.e. InterPro2GO.

4 Conclusion and future work

In this article, we have proposed DAAC: a novel approach in the

field of automatic functional annotation of protein sequences with

the alignment and the classification of DAs. The proposed method is

distinguished from conventional approaches in three main aspects:

(i) the use of DAs as the basis of a similarity measure between pro-

teins to propagate GO annotation; (ii) the employment of multi-

label classification where each class represents a unique GO term,

thus enabling the optimization of the parameters for each term inde-

pendently and (iii) the use of InterPro as the domain resource in

order to increase the coverage of domain annotation on the proteins

(other novel points are discussed in the Supplementary information).

DAAC enables the association of DAs with functional terms (each

represented by a unique class) and the fast annotation of non-anno-

tated proteins bearing the same or similar architectures. The em-

ployment of multi-label classification enables a protein (and its DA)

to be a member of more than one class and thus have more than one

functional annotation. Establishing independent classifiers for each

GO term provides us with the ability to select different parameters

for each class. With this approach we were able to optimize the

class-specific DA similarity thresholds.

The performance of the method in the functional annotation of pro-

teins was tested via cross-validation on the training dataset composed of

UniProtKB/Swiss-Prot proteins, together with their experimentally vali-

dated GO annotation (F-score: 0.85). Next, the method was applied to

nearly 55.3 million protein entries in UniProtKB/TrEMBL to obtain GO

annotation for the whole database. This analysis resulted in 44 818 178

GO term predictions for 12 172 114 proteins, 2 812 016 of which were

previously non-annotated. The results show that the proposed approach

is effective and has the potential to identify functional relationships, es-

pecially between multi-domain proteins. Next, we plan to integrate the

DAAC method into the UniProt automatic annotation production pipe-

line to enrich the automatic functional annotation of UniProtKB/

TrEMBL. We also plan to extend the DAAC approach to the automatic

annotation of EC numbers, UniProtKB keywords, UniProtKB com-

ments, recommended protein names and subcellular locations.
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