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Abstract

Motivation: Moonlighting proteins (MPs) show multiple cellular functions within a single polypeptide

chain. To understand the overall landscape of their functional diversity, it is important to establish a

computational method that can identify MPs on a genome scale. Previously, we have systematically

characterized MPs using functional and omics-scale information. In this work, we develop a computa-

tional prediction model for automatic identification of MPs using a diverse range of protein associ-

ation information.

Results: We incorporated a diverse range of protein association information to extract characteris-

tic features of MPs, which range from gene ontology (GO), protein–protein interactions, gene ex-

pression, phylogenetic profiles, genetic interactions and network-based graph properties to protein

structural properties, i.e. intrinsically disordered regions in the protein chain. Then, we used ma-

chine learning classifiers using the broad feature space for predicting MPs. Because many known

MPs lack some proteomic features, we developed an imputation technique to fill such missing fea-

tures. Results on the control dataset show that MPs can be predicted with over 98% accuracy when

GO terms are available. Furthermore, using only the omics-based features the method can still

identify MPs with over 75% accuracy. Last, we applied the method on three genomes:

Saccharomyces cerevisiae, Caenorhabditis elegans and Homo sapiens, and found that about

2–10% of proteins in the genomes are potential MPs.

Availability and Implementation: Code available at http://kiharalab.org/MPprediction

Contact: dkihara@purdue.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As the last decade has witnessed a momentous expansion in the num-

ber of functionally well-characterized proteins as well as rapid pro-

gress in large-scale proteomics studies, protein multi-functionality has

become a highly perceived phenomenon (Campbell and Scanes, 1995;

Jeffery, 1999; Weaver, 1998). These multifunctional, ‘moonlighting’

proteins demonstrate multiple autonomous and usually unrelated

functions within a single polypeptide chain, which cannot be individu-

ally assigned into separate domains. It has become evident that the

functional diversity of these proteins is neither specific to genomes or

certain protein families nor facilitated by common function-switching

mechanisms. Many of the known moonlighting proteins (MPs) were

originally recognized as enzymes, but there are also others that are

known as receptors, channel proteins, chaperone proteins, ribosomal

proteins or scaffold proteins (Jeffery, 1999, 2004). There are specula-

tions that MPs evolved to broaden the functional aspects of a genome

without expanding the genome size (Jeffery, 1999). Studies suggest

significant impacts of MPs in diseases and disorders (Ov�adi, 2011;
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Sriram et al., 2005) as well as roles in important biochemical path-

ways (Jeffery, 2004). Despite the potential abundance of MPs in vari-

ous genomes and their important roles in pathways and disease

developments, the size of existing databases (Hern�andez et al., 2014;

Mani et al., 2014) that contain experimentally confirmed MPs is still

too small to obtain a comprehensive picture of the cellular mechan-

isms underlying their functional diversity. This quantitative insuffi-

ciency is due in large part to the tendency for the additional function

of these proteins to be found serendipitously in the course of unrelated

experiments. Hence, a systematic bioinformatics approach could

make substantial contributions in identifying novel MPs on a genome

scale and also to an overall understanding of the underlying biology

of their multi-functional nature.

The functional diversity of MPs poses a significant challenge to

computational protein function annotation as current methods do

not explicitly consider the possibility of dual functions for a protein.

Conventional sequence-based functional annotation methods, based

on the concept of homology (Altschul et al., 1997) or conserved

motifs/domains (Bru et al., 2005; Finn et al., 2014; Hunter et al.,

2012), will have problems identifying secondary functions because

there are cases where a homolog of a MP does not possess the sec-

ondary function (Ozimek et al., 2006) or has a different secondary

function (Banerjee et al., 2007; Chen et al., 2005). Due to these in-

trinsic computational challenges, systematic studies of MPs are still

in an early stage for obtaining a comprehensive picture of proteins’

moonlighting functions or for developing computational methods

for predicting MPs [review by (Khan and Kihara, 2014)]. Existing

bioinformatics approaches for detection of MPs have two general

shortcomings. First, they rely heavily on the existence of functional

annotation of a protein (Chapple et al., 2015; Pritykin et al., 2015),

which is a major bottleneck of the problem. Second, all the existing

methods address different aspects of MPs’ functional diversity: se-

quence similarity (Gomez et al., 2003; Khan et al., 2012), motifs/

domains, structural disorder (Hern�andez et al., 2011), or protein–

protein interaction (PPI) patterns combined with existing gene

ontology (GO) annotations (Chapple et al., 2015; G�omez et al.,

2011; Pritykin et al., 2015). However, the diverse nature of MPs’

functions, cellular locations, function switching mechanisms, and

the organisms in which they are found gives compelling evidence

that in order to understand and identify the overall functional as-

pects of these proteins, one should characterize these proteins in a

wider functional/proteomic space.

