
Using Partial Least Squares Regression to Analyze Cellular 
Response Data

Pamela K. Kreeger1,*

1Department of Biomedical Engineering, University of Wisconsin-Madison Madison, WI 53706

Abstract

This Teaching Resource provides lecture notes, slides, and a problem set for a lecture introducing 

the mathematical concepts and interpretation of partial least squares regression (PLSR) and were 

part of a course entitled “Systems Biology: Mammalian Signaling Networks.” PLSR is a 

multivariate regression technique commonly applied to analyze relationships between signaling or 

transcriptional data and cellular behavior.
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 Introduction

This Teaching Resource is intended for instructors who have familiarity with linear algebra; 

familiarity with MATLAB will be helpful for the problem assignment. This lecture on 

partial least squares regression (PLSR) was part of an introductory systems biology course 

focused on implementation and analysis of systems biology models, which included 

overviews of several experimental techniques and computational methods. The topic of 

PLSR followed earlier lectures on the quantitative experimental methods frequently used to 

gather these data sets (1, 2) and principal component analysis (PCA) (3). PLSR is a 

multivariate regression technique developed to analyze relationships between independent 

and dependent variables in large data sets and can therefore be applied to analyze proteomic, 
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transcriptomic, metabolomic, and other cellular data. In particular, PLSR has been used in 

the systems biology community to analyze relationships between intracellular signals and 

cellular responses (4-6).

 Lecture Notes

 Cue-Signal-Response Relationships

Typically, systems biology studies are concerned with analyzing the ‘cue-signal-response’ 

relationship, in which cells take in information from their environment (for example, growth 

factors, extracellular matrix signals, or mechanical stimuli) and this information is 

propagated through the cellular signaling network to ultimately make cell phenotype 

decisions (for example, proliferation, death, or differentiation). The cue-signal relationship 

has frequently been analyzed using mechanistic models, such as mass-action kinetics (7). In 

contrast, the signal-response relationship is strongly impacted by interactions among 

multiple pathways and occurs on a longer time scale, making it generally too complex for 

these detailed mechanistic model forms (Slide 2). For example, fitting of a mass-action 

kinetic model of the EGFR family that incorporated several receptor and ligand forms, 

receptor trafficking, and activation of ERK and AKT, resulted in approximately 100 different 

parameter sets that could be fit equally well to the training data set (8). As more pathways or 

timescales are added the problem of accurately describing the network topology and 

estimating parameters becomes even more challenging, making mass-action kinetics 

impractical. Here, we first briefly discuss univariate approaches to analyze the signal-

response relationship, that is how the amount of one signal is used to predict the cellular 

response (9, 10), and then provide a detailed description of multivariate approaches, such as 

PLSR, to determine how multiple signaling cascades are integrated in the cellular decision-

making process.

 Methods to Analyze Signal-Response Relationships

There are several methods to analyze univariate signal-response relationships. This 

relationship can be described by correlations, such as a ‘low’ level of signal indicating a 

certain response and a ‘high’ level of signal indicating another response (Slide 3). 

Challenges with this approach include the difficulty in determining cut-offs for the different 

levels of signal and response. Alternatively, the relationship can be defined more 

quantitatively using regression analysis. In the example (Slide 3), linear regression of a 

theoretical signaling value is performed. With the resulting equation, it would be possible to 

predict the response (y) if given the signaling value (x) for a new condition and conversely, 

to determine the level of signaling that would be associated with a distinct response.

Although these univariate relationships have been successfully used in various biological 

systems, it is important to note that they are often insufficient to explain many cellular 

responses. For example, if the extent of activation of a phosphoprotein is measured under a 

small range of conditions, it may be possible to conclude that this protein does a particular 

function. However, as more conditions are measured, this univariate relationship will fail as 

no single pathway governs cellular decisions alone; indeed, this observation is one of the 

very cornerstones of the field of systems biology. For example, Janes, et al. showed that the 
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correlation between the amount of phosphorylated c-Jun N-terminal kinase (p-JNK) and 

apoptosis (a form of cell death) was highly context-dependent (Slide 4): At low doses of 

