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Abstract

Inexpensive genotyping methods are essential for genetic studies requiring large sample sizes. In 

human studies, array-based microarrays and high-density haplotype reference panels allow 

efficient genotype imputation for this purpose. However, these resources are typically unavailable 

in non-human settings. Here we describe a method (STITCH) for imputation based only on 

sequencing read data, without requiring additional reference panels or array data. We demonstrate 

its applicability even in settings of extremely low sequencing coverage, by accurately imputing 5.7 

million SNPs at a mean r2 of 0.98 in 2,073 outbred laboratory mice (0.15X sequencing coverage). 

In a sample of 11,670 Han Chinese (1.7X), we achieve accuracy similar to alternative approaches 

that require a reference panel, demonstrating that this approach can work for genetically diverse 

populations. Our method enables straightforward progression from low-coverage sequence to 

imputed genotypes, overcoming barriers that at present restrict the application of genome-wide 

association study technology outside humans.

Introduction

Over the last decade, genome-wide association studies (GWAS) have detected thousands of 

loci associated with complex traits in the human genome.1 Generally, these involve 

genotyping 0.5-1M SNPs on DNA genotyping microarrays, and then employing externally 

generated haplotype reference panels such as those provided by the HapMap2 and the 1000 
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Genomes Project3 to infer genotypes at tens of millions of additional sites, employing 

algorithms for phasing4 and imputation5–8.

In non-human species, large haplotype reference panels for fully genome-wide imputation 

are typically not available, and this fact has necessitated study designs incorporating high 

sample relatedness, and directed breeding, which can be leveraged to improve array-based 

genotype imputation9–12. Moreover, inter-population differences within non-human species 

can further complicate genotyping array design and use. Arrays may work poorly when 

populations other than those used to design the chip are analyzed13, requiring the expensive 

development of either dense arrays, or many less dense, population specific arrays.

Given these issues, an attractive low-cost alternative to the use of arrays is to use low 

coverage next generation sequencing (LC-NGS) as a basis for imputation of complete 

genotypes14. Genotyping by LC-NGS could in principle be powerful: even at modest 

sequencing depth LC-NGS reads sample the majority of segregating sites, including those 

specific to the population of interest.

However, to date, there exist no published genotype imputation methods specifically 

designed to use LC-NGS without additionally using genotyping microarrays or a haplotype 

reference panel. While methods such as Beagle (version 4)7 and findhap (version 4)12 can 

be applied in this setting, they are tailored to work best with reference panels, and array data, 

which provide a framework of high-confidence genotypes.

Furthermore, the read-based nature of NGS provides useful phasing information on nearby 

variants from a single (paired) read, which is likely to be especially powerful in species with 

high SNP densities. While some approaches have started to use phase informative reads 

when phasing multiple heterozygous SNPs4, there are additional benefits to a fully read 

based imputation framework. First, in the absence of reference haplotypes, phasing with 

reads may help to initialize the phasing procedure. Second, at high SNP density, it is 

inaccurate to treat genotypes from the same read as being independent, which may help 

mitigate the influence of incorrectly mapped reads, e.g. near an indel, a cluster of false 

positive SNPs will contribute only once to the model, and not multiple times.

Here, we describe a genotype imputation algorithm STITCH (Sequencing To Imputation 

Through Constructing Haplotypes) suitable for population samples in any species sequenced 

at low coverage without requiring a haplotype reference panel. The only requirement is a 

high-quality reference assembly for read-mapping. We demonstrate STITCH’s utility on two 

datasets, from two species: first a set of 2,073 Crl:CFW(SW)-US_PO8 (CFW) mice 

sequenced to 0.15X, and second a set of 11,670 Han Chinese samples sequenced to 1.7X15.

Results

Overview of model

Our method, STITCH, models each chromosome in the population as a mosaic of K 

unknown founders or ancestral haplotypes. For fully outbred settings, these haplotypes can 

be thought of as informally capturing the set of distinct haplotypes within a region, so K 
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may be large. We employ a hidden Markov model (HMM), whose parameters are 

sequentially updated using expectation maximization (EM), similar in spirit to the 

fastPHASE algorithm16. At each iteration of the EM, in the expectation step ancestral 

haplotype probabilities are generated for each sample, while in the maximization step 

ancestral haplotypes and other parameters are updated using sample haplotype membership. 