Previously, we have identified functional characteristics of MPs

in different proteomic aspects using a computational framework

(Khan et al., 2014). Here, we have constructed an automated predic-

tion model to identify MPs based on features we characterized in

our previous study. To address the diverse nature of MPs, we have

used a wide feature space ranging from GO (Gene Ontology

Consortium, 2013) and several omics-scale data, namely PPI, gene

expression (GE), phylogenetic profiles (Phylo), genetic interactions

(GIs) and network-based graph properties (such as node between-

ness, degree centrality, closeness-centrality), to protein structural

properties such as the number and the length of intrinsically dis-

ordered regions in the protein chain. Based on our computed GO

and the omics-based protein feature space, we used machine learn-

ing classifiers as the framework for MP prediction and used an exist-

ing MP database to cross-validate our prediction model. Because a

significant fraction of proteins do not have certain functional/net-

work features in databases, we have additionally developed an im-

putation technique using random forest (RF) to predict missing

features for proteins. Cross-validation results on the dataset of

known moonlighting and non-MPs (control dataset) show that if

GO information is available, MPs can be predicted with over 98%

accuracy. More importantly, leveraging just the non-GO based fea-

tures, our imputation-classification models can predict MPs with

over 75% accuracy. The latter result is very important because it in-

dicates that MPs without sufficient function annotations can be

identified by analyzing available omics data, which is the first such

development. Lastly, we have run our imputation-classification

models with the best performing omics-based feature combinations

on three genomes, Saccharomyces cerevisiae (yeast), Caenorhabditis

elegans and Homo sapiens (human), and found that about 2–10%

of the proteomes are potential MPs.

2 Methods

The overall computational prediction model, named MPFit

(Moonlighting protein Prediction with missing Feature Imputation)

undergoes four phases: data construction, feature computation,

missing feature imputation (when needed) and classification into

MP or non-MP. Each of the steps is discussed in detail below.

2.1 Data construction
We used a manually curated MP database, MoonProt (Mani et al.,

2014), and extracted 268 proteins that had Uniprot ID mapping.

Two hundred sixty-eight MPs include those from human (45 pro-

teins, 16.8%), Escherichia coli (30 proteins, 11.19%), yeast (27 pro-

teins, 10.1%) and mouse (11 proteins, 4.1%). In order for our

model to train on negative examples of such proteins along with the

positive examples, we used the following criteria to select negative

examples of MPs (referred as non-MPs) from these four genomes as

developed in our previous work (Khan et al., 2014). A protein was

selected as a non-MP if it has (i) at least eight GO term annotations,

(ii) when GO terms in the Biological Process (BP) category were

clustered using the semantic similarity score (Schlicker et al., 2006)

thresholds of 0.1 and 0.5, not more than one cluster was obtained at

each threshold. We further added a criterion on Molecular Function

(MF) category GO terms: (iii) not more than one cluster of MF GO

terms at semantic similarity scores of 0.1 and 0.5. In essence, a non-

MP is a protein that has a sufficient number of GO annotations but

they are not functionally diverse. For this procedure, full GO anno-

tations (including computationally predicted terms such as IEA)

were taken from UniProt and parental propagation of GO terms

was not applied, to be consistent with the criteria established in our

previous work (Khan et al., 2014). Furthermore, we computed pair-

wise sequence similarity of the selected non-MPs from the above

three conditions and further ruled out redundant proteins that had

>25% sequence identity to other sequences. This process yielded

162 non-MPs, among which 60 are from human (37.0%), 52 from

mouse (32.1%), 34 from yeast (20.9%) and 16 from E.coli

(9.88%). The MP and non-MP datasets are made available at http://

kiharalab.org/MPprediction/.

2.2 Feature computation and selection
As MPs have dual functions, intuitively they interact with more pro-

teins with different functions compared with non-MPs. In our previ-

ous work (Khan et al., 2014), we have characterized MPs and non-

MPs in terms of different omics-based features (including PPI, GE,

Phylo, GIs) and showed that when the interacting partners are clus-

tered based on their functional similarity, the number of clusters

tend to be higher for MPs than non-MPs. Based on this analysis, we

develop the MPFit model in this work that uses the number of func-

tional clusters as the features to classify MPs and non-MPs.
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To characterize MP and non-MPs we selected a broad range of

features, i.e. GO annotations, PPI network, GE profiles, Phylo, GIs,

disordered protein regions (DOR), and the protein’s graph proper-

ties in the PPI network (NET). In order to extract the feature for a

protein Pi in any information domain, we first extracted the GO

terms or proteins associated with Pi in that domain and built a net-

work Ni for Pi. Each node in Ni can be either a GO term (if the in-

formation domain is GO) or a protein (if the information domain is

any of the omics-based information); edges in Ni represent associ-

ation weights among nodes. Then we applied single linkage cluster-

ing on Ni and the number of clusters at several score thresholds

were selected as features of Pi (Khan et al., 2014). Figure 1 illustrates

the feature computation procedure for human aconitase (aco1), an

MP, for the PPI network. First, we extracted interacting partners for

aco1, then based on the GO annotation similarity score of the inter-

acting partners, the PPI network was clustered and four clusters

were obtained with a certain similarity cutoff i. Two of these clusters

(circled in red) contain proteins related to the (tricarboxylic acid)

TCAcycle and are associated to the first function of aco1 while an-

other cluster (green) was relevant to the second function. Such clus-

tering was performed with five different similarity cutoffs (from 0.1

to 0.9 with an interval of 0.2), which resulted in a clustering profile

shown in the bottom of Figure 1. Finally, we extracted the number

of clusters at multiple score cutoffs as the PPI network features.

More details about the feature computation in the PPI network do-

main are provided in the Supplementary Figure S1.

