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ABSTRACT
Antibody humanization describes the procedure of grafting a non-human antibody’s complementarity-
determining regions, i.e., the variable loop regions that mediate specific interactions with the antigen,
onto a b-sheet framework that is representative of the human variable region germline repertoire, thus
reducing the number of potentially antigenic epitopes that might trigger an anti-antibody response. The
selection criterion for the so-called acceptor frameworks (one for the heavy and one for the light chain
variable region) is traditionally based on sequence similarity. Here, we propose a novel approach that
selects acceptor frameworks such that the relative orientation of the 2 variable domains in 3D space, and
thereby the geometry of the antigen-binding site, is conserved throughout the process of humanization.
The methodology relies on a machine learning-based predictor of antibody variable domain orientation
that has recently been shown to improve the quality of antibody homology models. Using data from 3
humanization campaigns, we demonstrate that preselecting humanization variants based on the
predicted difference in variable domain orientation with regard to the original antibody leads to subsets
of variants with a significant improvement in binding affinity.

Abbreviations:mAb, monoclonal antibody; CDR, complementarity-determining region; ECD, extracellular domain;
HCV, hepatitis virus C; PDB, Protein Data Bank; LEL, large extracellular loop
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Introduction

Therapeutic monoclonal antibodies (mAbs)1-3 of xenogeneic
origin can trigger immune reactions when administered to
human patients. Immune reactions directed against the mAb
can lead to loss of efficacy of the drug and, even more impor-
tant, to adverse effects ranging from mild local skin reactions
to life-threatening acute anaphylaxis and systemic inflamma-
tory response syndrome.4 Based on the reasoning that mAbs
that are typically human in sequence are less likely to trigger
the human immune response, it has become common practice
to replace large parts of the original non-human (typically
rodent) antibody with counterparts naturally occurring in
human, thus reducing the number of potentially antigenic epit-
opes. To increase the “humanness” of a given non-human anti-
body while preserving its original antigen binding properties, 2
major engineering strategies are known. The first strategy, chi-
merization, describes the procedure of grafting the variable
regions of the non-human antibody onto the constant regions
of a human antibody. During this process, the human IgG sub-
type and corresponding Fc effector functions can be chosen to
best match the desired drug profile of the mAb. The resulting
chimeric antibody loses the antigenicity conferred by the

non-human constant regions, but retains significant xenogeneic
content. By contrast, the second strategy, humanization,
involves discarding all but the antigen-binding parts of the
original antibody by grafting only the non-human complemen-
tarity-determining regions (CDRs) onto the conserved b-sheet
framework of a human variable region (typically a homolog of
the non-human donor variable region). In combination with
the constant regions of a human IgG, only the antigenicity con-
ferred by the CDRs remains. Both chimerization and humani-
zation are enabled by the modular, robust and highly
conserved structure that is a characteristic of antibodies. While
it is known that the immunogenicity of mAbs is not a simple
function of the degree of sequence identity to human antibod-
ies, nor of antigenicity (e.g., the number of predicted T-cell
epitopes), and that even so-called “fully human” antibodies
derived from transgenic animals or phage display are able to
elicit a human anti-antibody response, humanization is recog-
nized as a standard procedure to at least manage this risk. An
overview of which marketed mAbs are non-human, chimeric,
humanized or fully human can be found in Ref. 3.

The initial step of humanization is the categorization of the anti-
body’s variable region sequences into framework and CDR
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segments. The definition of these segments is typically adopted
from the pioneering work of Kabat5 and Chothia.6 Based on the
degree of sequence homology to the non-human donor framework,
a suitable human acceptor framework is identified, either from
among the entirety of known human antibody sequences, or a set
of human V-region germline sequences. The CDR sequence seg-
ments of the non-human antibody are then inserted into the
human donor framework sequences. Finally, the humanized
sequences can be refined by introducing either forward mutations
(non-human CDR residues are substituted to match the human
antibody repertoire) or backward mutations (human acceptor
framework residues are substituted to match the non-human ori-
gin). For a comprehensive overview of different humanization
methodologies, a number of reviews are available.7-12