Both of these steps directly consider the underlying sequencing reads. An overview of the 

model used for imputation is presented in Figure 1.

Computationally, the algorithm has a per-iteration time complexity linear in the number of 

samples and SNPs, and when run in its standard “diploid” mode, has quadratic time 

complexity in the number K of ancestral haplotypes. Because the ability to model large K is 

essential for STITCH to handle human and other large outbred populations, we developed an 

alternative mode, termed “pseudo-haploid”, with linear per-iteration time complexity in K. 

This is motivated by the observation that imputation in diploid individuals could be carried 

out with linear time complexity in K if the sequencing reads came with labels indicating 

their parental chromosomal origin (maternal, or paternal) – in other words, with phase 

information. In this setting, only reads mapping to the maternal chromosome would be 

required to impute mutations this chromosome carries, so the maternal and paternal 

chromosomes could be imputed separately. In the absence of such chromosome labels, in 

theory one could sample labels (e.g. by Gibbs sampling) for each read under our model. The 

relative contribution of a read to each chromosomes’ posterior likelihood would then depend 

on the probability it came from that chromosome. This sampling is in practice prohibitively 

computationally expensive. Therefore, in practice our pseudo-haploid makes several 

additional simplifying approximations (see the Supplementary Note for details, and 

discussion of other issues e.g. label-switching), to estimate, for every read, the probability it 

came from each chromosome. Given these probabilities, we can update the posterior 

ancestral haplotype probabilities for each chromosome separately, within the EM algorithm. 

This retains a common EM framework to both diploid and pseudo-haploid modes, thereby 

allowing the algorithm to switch between modes at any point. A full description of the 

diploid and pseudo-haploid modes is in the Methods and Supplementary Note, while 

guidance on parameter choice is in the Supplementary Note.

CFW outbred mice

We ran STITCH on low coverage sequence data (0.15X, paired end 100 base pair reads) 

from 2,073 outbred Crl:CFW(SW)-US_PO8 mice17,18. These mice are thought to have 

descended from two outbred founders (i.e. K=4) about 100 generations ago. We imputed 

genotypes at 7.1 million single nucleotide polymorphic sites (SNPs) that either were 

polymorphic in the Mouse Genomes Project19 or passed VQSR20 quality filtration17. 

Imputation accuracy was assessed in two ways – 44 mice genotyped on the Illumina 

MegaMUGA array (21,576 polymorphic SNPs) and four mice sequenced to 10X using an 

Illumina HiSeq. Correlations (r2) between genotypes and imputed dosages were calculated 

either per-site for the array or aggregated across all SNPs in a given frequency range for the 

high coverage sequencing data.
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We compared results from STITCH (K=4, diploid mode) to Beagle and findhap run without 

a reference panel7,12. Genotypes across all frequencies from STITCH correlated highly 

with the Illumina MegaMUGA array (Fig. 2a, r2=0.972) and 10X sequencing (Fig. 2b, 

r2=0.948) (Supplementary Table 1). Filtering with an imputation info score > 0.4 (Methods) 

and Hardy-Weinberg Equilibrium (HWE) p-value > 10−6 improved accuracy further, to r2 of 

0.981 and 0.974, with 5.72M SNPs (81%) retained. In general, imputation performance was 

good across all allele frequencies, except for a slight decrease at low frequency (<5%) SNPs 

(Fig. 2) that are expected to be challenging for low-coverage sequencing. Beagle under 

default conditions achieved r2’s of 0.080 and 0.219 compared to 10X sequencing and array 

without QC filtering, respectively, while findhap achieved 0.58 and 0.55 (Fig 2, 

Supplementary Table 1).

We performed additional analyses to explore parameter choices. We found that optimal 

results were achieved with K=4 for STITCH (Supplementary Table 2), as expected from the 

population’s ancestry. Results for Beagle did not differ appreciably when the number of 

iterations, window size, and model scale factor were changed, while the results reported 

above for findhap were the best observed when varying parameters of the method over a 

range of values suggested by the findhap documentation (Supplementary Table 2). Of the 3 

methods, findhap was approximately 12 times faster than Beagle and 38 times faster than 

STITCH, although if parallelized by chromosome, imputation for all samples for any of the 

methods could be performed in less than 48 hours on a modest computational server. 

Ignoring phase information from reads in applying STITCH (i.e. treating each variant in a 

read as independent) reduced accuracy considerably, from r2=0.97 to 0.87 with the Illumina 

MegaMUGA array (Supplementary Table 2).