To construct the GE network, expression profiles were obtained

from the COEXPRESdb database (Okamura et al., 2014). Gene

pairs that have an absolute value of their Pearson correlation of ex-

pression levels within the top 2% among all the pairs were con-

nected in the network. Phylo network was constructed using the

STRING database (Szklarczyk et al., 2014). A protein pair was

connected in the network if they have a sufficient score (>0.7 as rec-

ommended by STRING) at ‘neighborhood’, ‘co-occurrence’ or

‘gene-fusion’ in STRING. For the GI network, we used the

BIOGRID database (Stark et al., 2006) and extracted gene pairs that

had the ‘experiment type’ listed as ‘genetic’ to be associated in the

GI network. For the NET feature, three graph properties of proteins,

namely, degree centrality, closeness centrality and between-ness cen-

trality, based on the PPI network were computed as features. For the

DOR feature, using the D2P2 database (Oates et al., 2013), we com-

puted three properties of protein’s intrinsically disordered regions,

namely, the number and the total length of disordered regions as

well as the proportion of disordered regions in the sequence.

2.3 Missing data imputation
In order to deal with missing data, imputation is an approach that

fills in the missing data rather than discarding the data points

entirely and using only the complete subset of the data. Among

known imputation approaches, there are methods that fill in the

missing feature from mean or median of the known values of the

same features in other instances (Little and Rubin, 1987; Zloba

2002). On the other hand, there are methods that perform partial

imputation based on known features of small neighborhood of the

incomplete data (Morin and Raeside, 1981; Zhang, 2008). In this

work, we used a RF-based imputation technique (Breiman, 2001;

Liaw, 2003). Figure 2A–B shows the procedure. In Figure 2A, the

training dataset is represented as a matrix where rows are proteins

and columns are features. Missing features in the dataset are repre-

sented by NAs. The algorithm starts by replacing NAs with the col-

umn medians. Then a RF was constructed using the temporally

filled features in the previous step (pseudo-complete data in Fig.

2A). Next, the proximity matrix from the RF was used to update the

imputed values of the NAs. The (i, j) element of the proximity ma-

trix is the fraction of trees in which the proteins i and j fall in the

same class. The imputed value for a feature is the weighted average

of the non-missing features from other proteins, where weights are

the proximities. The imputation was iterated until the proximity

matrixes converged or the procedure is iterated 10 times. Finally, a

RF RFtrain was computed with this imputed training data matrix.

In order to impute missing features in the test set (Fig. 2B), the

training dataset with missing values imputed was used to compute

two filler vectors (referred to as MP-filler and non-MP-filler), one

for each of the MP and non-MP classes. The ith element of the filler

vector MP-filler (non-MP-filler) is the mean of the imputed features

at the ith column of the training matrix with the MP (non-MP) class

label. The test dataset was represented as a matrix similar to the

training data (rows are proteins, columns are features). For the test

data row ri
test, since the label (MP/non-MP) is not known, two repli-

cates were made: the missing features in the first replicate were filled

with the MP-filler and the same for the second replicate was filled

Fig. 1. Schematic diagram of MPFit. Feature construction of moonlighting

protein Aconitase in PPI network

Fig. 2. Schematic diagram of MPFit. A-B: Missing feature imputation method.

RF: Random Forest. See text for details
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with the non-MP-filler vector. Now these two completed test repli-

cates were run down through the previously trained RF RFtrain. Each

protein receives tree votes of MP and non-MP in RFtrain from repli-

cates 1 and 2, and the higher vote between the MP vote in replicate

1 and the non-MP vote in replicate 2 finally determines the MP/non-

MP-fillers to be used in the missing features of the protein. In Figure

2B, the first protein received higher MP votes from replicate 1 (290

votes) over non-MP votes from replicate 2 (50 votes); thus, the miss-

ing features of the protein are filled with the MP-filler vector.

Finally, proteins in the test set were predicted to be MP or non-MP

using a classifier. When RF was used for the classifier, this voting

was used as the final prediction. We have also used support vector

machine (SVM) and naı̈ve-Baiyes as the final classifier and com-

pared the results.

Aside from this explicit RF-based imputation technique, an alter-

native imputation method (termed as ‘probabilistic imputation’)

was used in this work where the splitting probabilities in the RF

were learned from the subset of complete data and later used to clas-

sify the incomplete data. Detail of this method is discussed in

Supplementary Figure S4 and its associated text.

3 Results

In this section, we present and discuss the performance of MPFit

with different combinations of features. MPFit was run and eval-

uated with the GO term feature and all possible combinations of six

omics feature domains (namely, PPI, GE, Phylo, GI, DOR and

NET). There are 1þ (26 � 1)¼64 such combinations.

3.1 Imputation of missing features facilitates usage

of omics data
For a given combination of omics features, there are proteins which

lack some of the feature data. One way to handle such missing data

by a classifier is to impute the missing data so that a classifier trained

on the full features can be applied. Figure 3 contrasts the number of

target proteins that were predicted by MPFit before and after the im-

putation. A point represents one of the 64 feature combinations. For

each feature combination considered, proteins that have at least one

feature were subject to imputation and those that do not have any

features are discarded (data points in Fig. 3 with under 100% pro-

tein coverage after imputation).