epidermal growth factor (EGF) apoptosis increased as p-JNK increased, at high doses of 

tumor necrosis factor α (TNF-α) apoptosis decreased as p-JNK increased, and at high doses 

of EGF there was a biphasic relationship (4). One possible interpretation of these results is 

that p-JNK is not an appropriate signal on which to base this relationship, perhaps because it 

is not relevant to the downstream response. However, previous studies have suggested a role 

for JNK in apoptosis. An alternative explanation is that the impact of p-JNK on the apoptotic 

decision is modified by activity in other pathways and a multivariate model is necessary to 

accurately interpret this effect. As a result of experimental techniques that allow multiple 

analytes to be measured simultaneously (known as multiplexing (1)), it is now possible to 

address the question of how different pathways influence each other; however, the size of the 

resulting data sets requires mathematical analysis to decode these relationships.

By measuring more signals, responses, or both, a multivariate regression may be performed 

to develop the signal-response relationship (Slide 5). As an example, multi-linear regression 

was successfully used to identify the network links between several different stimuli and 

downstream signaling proteins (11). Although conceptually simple, application of this 

method is limited, because the number of solutions available depends on the relationship 

between the number of variables (m) and the number of observations (n). In systems 

biology, experimental methods that have high degrees of multiplexing are often used. 

Consequently, there are usually more variables measured than observations, particularly 

where studies are carried out using different cell lines or patient samples. In this case, there 

is no unique solution unless the dimensionality of the problem is reduced (Slide 5).

Dimensionality reduction can be accomplished through principal components regression 

(PCR) or PLSR. In PCR, the matrix of signaling measurements, X, is transformed into 

principal component space (Slide 6-7). Principal components are a set of orthogonal 

coordinates that capture the variation in the data matrix and are identified by finding the 

eigenvectors and associated eigenvalues for the covariance matrix of the data set (for more 

detail on this method, see (3)). The first component captures the greatest variation, the 

second component captures the largest fraction of the remaining variation, and so on until 

the next component does not significantly improve R2X (the coefficient of determination for 

that matrix). However, finding the eigenvectors and eigenvalues is computationally intensive 

for large data matrices. As an alternative, principal components can be derived by the 

NIPALs (non-linear iterative partial least squares) algorithm, with the original data matrices 

deconstructed into a sum of vector products for each principal component (12). The two 

vector products are the loadings vector (p, the directionality of the component, determined 

by the variables) and the scores vector (t, the magnitude of each observation along that 

component). In NIPALs, the scores and loadings for the first principal component are 

determined and then the vector product is subtracted from the initial matrix to find the 

residual, or unfit data. The next component is then found by analyzing the residual in the 

same manner (Slide 8). In PCR, the resulting scores matrix is then used to solve the 

regression problem. However, because the principal components are formulated from only 

the independent variables, PCR may result in a model that does not accurately describe the 

signal-response relationship. For example, the largest signaling variation will be captured in 
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the first principal component but this variation may not correlate with the response measured 

in Y (Slide 9). For this reason, PLSR is more commonly used to analyze the signal-response 

relationship, because the principal components are derived based on the covariation between 

X and Y, rather than the variation in the individual matrices alone.

 PLSR

In PLSR, the challenge is to generate the principal components in a manner that emphasizes 

the variation in X that correlates to the variation in Y (Slide 10). The focus here is on a 

modification to the NIPALs algorithm that is useful to develop principal components in 

PLSR (12, 13) (Slide 11). Both the X and Y matrix have associated loadings vectors (p or q) 

and scores vectors (t or u, the magnitude of each observation along that component). The 

loadings are determined by the independent and dependent variables, and correspond to the 

direction of the component in space. A larger loading for variable 1 versus 2 indicates that 1 

contributes more strongly to that principal component than 2. The scores vector relates how 

far each observation projects along that principal component. When NIPALs is used for 

PLSR, the scores for Y are used to find the loadings for X; In this way, the relationship 

between X and Y is emphasized for the observations for each component (Slide 12). It is 

important to note that even though the NIPALs algorithm is similar for PCA and PLSR, the 

actual components differ due to this exchange of scores step (Slide 13). PCA of a signaling 

data set will assign the highest loading values to variables that have the highest variation, 

while in PLSR, the emphasis on co-variation can change this order. For example, when 

Janes, et al. analyzed signaling time courses for AKT, JNK, and MK2 following treatment 

with various growth factors and cytokines, the variation in AKT was lower than that of JNK 

and MK2, resulting in a lower loading in principal component 1 of the PCA analysis (14). 