Converge study

To explore performance in human data, we ran STITCH on low coverage sequence data 

(1.7X, paired end 83 base pair reads) from 11,670 Han Chinese women15. Details of read 

mapping and variant calling are as detailed previously15. We used the first 10 Mbp of 

chromosome 20 to test the imputation algorithms and compared our predictions with 

genotypes from 72 individuals genotyped on the Illumina HumanOmniZhongHua-8 array 

and 9 individuals sequenced at 10X coverage15.

Following preliminary testing (Supplementary Table 3), we applied STITCH with K=40 

“founder” haplotypes, with 40 rounds of updating to estimate parameters and perform 

imputation. The first 38 rounds were in the faster “pseudo-haploid” mode and the final 2 in 

the slower but more accurate “diploid” mode. STITCH achieved close correspondence to 

Illumina array results (Fig. 3A, r2=0.920, Supplementary Table 4) and 10X sequencing (Fig. 

3B, r2=0.949), results that improved when SNPs were filtered (info > 0.4, HWE p-value > 

10−6) (array r2=0.939, 10X r2=0.960). Accuracy declined for K < 40, and was marginally 

improved for K > 40. Running additional slower “diploid” mode iterations also improved 

accuracy only marginally, and fully diploid imputation became computationally prohibitive 

beyond K=30. Results were essentially unchanged when STITCH was run ignoring read 

information, reflecting the low SNP density in humans. Beagle without a reference panel 

achieved reduced r2 values of 0.886 and 0.930 for sequencing and array without QC 
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filtering, respectively, while the best parameter settings we identified for findhap achieved 

0.414 and 0.550 (Fig 3, Supplementary Table 4).

We next compared STITCH to applying Beagle with additional reference panel information. 

In this setting, Beagle is modestly more accurate than STITCH, at the cost of run time (Fig. 

3C, Fig. 3D, Supplementary Table 5, Supplementary Table 6). For example, Beagle achieved 

an r2 of 0.943 versus 0.922 compared to the array for STITCH before SNP QC, although it 

took 7.3X as long.

We then repeated the imputation strategy for Beagle used in the original CONVERGE 

study15 of first imputing all sites without a reference panel, then imputing the subset of 

variants with a reference panel, and replacing SNPs in the former with the latter when they 

existed. We compared these results to those from STITCH, run without a reference panel on 

the entire set of SNPs. Results between these two strategies were essentially the same 

between STITCH and Beagle, (Supplementary Table 7) with STITCH achieving an r2 of 

0.972 (array) and Beagle 0.968 under the most stringent QC scenario, which retained 75% of 

common sites (>5% minor allele frequency). Results for STITCH were generated 5.3X 

faster than Beagle under this strategy.

Effect of sample size and coverage on imputation

We next examined the consequences of altering sample size and sequence coverage (Fig. 4). 

For the CFW mice, for the full 0.15X coverage using STITCH, sample size above 500 has 

little impact on performance, while at down-sampled lower coverage, increasing sample size 

to 2,073 leads to substantially increased performance. Surprisingly, even at 0.06X for the full 

sample of 2,073 animals, results are only marginally poorer than using 0.15X. For the 

CONVERGE samples using STITCH, sample size has less of an influence across the range 

of sequencing coverages considered, although results did consistently improve with 

increasing sequencing depth. STITCH outperforms Beagle without a reference panel over 

the range of low coverages considered here (0.3-1.7X).

Effect of variant filtration on imputation performance

Methods of genotyping from next generation sequencing typically employ an initial step of 

variant filtration, to reject any newly discovered sites whose quality control metrics differ 

from those at known variant sites. One such method is the GATK Variant Quality Score 

Recalibrator20. Since we developed STITCH to be applicable to populations in which a 

catalogue of variant sites was unavailable, we investigated whether prior variant filtration 

was necessary, or whether STITCH itself could be used to filter SNPs directly. We compared 

imputation at filtered variant sites in the CFW population, as defined using VQSR and 

known variable sites, to a two-step strategy where no prior variant catalogue is used. As a 

first step, all discovered sites in the sample are imputed without filtration. In the second step, 

only those variants that pass quality control (QC) filters from the first step are re-imputed. 