It is evident that the imputation technique substantially increased

the dataset coverage, which also consequently improved classifier

performance as explained in later sections. For example, the number

of MP proteins for a feature combination of (PPI, Phylo, GE, GI,

DOR) was originally 8 (2.9%), which increased to 192 (71.7%)

after imputation. The features with 100% coverage after imputation

are seven single features, GO, GE, Phylo, PPI, GI, NET and DOR.

3.2 Prediction accuracy of MPs
Next, we discuss prediction performance of MPFit using RF

(Breiman, 2001) as the final classifier in the pipeline (Fig. 2B).

Prediction performance was evaluated by a weighted class average

F-score, where the F-score was computed separately for MP and

non-MP protein classes and weighted by the number of proteins in

the corresponding class. The F-score is defined as (2*precision*re-

call)/(precisionþ recall), where precision and recall are defined as

(TP/(TPþFP)) and (TP/(FPþFN)), respectively. Here, TP, FP and

FN stand for true positive, false positive and false negative, respect-

ively. Figure 4 presents results with the seven single features as well

as the five combinations of features that showed the highest F-score.

Average F-score from a 5-fold cross-validation was reported.

When proteins have GO annotations, it is shown that prediction

can be very accurate, with an F-score of 0.993. Among the six indi-

vidual omics features, GE showed the best F-score of 0.710, and the

rest of the features performed similarly (F-scores range from 0.597

to 0.651). Results of all the possible combinations of omics features

are provided in Supplementary Figure S2. Their F-scores range from

0.784 to 0.571. Among the feature combinations, Phylo þ GI

showed highest accuracy (precision, recall and F-score are 0.799, 0.

771 and 0.784, respectively), followed by PhyloþGIþNET and

PhyloþNET. However, these three combinations have relatively

low coverage (Fig. 4), while the fourth and fifth best performing fea-

ture combinations, PhyloþGEþGIþDORþNET and

PPIþPhyloþGE, have a high coverage with good F-scores that are

close to the best value achieved by PhyloþGI (0.7964, 0.7602 for

coverage and 0.7109, 0.7538, for F-score, respectively). For this rea-

son we used the fourth and fifth feature combinations in the

Fig. 3. Impact of missing feature imputation. Comparison of the number of

proteins used in classifiers without (x-axis) and with (y-axis) missing feature

imputation. Each point represents % of proteins that were used in a classifier

for a certain feature combination

Fig. 4. Performance of MPFit with RF. Average of results from a 5-fold cross-

validation are reported. Black bars show the F-score while the gray bars show

the coverage (i.e. the fraction of the proteins in the dataset that were

predicted). Feature legends on the x-axis: GO, gene ontology, PPI, protein–

protein interactions; Phylo, phylogenetic profile; GE, gene expression; DOR,

disordered regions; GI, genetic interactions; NET, 3 graph properties; i.e. be-

tween-ness, degree centrality, and closeness centrality. Coverage was com-

puted as the mean protein coverage of MP and non-MP
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genome-scale prediction performed in the subsequent section.

Among the proteins in MoonProt, there are five protein pairs from

the same organism that have over 25% sequence identity. We

removed five proteins, one from each of these similar protein pairs

and recomputed the F-score with cross-validation for the two-fea-

ture combinations, PhyloþGEþGIþDORþNET and

PPIþPhyloþGE. The changes of F-score were marginal: an in-

crease of 0.87 and 3.09 were observed for the former and the latter

combinations, respectively.

Here, we discuss two cases where combinations of different

omics-based features improved prediction over single feature. The

first example is a MP in human, which is a ribosomal protein (part

of the 60S subunit) (UniProt ID: P46777) (Horn and Vousden,

2008). The secondary function of this protein is inhibition of

HDM2, an ubiquitin ligase, which results in stabilization of the p53

tumor suppressor protein. Using only the PPI features, this protein is

incorrectly predicted as non-MP. This is because 63 interacting pro-

teins in the PPI network have a relatively small number of functional

clusters for MP. When clustered using functional similarity (funsim)

scores for BP and MF combined (see Supplementary Figure S1B), the

relative number of clusters stay below 0.32 at each clustering cutoff,

which is significantly lower compared with the MP distribution.

However, the protein was correctly predicted as MP with the

PPIþPhyloþGE combination. Twenty-five associated proteins for

this target in the Phylo network were clustered in to 2, 3, 3, 3 and

24 groups at similarity cutoffs 0.1, 0.3, 0.5, 0.7 and 0.9 of the fun-

sim score, which are larger than the non-MP distribution

(Supplementary Figure S5A). Thus for this protein, addition of

Phylo features made the prediction correct.

The second example is DNA replication factor Cdt1 (UniProt

ID: Q9H211) (Varma et al., 2012). Besides its primary function as

DNA replication factor, this MP’s secondary function is a role in mi-

tosis where it localizes to kinetochores through binding to the Hec1

component of the Ndc80 complex. Using PPI features only, this pro-

tein is incorrectly predicted as non-MP, because its 29 interacting

proteins in the PPI network do not have sufficient number of func-

tionally different groups. Clustering using the funsim BPþMF

score, the relative number of clusters stays below 0.35, which is

significantly lower than the MP distribution. However, the

PPIþPhyloþNET feature combination made correct prediction as

MP. This is partly because the NET feature of this protein has high

values, e.g. a between-ness centrality of 0.267, which is high (above

75 percentile) for this feature’s distribution for MP (Supplementary

Figure S5B).