However, when this same data was analyzed by PLSR to predict the activation of an AKT-

substrate, the loading for AKT in principal component 1 increased due to the co-variation 

between AKT and its downstream target.

Because components are defined sequentially, it is important to determine how many 

components are needed for the optimal model. Increasing the number of components may 

improve the model's predictive capability, but this is associated with the cost that the model 

becomes more challenging to interpret. Additionally, later components are predominated by 

noise in the experimental data and may actually decrease predictive ability. For this reason, 

we can analyze three metrics to determine the optimum number of components (Slide 14). 

R2X and R2Y are the coefficients of determination for the X and Y matrices, and Q2Y is a 

measure of the predictive ability of the model based on cross-validation (15). The 

cumulative value for each metric is evaluated after a component is added to the model (Slide 

15). By comparing the values for R2X, R2Y, and Q2Y to their values for the previous 

component, we can determine how much including an additional component improved the 

fit or predictive ability or both. R2X and R2Y will increase with each added component, 

although the increase becomes much smaller at later components. Because PLSR is 

primarily used to relate the effects of changes in X on Y, the decision to add a new 

component is prioritized towards the impact on Q2Y. If Q2Y increases significantly the 

component is retained. The algorithm will then continue until Q2Y either does not increase 

significantly or actually decreases.
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An important advantage of PLSR is that the developed models can be used to predict the 

response of data sets that were not included in the training set (Slide 16). Conceptually, this 

is similar to taking a new value of x and using it in the equation for a line that was fit from a 

previous data set (Slide 3). However, in PLSR, the regression equation has been found in a 

new set of dimensions, so the X values for the prediction data set are first transformed into 

principal-component space (13). The resulting prediction for the response is then 

transformed back into the original units to determine Y. To evaluate the accuracy of this 

prediction, DModY (the distance between the model prediction and observation for Y) is 

calculated (Slide 16). Through this approach it is possible to test in silico the effects of 

changes in signaling on the resulting cellular response and, thus, to select a lead candidate 

from a panel of proposed experimental perturbations or to determine how the different X 

variables impact cellular behavior (16).

 An Example of PLSR from the Literature

To demonstrate how PLSR can be used to analyze a systems-level problem, research 

utilizing PLSR to identify a predictive relationship between the abundance of members of 

the epidermal growth factor receptor family ErbB signaling network and sensitivity to an 

ErbB inhibitor in ovarian cancer cells (OvCa) (17). Although receptors of the ErbB type and 

their ligands are present in many ovarian cancers, only a subset of patients have responded to 

ErbB-targeted therapies in clinical trials (18). Therefore, to maximize the benefit of these 

targeted therapies, methods to effectively predict which patients will respond prior to 

initiating treatment are needed (Slide 17). Although prior studies have identified univariate 

biomarkers (for example overexpression of specific genes in the pathway or mutations in 

those genes) that predict response to these drugs in other tumor types, these markers have 

not been able to predict therapeutic response in ovarian cancer. Because the ErbB system is 

composed of four receptors that homo- and hetero-dimerize in response to stimulation by a 

family of thirteen ligands, Prasasya, et al. utilized PLSR to examine if the quantitative 

balance of the abundance of these ErbB network components could be used to determine 

which ovarian cancer cells would be sensitive to canertinib (CI-1033), a pan-ErbB inhibitor 

(17) (Slide 18).