Exchanging the framework regions of an antibody in the
process of humanization has a potential effect on how the
CDRs are presented to the antigen, and thus on the antigen-
binding properties. While murine and human variable regions
typically show a high degree of homology, rabbit variable
regions tend to exhibit species-dependent characteristics such
as deletions in the b-sheet framework that can be difficult to
emulate using the human V-region germline repertoire. There-
fore, a low to moderate loss of binding affinity of the human-
ized antibody is often considered tolerable. To increase the
probability of obtaining a satisfactory humanized version of the
original antibody, it is common practice to generate multiple
humanization variants of the heavy chain and light chain vari-
able regions (VH and VL), differing, e.g., in the choice of accep-
tor framework, or the number and location of forward and
backward mutations. Those variants are then expressed and
evaluated in a matrix, i.e., considering all possible pairings
between VH and VL, from which the best candidate can be
picked based on its binding properties. Recent publications also
highlight the value of crystal structures or accurate homology
models to improve the “success rate” of antibody humaniza-
tion.13-15 If the non-human antibody-antigen complex struc-
ture is available, backward and forward mutations can be

introduced much more precisely than on the mere sequence
level. Homology models of the humanized antibody, in turn,
can help to detect problematic amino acid substitutions. By
now, a number of in silico tools is available to guide the human-
ization process16,17 and to provide automatically generated
antibody Fv models.18

In the following, we focus on an aspect of antibody structure
that, in the context of humanization, is often overlooked: the
relative orientation of VH and VL domain. A survey of the
known repertoire of antibody crystal structures reveals a nota-
ble variability in the parameters of VH-VL orientation,19–21

and it seems likely that modulating VH-VL orientation not
only is a necessary means to accommodate the diverse antigenic
shapes that antibodies are confronted with, but also a mecha-
nism to further diversify the composition (and thus increase
the possible number) of antibody paratopes - in addition to the
well-known mechanisms of diversification involving variations
in length and sequence of the CDRs. It is reasonable to assume
that changes in VH-VL orientation (e.g., caused by exchanging
the b-sheet framework during humanization) might induce
changes with regard to antigen binding.

Here, we present an in silico methodology that aims at prese-
lecting humanization variants that are likely to preserve the VH-
VL orientation of the reference antibody. For this purpose, we
characterize VH-VL orientation in terms of the 6 ABangle orien-
tation parameters derived by Dunbar et al.21 (Fig. 1A). To predict
the ABangle parameters for a given non-human antibody and its
humanization variants, we use a machine learning approach that
was published recently.22 The random forest model predictor
evaluates a set of 54 conserved residues (the “orientation finger-
print”) at the interface of VH and VL to derive an estimate for
each of the 6 ABangle parameters (Fig. 1B). Once the putative
ABangle parameters for the reference antibody and its humaniza-
tion variants have been determined, each variant can be ranked
with regard to the expected difference in VH-VL orientation.
Finally, the humanization variants that are expected to exhibit a
markedly different VH-VL orientation than the reference

Figure 1. (A) The 6 ABangle VH-VL parameters that describe the variable degrees of freedom of VH-VL orientation consist of the torsion angle HL, from H1 to L1 measured
about C, the bend angle HC1, between H1 and C, the bend angle HC2, between H2 and C, the bend angle LC1, between L1 and C, the bend angle LC2, between L2 and C,
and the length of C, dc (not shown). (B) Residues belonging to the VH-VL orientation fingerprint, shown in stick representation, and the resulting fingerprint string. CDR
color coding follows IMGT/Collier-de-Perles23 conventions: CDR-H1 is colored red, CDR-H2 orange, CDR-H3 purple, CDR-L1 blue, CDR-L2 light green, and CDR-L3 dark
green. The example shows the crystal structure with PDB ID 3PP4.24
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antibody can be discarded so that the overall number of variants
to be cloned, expressed and tested is reduced.

To test our hypothesis that humanization variants that are
likely to preserve the VH-VL orientation parameters of the
original antibody are also likely to exhibit favorable antigen-
binding properties, we retrospectively apply our method to 3
humanization campaigns for which experimentally derived
binding affinities for all sequence variants (i.e., the complete
matrix of all VH and VL combinations) are available. We apply
different filtering algorithms that consider the predicted differ-
ence in VH-VL orientation with regard to the reference anti-
body, and evaluate the quality of the remaining subsets of
humanization variants in terms of the average binding affinity.

The exemplary humanization campaigns presented here
involve 2 murine antibodies directed against the extracellular
domain (ECD) of CD81 receptor, and a rabbit antibody directed
against phosphorylated tau protein (tau/pS422). Antibodies tar-
geting CD81, a receptor required by hepatitis C virus (HCV) to
infect human hepatocytes, were recently described by Vexler
et al.25 and Ji et al.26 Two of these high affinity anti-CD81 mAbs,
CD81K04 and CD81K13, showed potent and broad spectrum
antiviral activity in various in vitro assays and were humanized.
The anti-CD81 mAb CD81K04 could completely block HCV
infection and spread in vivo, indicating that CD81 is essential for
HCV-mediated pathology in the liver.26 Tau, by contrast, is an
axonal protein that normally associates with microtubules and
thereby stabilizes them. In Alzheimer disease, abnormal phos-
phorylation, misfolding and aggregation of tau lead to neurofibril-
lary tangle formation, and ultimately to neuronal cell death.27 A
proposed mode of action of the anti-tau/pS422 antibody Rb86 is
that it binds to membrane-associated tau/pS422, upon which the
antibody-antigen complexes are internalized and cleared within
the cell, so that the neurodegenerative pathology of tau is amelio-
rated. An alignment of the VH and VL sequences of CD81K04,
CD81K13 and Rb86 is given in Fig. 2.