We also ran MPFit with RF without imputation, i.e. only on pro-

teins that do not have any missing feature in a feature combination.

The results for all the feature combinations are shown in

Supplementary Figure S3. Skipping imputation substantially lowers

coverage (Fig. 4, and Supplementary Figures S2 and S3). Without

imputation the coverage decreases as the number of features in a

combination increases, which resulted in 0 coverage for 16 out of 64

cases (Supplementary Figure S3). Also, the data sizes of MP and

non-MP classes become substantially different and imbalanced for

several feature combinations. In contrast, imputation not only in-

creases prediction coverage but also improves accuracy by increas-

ing the size of the training set, as indicated by the cases that

improved F-score by imputation.

We examined prediction performance of MPFit when naı̈ve

Bayes (Andrew and Kamal, 1998) or SVM (Cortes and Vapnik,

1995), was used as the last classifier in the procedure. As explained

with Figure 2, the missing data imputation was performed with RF,

and naı̈ve Bayes or SVM was applied as the final classifier to

proteins with full imputed features. Results with all 64 feature com-

binations were shown in comparison with the results by RF in

Figure 5. Results in the lower triangle in Figure 5 are the cases where

RF performed better than the counterpart. It is apparent that RF

performed better than SVM and naı̈ve Bayes for the majority of the

cases. Using the GO term features showed the highest F-score by all

the classifiers (the upper right corner of Fig. 5). F-scores of feature

combinations by the three classifiers correlated moderately. The cor-

relation coefficient between RF and naı̈ve Bayes was highest, 0.828,

that for RF with SVM was 0.542, and between SVM and naı̈ve

Bayes it was 0.561. Our speculation for RF outperforming SVM is

that the fairly low number of features used in this work is probably

more suitable for RF than SVM, which is shown to perform well for

a high dimensional feature space (Caruana et al., 2008).

We also computed cross-validation F-score for the alternative

imputation technique (termed as ‘probabilistic imputation’) and

compared the result with the F-score shown in Figure 4 with explicit

imputation. The result is discussed in Supplementary Figure S4 with

the conclusion that explicit imputation outperforms the probabilistic

imputation.

To summarize this section, MP and non-MP can be classified

very accurately by MPFit when GO terms of the proteins are avail-

able. Encouragingly, prediction can be made with a sufficient accur-

acy even when no function annotation is available using proper

combinations of omics-based features. Missing feature imputation

increases the coverage of proteins that are subject to prediction and

also helps to improve accuracy by increasing the training data of a

classifier. Among the three classifiers tested, RF performed better

than SVM and naı̈ve Bayes.

3.3 Genome-wide prediction of MPs
In the last section of this work, we report genome-wide prediction

of MPs performed with MPFit on three genomes, S.cerevisiae

(yeast), C.elegans and human. We used two feature combinations

that gave high performance in both F-score and coverage (Fig. 4):

PhyloþGEþGIþDORþNET and PPIþPhyloþGE. MPFit with

the two feature combinations were run separately with explicit fea-

ture imputation and RF as the last classifier. Then, proteins that

were predicted as MPs by consensus of both runs were taken as

plausible MPs. Consensus was taken to only count highly plausible

MPs and avoid over-estimation of the MP fraction in the genomes.

Fig. 5. Performance comparison of RF with two other classifiers. F-score

using each of the different feature combinations by MPFit with RF was com-

pared with SVM (cross) or naı̈ve Bayes (filled circles). The imputed dataset

was used. Results are the weighted class average F-score over 5-fold cross-

validation
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For MPFit runs with a feature combination, proteins were discarded

if they had no features in the combination. In the yeast genome,

which has 6718 proteins in UniProt (UniProt Consortium, 2014),

there were 4673 proteins (69.6%) that had at least one feature

among PPI, Phylo or GE, and 5845 proteins (87.0%) that had at

least one feature in Phylo, GE, GI, DOR or NET. The coverages for

C.elegans are 79.8% and 89.5%, while that for the human genome

are 68.1 and 82.4%, respectively for the PPIþPhyloþGE and

PhyloþGEþGIþDORþNET feature combinations. The results

are summarized in Table 1. A list of predicted MPs is available at

http://kiharalab.org/MPprediction.

First, we examined if known MPs listed in the MoonProt database

in each genome were correctly predicted as MPs. The results in the se-

cond column from the right in Table 1 show that MPFit predicts

known MPs reasonably well with recall of over 73% to each genome.

Next, we moved onto the blind genome-wide prediction to the

three genomes. In yeast, MPFit with the two feature combinations

PhyloþGEþGIþDORþNET and PPIþPhyloþGE predicted

24.6 and 18.5% of the proteins as MPs, respectively, and among

them, 10.9% of the proteins have a consensus prediction as MPs

with the two feature sets. We note that this number of MPs in yeast

is similar to the numbers obtained by a recent work by a different

group (Pritykin et al., 2015). In human, 67.6% of the total genome

was subject to MPFit by both feature combinations, and 7.8% of

the total genome was predicted as MP by consensus of the two fea-

ture combinations.