To examine this question, the amounts of the four receptors (ErbB1-4) and three ligands 

(TGFα, NRG1β, and HB-EGF) were quantified across a panel of six ovarian cancer lines 

using quantitative Western blots and ELISAs (Slide 19). Sensitivity to canertinib was 

determined by a cytotoxicity assay. Although the effective concentration for a 50% response 

(EC50) for this drug varied only slightly, some cell lines showed a much greater proportion 

of cell death than others (Slide 20). Therefore, the sensitivity value was determined as the 

difference between the baseline amount of cell death and the amount at the maximum 

canertinib dose tested. The resulting data matrix was mean-centered and unit-variance scaled 

prior to analysis by PLSR (1). By examining the values of R2Y and Q2Y for the first three 

components, a two-component model was selected for further evaluation (inclusion of the 

third component increased both R2Y and Q2Y, but did not increase Q2Y significantly). A 

plot of model predictions versus experimental observations demonstrated that this model 

accurately predicted the training data set (Slide 21).
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Following the development of the PLSR model, it can be very informative to analyze the 

values of both the scores and loadings to probe the relationship between the independent and 

dependent variables. As stated above, the scores relate how far each observation projects 

along that principal component. In the case of Prasasya, et al., a plot of the scores for each 

sample for principal component 1 and principal component 2 (Slide 22) can be analyzed in 

conjunction with the raw data from the sensitivity analysis (Slide 20). From this, we see that 

the first component captures most of the variation responsible for predicting drug sensitivity: 

The most sensitive cell line projects the farthest along principal component 1, and the least 

sensitive cell line projects negatively in principal component 1 (Slide 22). The second 

component fine-tunes the prediction, particularly for the four cell lines with similar 

sensitivity. For example, OVCA432 has a more negative projection along principal 

component 1 than OVCA429, even though OVCA432 was more sensitive; this is corrected 

by the different projections in principal component 2. This interpretation is further 

strengthened by examining the loadings plot (Slide 23), where the loading for canertinib 

sensitivity (CI-1033) is a positive value for both principal components. The values for the 

loadings for independent and dependent variables can then be examined to determine how 

these variables contribute to the predicted sensitivity. For example, the loadings plot for this 

model suggests that the amount of ErbB1 is negatively correlated with sensitivity (negative 

value in both components), and that NRG1β is positively correlated with sensitivity (positive 

value in both components, Slide 23). This is consistent with the observation that the cell line 

with the highest sensitivity (OVCA420) has the highest abundance of NRG1β, and the cell 

line with the weakest sensitivity (OVCAR5) has the highest abundance of ErbB1. However, 

these observations also demonstrate the importance of deriving a multivariate relationship. 

Although OVCA429 had only slightly less ErbB1 than did OVCAR5 but OVCA429 was 

nearly 35% more sensitive (Slide 19, 20).

To further analyze the composition of this model, the VIPs (Variable Importance of 

Projections) were examined for each of the X variables. In contrast to loadings and scores, 

VIPs are evaluated across the entire model. The VIP is the sum over all of the components of 

the contribution of that variable. These contributions are determined based on the weight for 

the variable in each component in combination with the variation captured in that component 

versus the other components. The average of the VIPs for all variables is 1 in PLSR; 

therefore, values greater than 1 indicate variables that are more important for the model. In 

the model presented in (17), the most important variables were NRG1β and ErbB1 (Slide 

24).

The model was next used to predict the response of six additional cell lines that were not 

included in the training set (Slide 25). To test the predictive capacity of the two-component 

model, the abundance of receptors and ligands and the sensitivity to canertinib-induced cell 

death were experimentally determined for six additional ovarian cancer cell lines. The model 

predicted the sensitivity of three of these cell lines with reasonable accuracy; however, there 

were large differences between the observed and predicted values for the other three cell 

lines, resulting in prediction of a negative value for sensitivity for two cell lines. This would 

be interpreted as a decrease in cell death following treatment with canertinib, an outcome 

that was not seen in any cell line tested.
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To determine if the model could be modified to improve prediction accuracy, the X data was 

examined for the training and prediction data set. The amount of ErbB2 for the cell lines that 

were inaccurately predicted was out of the range of the training data set (Slide 26); 

therefore, Prasasya, et al. examined if expanding the training data set to include a cell line 

with ErbB2 abundance in this range would improve prediction accuracy, as prior studies 

have demonstrated that the predictive capacity of PLSR models is dependent upon the 

training data set incorporating the full range of values from the prediction data set (17, 19). 