Results indicate this to be a viable strategy (Supplementary Table 8). For the one step 

strategy with variant filtration (the original study design), 152K SNPs on chromosome 19 

were imputed, with 122K SNPs passing QC at an r2 of 0.968. For the two-stage approach, 

355K variants were imputed in the first round of imputation, with 136K passing QC. In the 
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second round of imputation, these 136K were re-imputed, with 128K of them passing QC at 

an r2 of 0.952. Overlap between the two approaches was 116K, with marginally better r2 in 

the overlap from the two-step approach, with results specific to either set having lower r2. 

These results indicate that prior knowledge of variable sites is not needed to impute 

accurately using STITCH.

Discussion

Inexpensive genotyping microarrays and imputation with large reference panels have made 

genome-wide association studies tractable in humans, but these resources are unavailable in 

many species, and are not ideal for human populations in parts of the world where 

appropriate reference populations have not yet been deeply sequenced. Our method 

alleviates this bottleneck, by imputing high quality genotypes directly from low coverage 

sequencing data. The method delivered highly accurate imputation at a depth of only 0.15X 

in the CFW mouse population. In a higher coverage situation of 1.7X in humans, STITCH 

performed similarly to a method using a reference panel, without requiring such a panel. 

This simplifies the imputation pipeline, and allows application in populations where no 

reference is available. We also introduce an approximation that achieves linear as opposed to 

quadratic time scaling with the number of founder haplotypes with very little loss of 

accuracy, making the method suitable for the analysis of very large and ancestrally complex 

populations.

Importantly, imputation results were better when using direct phase information, especially 

in the CFW mice, while the two-stage CFW imputation procedure showed that careful 

filtering of candidate SNPs based on prior variation is not essential. This can simplify the 

analysis, by alleviating the need for running separate SNP-filtering procedures, e.g. the 

VQSR20.

The differences in imputation performance we observe in the mouse and human samples 

reflect their different genetic histories. Our method involves two alternating processes – 

reconstructing founder haplotypes, and determining in an individual sample which pair of 

founder haplotypes it is most similar to at each locus. Because the CFW mouse population 

was founded about 100 generations ago from just two progenitors, physical distances 

between haplotype switches are large, making it relatively easy to identify which of the 

small number of founder haplotypes an individual carries, even at low coverage. By contrast, 

in the CONVERGE Han Chinese population sample, haplotypic diversity is far greater, and 

consequently haplotypic switches occur much more frequently. This explains why 

imputation in humans is less accurate for a given level of sequence coverage and why 

increasing K – the modeled number of founder haplotypes – had little influence on 

performance in mice, but increased accuracy in humans. Because these datasets represent 

relatively extreme scenarios in terms of haplotypic diversity, we expect that STITCH will 

work well in intermediate settings, without haplotype reference panels.

Our method delivers the greatest accuracy improvements for populations with recent strong 

bottlenecks, such as those studied in agricultural or plant genomics21,22,23. While poorer 

quality reference assemblies than those available for mice and humans will impact the 
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performance of STITCH in other species, in future the decreasing cost of constructing high 

quality reference assemblies using single molecule long read technologies and optimal 

mapping techniques may mitigate this issue24.

Although STITCH out-performed findhap for imputation using low-coverage sequencing 

data in the scenarios evaluated here, in cases where additional genotyping array data is also 

available, findhap may perform well. Specifically, if additional microarray data is available 

for a set of samples drawn from the same population as those sequenced at low coverage, 

findhap obtained comparable accuracy to our STITCH runs that used the read unaware 

option12, and offers a speed advantage.

For human samples, at 1-1.5X sample coverage, STITCH accurately imputes all common 

variation, making it suitable for any population that lacks a reference panel, or one with an 

incomplete variant catalogue. We imagine that our method might be particularly appropriate 

for ethnic groups so far not subject to GWAS, population isolates, and for ancient humans, 

where low coverage sequencing is common.

Online methods

Overview and simulation under the model

Here we outline the model by describing how one would simulate (read) data from it, given 

knowledge of the underlying parameters. In the following section, we then more rigorously 

lay out how we infer parameters and perform inference of genotypes. We describe technical 

details of the EM procedure and parameter updating in the Supplementary Note.

We consider a population of individuals that can be approximated as having been founded G 
generations ago from K unknown ancestral founding haplotypes. Consider a haplotype from 

a single chromosomal region with T SNPs from a present day individual drawn from our 

model. A starting state (haplotype) k is chosen with probability πk. Let dt and pt be the 

physical distance and average recombination rate between SNPs t and t+1, respectively. 