In C.elegans, 79.8% of proteins were subject to prediction by the

two feature combinations. For this genome, the two feature combin-

ations showed difference in the number of proteins predicted as

MPs. With the PhyloþGEþGIþDORþNET combination,

15.4% of the proteins were predicted as MPs while the fraction was

4.0% using the PPIþPhyloþGE combination, which resulted in a

consensus of 2.73% of the proteins predicted as MPs. The fraction

of predicted MPs by the latter feature combination was particularly

lower than the other mainly because 48.5% of the predicted MPs by

PhyloþGEþGIþDORþNET were not subject to prediction with

the PPIþPhyloþGE combination due to missing features.

To date there are two methods that predict whether a protein is

MP or not. A method by Chapple et al. (2015) considers a protein as

MP if it is within an overlapping cluster in the PPI network and fur-

ther passes a GO-based analysis. Out of the 45 known MPs in

human in MoonProt, only 3 were predicted by this method (recall

0.0667). The method by Pritykin et al. 2015) uses GO-based multi-

functional filtering criteria to predict MPs. Their method predicted

Table 2. GO categories of the predicted MPs

Genome Enriched GO terms MP (%)

yeast enzyme (BP/MF) 91.86

GO:0005488 binding (MF) 59.29

GO:0032991 macromolecular complex (CC) 51.70

GO:0071840 cellular component organization or biogenesis (BP) 42.61

GO:0031974 membrane enclosed lumen (CC) 26.05

GO:0005198 structural molecule activity (MF) 19.95

GO:0009295 nucleoid (CC) 0.951

GO:0016209 antioxidant activity (MF) 0.810

C.elegans enzyme (BP/MF) 73.67

GO:0005198 structural molecule activity (MF) 15.72

GO:0002376 immune system process (BP) 3.47

GO:0060089 mol. transducer activity (MF) 1.65

GO:0004872 receptor activity (MF) 1.65

Human enzyme (BP/MF) 76.77

GO:0005488 binding (MF) 63.84

GO:0050896 response to stimulus (BP) 45.51

GO:0032501 multicellular organismal process (BP) 38.19

GO:0005576 extracellular region (CC) 36.54

GO:0071840 cellular component organization or biogenesis (BP) 33.23

GO:0051179 localization (BP) 29.03

GO:0051704 multi-organism process (BP) 15.15

GO:0040011 locomotion (BP) 10.18

GO:0032991 macromolecular complex (CC) 9.41

GO:0030054 cell junction (CC) 7.51

GO:0000003 reproduction (BP) 7.26

GO:0005198 structural molecule activity (MF) 7.07

GO:0040007 growth (BP) 4.58

GO:0031012 extracellular matrix (CC) 3.95

GO:0009055 electron carrier activity (MF) 1.15

GO category ‘Enzyme’ is upon membership of either GO:0008152 metabolic process or GO:0003824 catalytic activity. The percentage of GO terms will not

sum to 100% for a genome because a protein can have multiple assigned GO terms.

Table 1. Genome-wide prediction of MPs

Genome No. Proteins Cov. (%)a Known MPs

Predictedb

MPs (%) c

yeast 6718 69.56 22/27 (81.4%) 10.97

C.elegans 20 133 79.82 1/1 (100%) 2.73

human 20 098 67.91 33/45 (73.3%) 7.82

aThe fraction of proteins that were subject to the prediction among all the

proteins in the genome.
bThe number of known MPs in MoonProt predicted as MPs.
cThe fraction of predicted MPs among the proteins in the genome.
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22 out of 45 known MPs in human (recall 0.4889) and 13 out of 27

known MPs in yeast (recall 0.4815) as MPs. Thus, as shown in

Table 1, MPFit showed a larger recall (Table 1) in both human and

yeast than the two methods.

3.4 Analysis of Genome-wide MP prediction
We examined functions of predicted MPs in the three genomes by

considering GO and Kyoto encyclopedia of genes and genomes

(KEGG) pathway association (Kanehisa and Goto, 2000). In order

to assign a protein to GO categories, we first mapped its GO anno-

tations onto the terms at the second depth in the GO hierarchy, and

performed GO enrichment analysis (NaviGO at http://kiharalab.

org/web/compare.php). Table 2 lists the enriched GO categories of

the predicted MPs. This GO analysis covers 100%, 99.3%, and 99.

9% of predicted MPs in yeast, C.elegans and human, respectively,

which have GO annotations. Table 3 is a list of associations of the

predicted MPs to KEGG pathways. Note that this analysis was

based on the predicted MPs that exist in KEGG (Kanehisa and

Goto, 2000) database (66.36, 35.21 and 51.92% in yeast, C.elegans

and human genomes, respectively).

In Tables 2 and 3, the major proportion of MPs is enzymes. This

observation is consistent with previous reports that many MPs were

known primarily as enzymes when their secondary function was dis-

covered (Hern�andez et al., 2014; Jeffery, 2003; Mani et al., 2014).

Ribosome was listed as a KEGG pathway for the three genomes.

An example is 40S ribosomal protein S3 (Uniprot ID: P23396) in

human, which functions primarily as a ribosomal protein (part of

the 40S subunit), and has a second function of being a subunit of a

DNA-binding complex involved in NF-kappaB-mediated transcrip-

tion (Wan et al., 2007). The second example of MPs is glyceralde-

hyde-3-phosphate dehydrogenase (UniProt ID: P04406) in human.