This modification improved the prediction accuracy of the model (Slide 27). Additionally, 

Prasasya, et al. examined if excluding ErbB2 from the X block would improve prediction 

accuracy (17). This modification also improved the model prediction accuracy (Slide 28). 

The observation that leaving out data could improve model accuracy was then further 

examined by testing the 127 possible combinations of X matrices (that is X that included 

combinations of 1 to 7 variables) (Slide 29). From this analysis, the nine best models were 

observed to include ErbB1 and NRG1β, consistent with the high VIPs for these variables in 

the full 7-variable model. Additionally, none of the high-ranking models included ErbB2, 

consistent with the problems observed when including ErbB2 in the full 7-variable model. 

Interestingly, the best models all included two or three of the ErbB ligands. Increased 

abundance of ligands would be expected to increase ErbB pathway activity, which could 

make cells more sensitive to ErbB-targeted therapy. The inclusion of ligand measurements in 

a model to predict therapeutic response contrasts with current clinical tests that primarily 

measure receptor abundance. Although this paper demonstrates the interpretation of many of 

the metrics used in PLSR analysis, other papers could be substituted or added to emphasize 

other elements of PLSR. For example, Janes, et al. demonstrated the utility of PLSR to 

develop hypotheses about biological mechanisms (4).

 Concluding Thoughts

Other versions of PLSR have been developed that may be appropriate for analysis of large 

data sets (Slide 30). For example, discriminant PLS (DPLS) is a variant that can be used 

when the values in the response matrix are classifications (20). Orthogonal PLS (OPLS) 

models the variation in X into two parts – one that is related to Y and one that is not related 

to Y (21). Although OPLS does not change predictive power, it may simplify model 

interpretation. Finally, O2PLS splits the variation into 3 parts: The variation in X that is 

unrelated to Y, the variation in Y that is unrelated to X, and the variation in X that is related 

to Y. Complete details on these methods can be presented in subsequent lectures.

 Problem Set

 Information for the Instructor

PLSR is available through various commercial packages - for example, SIMCA-P 

(Umetrics), Unscrambler X (CAMO), and XLSTAT (Addinsoft); the problem set solution 

utilizes a publically available MATLAB script (http://www.cdpcenter.org/files/plsr/

nipals.html – this website also has a free example problem using this script which may help 

students to complete this problem). Small deviations in results are possible between different 

platforms due to variations in the algorithm used. Depending on their expertise with 
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MATLAB, students may find some of these steps easier to perform in Excel or other 

software.

 Questions for the Students

For a set of four samples you measure the abundance of 4 phosphorylated proteins at 10 

different times and the proportion of cell death for these conditions at 3 different times. 

Analyze this data compendium (Samples 1-4 in the supplementary materials PLSdata.xls) by 

PLSR. In the data file, each row indicates a unique sample, while the values in the columns 

represent the values for the associated signaling time points (X matrix) and percentage of 

cells that were dead (Y matrix).

1. Unit variance scale the raw data for both the X and Y matrices.

2. Use the scaled X and Y matrices to construct a 1-component PLSR model 

and a 2-component PLSR model.

3. Plot the observed versus predicted values for both PLSR models, 

converting the scaled predictions back to original units prior to plotting.

4. Report the R2Y value for each model.

5. For the 2-component model, plot the scores for each observation 

(PLSdata.xls). How would you interpret these components given the 

information about the samples provided in Table 1?

6. For the 2-component model, plot the loadings for both the X and Y 

variables.

7. You test a new sample (Sample 5 in PLSdata.xls). Using the 2-component 

model, predict what the response will be and compare it to the measured 

values.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Observations

Cell Type Treatment

Sample 1 A Vehicle

Sample 2 A Drug

Sample 3 B Vehicle

Sample 4 B Drug
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