Therefore σt=dtpt is the recombination distance between SNPs t and t+1 in one generation, 

so in the G generations since founding the probability of recombination between these SNPs 

is 1−exp{−Gσt}.

Conditional on recombination locations, we sample an ancestral haplotype for each non-

recombining interval. We allow genetic drift to play a sizeable role in the proportions of the 

ancestral haplotypes in each short genomic interval. As such, we model the probability of 

choosing ancestral haplotype k to the right (from SNP t+1), given a recombination between 

SNP t and SNP t+1 as αt,k. This choice is made independently of the state at SNP t.

Finally, the reads are sampled conditional on the local haplotype background. Gene 

conversion, de novo mutation, read-mapping errors and other issues mean that not all 

chromosomes and reads descended from ancestral haplotype k will be an exact match to the 

ancestral sequence. We therefore model that for each read, for SNP t and ancestral haplotype 

k, that the alternate base will be drawn with probability θt,k, and the reference base with 

probability 1–θt,k. Inherent in this is the assumption that different reads are emitted from 
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different samplings of θt,k; in reality there would be a simple sampling of θt,k for each 

haplotype, and reads sampled conditional on these real underlying bases. This assumption is 

necessary for computational reasons, and has reduced impact for low coverage sequencing 

data.

Consider sampling the rth read, Rr. To do this, first choose read boundaries and determine ur,j 

the set of indices of the SNPs in the read for j=1,…,Jr, where Jr is the number of SNPs in the 

rth read Rr. Paired end reads can be easily accommodated in this way by allowing 

discontinuous ur,j within read r. We make the assumption that recombinations are infrequent 

enough that reads have constant haplotype state over their length; as such, each read has a 

central SNP, call it cr, and state membership over the read is drawn from the central SNP. 

Therefore, the underlying “real” bases for the sequencing read are sampled according to θt,k 

for t in ur,j where k=kt’ for t’=cr. To sample “observed” bases, we sample br,j, the set of base 

qualities of the SNPs in the read – in practice these qualities are externally provided - and 

then sample observed bases sr,j according to the real bases and the base qualities.

Expectation and hidden state determination

In the HMM, for the haploid model, let qt be the hidden state at SNP t, i.e. qt ∈ {1, …, K}. 

For the diploid model, let qt=(kt,1, kt,2) be the hidden states at SNP t. Let λ={π,σ,α,θ} be 

the parameters of the model. The pseud-haploid model is described in the Supplementary 

Note.

Initial haploid state probabilities for the k=1,…,K different states are defined as πk. Diploid 

initial state probabilities are taken by multiplying together haploid state probabilities.

For state transitions, with probability exp{−Gσt}, no recombination occurs between SNPs t 
and t+1, while with probability 1−exp{−Gσt}, a recombination occurs and a new state qt+1 is 

chosen at SNP t according to αt,k’ for k’=kt+1. This gives the haploid transition matrix

Assuming independence between the two chromosomes then the diploid transition 

probability from state qt=(kt,1, kt,2) at SNP t to qt+1=(kt+1,1, kt+1,2) at SNP t+1 is:

For the emission of reads, for read Rr, let cr be the index of the most central SNP in that 

read, choosing at random when a read intersects exactly two SNPs. Reads that don’t 

intersect any SNPs are removed as they are uninformative. Consider the probability of an 

observation of a set of reads whose central SNP is t, or in other words Ot={Rr|cr=t}. For 

SNP j in read Rr, sr,j is the observed sequencingread (0 = reference, 1 = alternate), and br,j is 

the Phred scaled base quality, i.e. the log probability that the base is called erroneously, so 
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let εr,j=10^(–br,j/10). Then, given the underlying (unobserved) genotype of this read at this 

SNP is g

For convenience, set  We disregard sequenced bases which are not the 

reference or alternate base. Paired end reads are handled as the indices of the SNPs in the 

read ur,j, are allowed to be discontinuous. Given there are Jr SNPs in read Rr, the probability 

of drawing read Rr from haplotype k is the product of the contribution of each SNP j=1,…,Jr 

in that read. For the jth SNP, this probability is the probability the read contained the 

alternate base  times the probability θt,k for t=ur,j that ancestral haplotype k emitted the 

alternate base, added to the equivalent probability for the reference base. Taken together, this 

yields

Let Ot be the set of reads with central SNP t. In the haploid model, the probability of the 

observations at locus t is

In the diploid model, each read is equally likely to come from either the maternal or paternal 

chromosome, giving

For every SNP t, the probability of the observations at that locus is

Finally, note that for SNPs which are not covered by reads, we set P(Ot|qt=kt,λ)=1 for all kt.