Besides its primary function as enzyme in the glycolysis pathway,

this protein moonlights as interferon-gamma-activated inhibitor of

translation that silences ceruloplasmin mRNA translation (Sampath

et al., 2004). In a proteomics study (Prunotto et al., 2013), this pro-

tein was identified as one of the urinary exosome proteins, and thus

contains GO:0070062 extracellular exosome, which is a child term

of GO:0005576 extracellular region, and hence falls in the latter

GO category in Table 2. Both are these examples are correctly pre-

dicted MPs in human by the two omics-based combinations

PhyloþGEþGIþDORþNET and PPIþPhyloþGE.

4 Discussion

We proposed a novel computational approach, MPFit, for detecting

MPs from GO annotations or omics-based features. MPFit can be

applied to a large fraction of proteins in a genome due to the use of

several omics-based features and the implemented imputation proto-

col for filling missing features. As the mechanisms by which MPs ex-

hibit multiple functions differ from case by case, using various

feature types is reasonable to capture MPs of different nature.

Although there is a possibility that some predictions made by

MPFit are not correct, the overall estimation is probably not too far

from the truth and serves as workable hypotheses for future research

projects. We believe that our work is an imperative step toward a

systematic and integrative approach of studying MPs and it will

open up new opportunities to investigate the multi-functional nature

of proteins at a systems level.

Acknowledgements

The authors thank Jennifer Neville for useful discussion on the probabilistic

imputation. Lenna X. Peterson for proofreading the article.

Funding

This work was partly supported by the National Institute of General Medical

Sciences of the National Institutes of Health (R01GM097528) and the

National Science Foundation (IIS1319551, DBI1262189, IOS1127027).

Conflict of Interest: none declared.

References

Altschul,S.F. et al. (1997) Gapped BLAST and PSI-BLAST: a new generation

of protein database search programs. Nucleic Acids Res., 25, 3389–3402.

Andrew,M. and Kamal,N. (1998) A comparison of event models for Naive

Bayes text classification. In: AAAI-98 Workshop on Learning for Text

Categorization, vol. 752, pp. 41–48.

Banerjee,S. et al. (2007) Iron-dependent RNA-binding activity of

Mycobacterium tuberculosis aconitase. J. Bacteriol., 189, 4046–4052.

Breiman,L. (2001) Random forests. Mach. Learn., 45, 5–32.

Bru,C. et al. (2005) The ProDom database of protein domain families: more

emphasis on 3D. Nucleic acids research., 33, D212–215.

Campbell,R.M. and Scanes,C.G. (1995) Endocrine peptides ‘moonlighting’ as

immune modulators: roles for somatostatin and GH-releasing factor.

J. Endocrinol., 147, 383–396.

Caruana,R. et al. (2008) An empirical evaluation of supervised learning in

high dimensions. In: Proceedings of the 25th international conference on

Machine learning, pp. 96–103.

Chapple,C.E. et al. (2015) Extreme multifunctional proteins identified from a

human protein interaction network. Nature communications., 6.

Chen,X.J. et al. (2005) Aconitase couples metabolic regulation to mitochon-

drial DNA maintenance. Science, 307, 714–717.

Cortes,C. and Vapnik,V. (1995) Support-vector network. Mach. Learn., 20,

273–297.

Finn,R.D. et al. (2014) The Pfam protein families database. Nucleic Acids

Res., 42, D222–D230.

Gene Ontology Consortium. (2013) Gene Ontology annotations and re-

sources. Nucleic Acids Res., 41, D530–D535.

G�omez,A. et al. (2011) Do protein-protein interaction databases identify

moonlighting proteins? Mol. BioSyst., 7, 2379–2382.

Gomez,A. et al. (2003) Do current sequence analysis algorithms disclose multi-

functional (moonlighting) proteins? Bioinformatics, 19, 895–896.

Hern�andez,S. et al. (2011) Do moonlighting proteins belong to the intrinsically

disordered protein class? Proteomics Bioinformatics., 5, 262–264.

Hern�andez,S. et al. (2014) MultitaskProtDB: a database of multitasking pro-

teins. Nucleic Acids Res., 42, D517–D520.

Table 3. KEGG pathway associations of predicted MPs

Genome Top 5 KEGG pathways MP (%)

yeast Metabolic pathways (KEGG ID 1100) 29.17

Ribosome (3010) 15.33

Biosynthesis of secondary metabolites (1110) 13.70

Carbon metabolism (1200) 6.92

Biosynthesis of amino acids (1230) 6.38

C.elegans Ribosome (3010) 13.79

Metabolic pathways (1100) 12.34

Purine metabolism (230) 2.72

Pyrimidine metabolism (240) 2.54

Oxidative phosphorylation (190) 2.54

human Metabolic pathways (1100) 18.38

Ribosome (3010) 4.45

Olfactory transduction (4740) 3.94

Purine metabolism (230) 2.54

Cytokine-cytokine receptor interaction (4060) 2.42

Genome-scale prediction of MPs 2287

Deleted Text:  (Pritykin Y <italic>et<?A3B2 show $146#?>al.</italic>, 2015)
http://kiharalab.org/web/compare.php
http://kiharalab.org/web/compare.php
Deleted Text:  
Deleted Text: ,
Deleted Text: &hx0025;
Deleted Text: &hx0025;,
Deleted Text:  
Deleted Text: are 
Deleted Text:  
Deleted Text:  (IFN)
Deleted Text:  


Horn,H.F. and Vousden,K.H. (2008) Cooperation between the ribosomal pro-

teins L5 and L11 in the p53 pathway. Oncogene, 27, 5774–5784.