CFW mouse sequencing

Full details on the Crl:CFW(SW)-US_PO8 (CFW) mice, including sample acquisition, age, 

sex and sequencing are provided elsewhere17. CFW mice are from a commercial outbred 

colony18. Sample pre-processing was done in accordance with best practice 

recommendations20. Sequencing reads from low coverage samples were mapped to mm10 

using bwa25, remapped using Stampy26, PCR duplicates were marked using Picard, files 
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were merged using Picard, indel realignment was performed using the GATK27, and base 

quality score recalibration was performed using the GATK. Variant calling was done using 

the GATK UnifiedGenotyper and filtered by the GATK VQSR, using as training data a set of 

variants from the Mouse Genomes Project19 and a sensitivity threshold of 80%. Sites in the 

training set which failed VQSR were nonetheless retained. In total, 7.07M SNPs were called 

on the autosomes and chromosome X. 4 mice were additionally sequenced at 10X. 

Genotypes for these mice were generated using the GATK UnifiedGenotyper using the 

genotype given alleles option. For comparisons with low coverage imputation, individual 

genotypes from the high coverage samples were set to missing if the read depth was less 

than 5 or more than 25, or if the genotype quality was less than 10.

CFW MegaMUGA Array Genotyping

48 of the 2,073 mice were sent to Neogen and genotyped using the Mega Mouse Universal 

Genotyping Array (MegaMUGA), an array built upon the Illumina Infinium platform with 

77,808 SNPs (Neogen, Lincoln, Nebraska, USA). Genotype calling was performed by 

Neogen using GenCall.

After genotyping, recorded genders were compared to X and Y chromosome marker 

information, revealing no gender mismatches on the arrays. Samples were further compared 

to imputation and array QC metrics (call rate and 10% GC score); this revealed 4 of 48 

samples had poorly performing array metrics. These 4 samples were subsequently removed 

from further analysis.

For the 77,808 SNPs for which we had genotypes, 144 were not mappable from mm9 to 

mm10 using liftOver, and out of the remaining sites, 29,694 intersected between imputation 

and MegaMUGA. Out of those, we removed sequentially for the following reasons: 17 for 

allele disagreements between sequencing and the array; 3,819 monomorphic array sites; 

3,160 SNPs with an imputed SNP within 25 bp of the array target SNP (as off-target 

variation can affect microarray genotyping)13 ; 56 sites with an array Hardy-Weinberg 

Equilibrium p-value of less than 1 × 10−10. Subsequent comparisons between CFW imputed 

dosages and array genotypes were made for the remaining 21,576 sites.

Converge

Full details for the processing of the CONVERGE data, including low coverage, high 

coverage, Illumina array data, ethics committees and informed consent have been published 

elsewhere15. In brief, 11,670 low coverage (1.7X) Han Chinese samples were called using 

the GATK to yield a set of 20.5M variants. 9 samples were sequenced to 10X and used 

independently to call variants (5.9M). For our analysis, high coverage sample genotypes 

with a read depth of lower than 5, read depth greater than 25, or genotype quality of less 

than 10 were masked out. 72 samples were genotyped using the Illumina 

HumanOmniZhongHua-8 (v1.0B) BeadChip. Of the 21057 sites present on chromosome 20 

on the array and used for imputation, we removed 292 sites with >5% missingness, 7642 

sites with probes within 25bp of another site in the imputed dataset, and 0 sites with an array 

Hardy-Weinberg Equilibrium p-value of less than1×10−10. This left 13,123 sites used for 

assessing accuracy.
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Beagle

For both the CFW and CONVERGE samples, Beagle version 4.0 (beagle.r1399.jar) was run 

using default parameters, unless otherwise noted7. Genotype likelihoods from VCF files 

were used as inputs. For the CONVERGE study, the 1000 Genomes Asian reference panel 

was used.

findhap

For both the CFW and CONVERGE samples, findhap version 4 was run with default 

parameters, unless otherwise noted12. For both CFW and CONVERGE, allele depth 

information from VCF files was used to construct input files for findhap. Since pedigree 

information was not available for the CFW or CONVERGE study, input pedigree files were 

made with missing values for maternal and paternal inheritance. Results for CFW used 

maxhap=10000 and CONVERGE used maxhap=25000. Both methods used default options 

of overlap=10, lowdense=0.07, and errrate=0.01.

Correlation between dosages and validation

For the arrays, correlations (r2) are generated per-SNP between array genotypes and imputed 

dosages. When reported by frequency, values are averaged over all SNPs in that frequency 

bin; otherwise averaging is over all SNPs. For sequencing, correlations are between 

genotypes and imputed dosages across all samples. When reported by frequency, values are 

generated using only SNPs in that frequency bin, otherwise averaging is over all SNPs. 

When aggregating genotypes across sites, to remove an upward bias in correlations due to 

genotype encoding, dosages were recoded from the default of 0 as the reference allele and 1 

the alternate allele to 0 for homozygous major allele and 1 homozygous for the minor allele.

Software

STITCH v1.0.0 was used for all analyses in this paper. STITCH is available from http://

www.stats.ox.ac.uk/~myers/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of STITCH
After initializing various parameters (left), represented here by the ancestral haplotypes, 40 

EM iterations are performed (middle). Each iteration involves i) determining hidden 

haplotype states (going down, left side) using current parameters and sample reads, and ii) 

parameter updates (going up, right side) using sample reads and haplotype probabilities 

(hidden states). Once the expectation-maximization iterations are completed, imputed 

genotypes are generated using the haplotype probabilities and ancestral haplotypes from the 

final iteration (right). This example uses real data from the CFW mice with K=4 founder 

haplotypes for approximately 3,000 base pairs on chromosome 19 containing 20 imputed 

SNPs. Each of the SNPs in the 4 reconstructed haplotypes are shown as a vertical bar split 

proportionally to the probability of emitting the reference (black) or alternate (grey). Sample 

reads are similarly coloured.
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Figure 2. Performance of STITCH on CFW mice compared to external validation
Validation dataset is the Illumina MegaMUGA array (a) and 10X Illumina sequencing (b). 

Results are shown for STITCH (K=4, diploid mode), Beagle (default) and findhap 

(maxlen=10000, minlen=100, steps=3, iters=4) genome-wide for n=2,073 mice featuring 

7.07M SNPs before QC and 5.72M after QC. STITCH is run using K=4, diploid method, 40 

iterations. Post-QC is SNPs with info>0.4 and HWE p-value > 1×10−6.
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Figure 3. Performance of STITCH on CONVERGE humans compared to external validation
Validation dataset is the Illumina HumanOmniZhongHua-8 array (a, c) and 10X sequencing 

(b, d). Results are shown for STITCH (K=40, 38 pseudo-haploid iterations, 2 diploid 

iterations), Beagle (default (a,b), 3 iterations with reference panel (c,d)), and findhap 

(maxlen=50000, minlen=500, steps=3, iters=4) for the first 10 Mbp of chromosome 20 for 

n=11,670 Han Chinese samples, either for all SNPs (a,b), or for SNPs also present in the 

1000 Genomes ASN reference panel (c,d). Post-QC is SNPs with info>0.4 and HWE p-

value > 1×10−6.
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Figure 4. Effects of reduced sequence coverage
Results are shown for CFW mice (a) and CONVERGE humans using STITCH (b) and 

Beagle run without a reference panel (c). Validation is using array data, with each value 

representing the average for common SNPs (allele frequency 5–95%), without correction for 

post-imputation QC. Downsampling of samples and reads, as shown in the legends, was 

performed at random, except that samples necessary for accuracy assessment were always 

retained. STITCH settings are the same as for the full CFW, CONVERGE datasets. Colours 

representing downsampling sequence depth are the same for STITCH and Beagle.

Davies et al. Page 16

Nat Genet. Author manuscript; available in PMC 2017 January 04.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Introduction
	Results
	Overview of model
	CFW outbred mice
	Converge study
	Effect of sample size and coverage on imputation
	Effect of variant filtration on imputation performance

	Discussion
	Online methods
	Overview and simulation under the model
	Expectation and hidden state determination
	CFW mouse sequencing
	CFW MegaMUGA Array Genotyping
	Converge
	Beagle
	findhap
	Correlation between dosages and validation
	Software

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