Hunter,S. et al. (2012) InterPro in 2011: new developments in the family and

domain prediction database. Nucleic Acids Res., 40, D306–D312.

Jeffery,C.J. (2003) Moonlighting proteins: old proteins learning new tricks.

Trends Genet., 19, 415–417.

Jeffery,C. (1999) Moonlighting proteins. Trends Biochem. Sci., 24, 8–11.

Jeffery,C. (2004) Moonlighting proteins: complications and implications for

proteomics research. Drug Discov. Today, 3, 71–78.

Kanehisa,M. and Goto,S. (2000) KEGG: Kyoto encyclopedia of genes and

genomes. Nucleic Acids Res., 28, 27–30.

Khan,I. et al. (2014) Genome-scale identification and characterization of

moonlighting proteins. Biol. Direct., 9, 1–29.

Khan,I. and Kihara,D. (2014) Computational characterization of moonlight-

ing proteins. Biochem. Soc. Trans., 42, 1780–1785.

Khan,I. et al. (2012) Evaluation of function predictions by PFP, ESG, and PSI-

BLAST for moonlighting proteins. BMC Proc., 6, S5.

Liaw,A. (2003) Missing Value Imputations by randomForest, R Documentation.

Available online at http://rss. acs. unt. edu/Rdoc/library/randomForest/html/

rfImpute. html.

Little,R.J.A. and Rubin,D.B. (1987) Statistical Analysis with Missing Data.

John Wiley & Sons.

Mani,M. et al. (2014) MoonProt: a database for proteins that are known to

moonlight. Nucleic acids research, gku954.

Morin,R.L. and Raeside,D.E. (1981) A reappraisal of distance-weighted k-

nearest neighbor classification for pattern recognition with missing data.

IEEE Transactions on Systems, Man, and Cybernetics, 3, 241–243.

Oates,M.E. et al. (2012) D2P2: Database of Disordered Protein predictions.

Nucleic acids research, gks1226.

Okamura,Y. et al. (2014) COXPRESdb in 2015: coexpression database for ani-

mal species by DNA-microarray and RNAseq-based expression data with

multiple quality assessment systems. Nucleic acids research, gku1163.

Ov�adi,J. (2011) Moonlighting proteins in neurological disorders. IUBMB

Life, 63, 453–457.

Ozimek,P. et al. (2006) Hansenula polymorpha and Saccharomyces cerevisiae

Pex5p’s recognize different, independent peroxisomal targeting signals in al-

cohol oxidase. FEBS Lett., 580, 46–50.

Pritykin,Y. et al. (2015) Genome-Wide Detection and Analysis of

Multifunctional Genes. PLoS Comput. Biol., 11, e1004467.

Prunotto,M. et al. (2013) Proteomic analysis of podocyte exosome-enriched

fraction from normal human urine. J. Proteomics, 82, 193–229.

Sampath,P. et al. (2004) Noncanonical function of glutamyl-prolyl-tRNA syn-

thetase: gene-specific silencing of translation. Cell, 119, 195–208.

Schlicker,A. et al. (2006) A new measure for functional similarity of gene

products based on Gene Ontology. BMC Bioinformatics, 7, 302.

Sriram,G. et al. (2005) Single-gene disorders: what role could moonlighting

enzymes play? American journal of human genetics., 76, 911–924.

Stark,C. et al. (2006) BioGRID: a general repository for interaction datasets.

Nucleic Acids Res., 34, D535–D539.

Szklarczyk,D. et al. (2014) STRING v10: protein-protein interaction net-

works, integrated over the tree of life. Nucleic acids research, gku1003.

UniProt Consortium. (2014) Activities at the Universal Protein Resource

(UniProt). Nucleic Acids Res., 42, D191–D198.

Varma,D. et al. (2012) Recruitment of the human Cdt1 replication licensing

protein by the loop domain of Hec1 is required for stable kinetochore-

microtubule attachment. Nat. Cell. Biol., 14, 593–603.

Wan,F. et al. (2007) Ribosomal protein S3: a KH domain subunit in NF-kappaB

complexes that mediates selective gene regulation. Cell, 131, 927–939.

Weaver, D.T. (1998) Telomeres: moonlighting by DNA repair proteins. Curr.

Biol., 8, R492–R494.

Zhang,S. (2008) Parimputation: From imputation and null-imputation to par-

tially imputation. IEEE Intel. Inform. Bull., 9, 32–38.

Zloba,E. (2002) Statistical methods of reproducing of missing data. J. Comp.

Model. New Technol., 6, 51–61.

2288 I.K.Khan and D.Kihara

http://rss. acs. unt. edu/Rdoc/library/randomForest/html/rfImpute. html
http://rss. acs. unt. edu/Rdoc/library/randomForest/html/rfImpute. html

	btw166-TF4
	btw166-TF1
	btw166-TF2
	btw166-TF3