To complement our humanization study and the analysis of
VH-VL orientation, the crystal structures of the 3 rodent anti-
bodies in complex with their respective antigen have been
determined and deposited in the Protein Data Bank (PDB)
(www.rcsb.org; PDB IDs 5DFV, 5DFW, 5DMG).

Results

Crystal structures

The crystal structures of the 2 murine antibodies CD81K04 and
CD81K13 binding to the large extracellular loop (LEL) of the

CD81 receptor ECD are depicted in Fig. 3A–B. The crystal
structure of CD81 LEL in the apo form had been determined
previously.28,29 Both anti-CD81 antibodies can be considered
examples of mAbs that recognize a conformational epitope, i.e.,
an epitope that has a predefined, rigid, and often very complex
shape. By contrast, the rabbit antibody Rb86 recognizes a pep-
tide segment of tau protein (including the phosphorylation site
pS422 that has been linked to tau pathology) that upon binding
is still largely flexible in its conformation. The crystal structure
of Rb86 binding to the peptide 15mer SID[MVDpSPQLAT-
LAD] comprising residues 416–430 of tau/pS422 is shown in
Fig. 3C. Only the residues shown in parentheses were assign-
able from the electron density.

In the process of antibody maturation, mainly amino acids
in the CDRs are selected to recognize their antigen in a highly
specific manner. In the case of CD81K04, CD81K13 and Rb86,
the paratope, defined based on a 4 A

�
atom-atom distance cut-

off to define antibody-antigen interactions, comprises amino
acids from at least 5 of the 6 CDRs. Consequently, for these 3
antibodies, VH-VL orientation should be a potential codeter-
minant of antibody-antigen recognition, as each change in VH-
VL orientation is prone to modulate the relative orientation of
CDRs L1-L3 with regard to CDRs H1-H3, thus resculpting the
shape of the paratope.

Using a spacious paratope formed by 18 residues in all of the
6 CDRs, CD81K04 targets a large conformational epitope
formed by 16 residues of the CD81 receptor LEL, comprising a
part of Helix A and almost the complete Helix C (Fig. 4A). The
epitope for CD81K13 is markedly different, with Helix B being
recognized by the VL domain, and 2 loops, situated before
Helix B and after Helix C, interacting with the VH domain
(Fig. 4B). Similarly to CD81K04, a relatively large number of 15
amino acids within the CDRs of CD81K13 interact with 13 res-
idues of the CD81 LEL. CDR-L2 of CD81K13 is not in direct
contact with the antigen, which sets it apart from the binding
mode observable for CD81K04.

Between two structured protein domains such as CD81 LEL
and the respective anti-CD81 antibody, in general a broad con-
tact surface can be established. The situation is different for
antibodies binding smaller antigens, such as haptens and pepti-
des, where in most cases, to maximize the number of possible
antibody-antigen contacts, the binding site rather takes the
shape of a deep groove. This implies that paratopic residues
may not only originate from the CDRs, but also from the
b-sheet framework of the antibody. This is also true for the
peptide binding antibody Rb86 presented here.(Fig. 5A–B)

Figure 2. VH (top) and VL (bottom) sequences of the 3 rodent antibodies CD81K04, CD81K13, and Rb86. Framework and CDR classification follows WolfGuy nomenclature.
Sequence positions that are part of the VH-VL orientation fingerprint are highlighted with a gray background. VH-VL orientation fingerprint positions that are unpopu-
lated in a given antibody are denoted with the letter X. CDR color coding as described in Fig. 1.

290 A. BUJOTZEK ET AL.

http://www.rcsb.org


In the case of antibody Rb86, 4 framework residues (Wolf-
Guy/Chothia: K332/H94, W401/H103, R612/L46, and
Y615/L49) are in direct contact with tau peptide. Two more
framework residues with bulky sidechains, W212/H47 and
F602/L36, are instrumental for defining the topology of the par-
atope by limiting the size of the binding groove. Together with
18 residues situated in all of the 6 CDRs, they form a strong
network to stabilize 10 consecutive amino acids of the peptide,
including the phosphorylation site pS422. Only residue V420
of the peptide is not involved in immediate interactions with
the paratope.

As a general rule of humanization, all paratopic residues of
the reference antibody are to be retained, even if they are part
of the b-sheet framework. In these cases, backward mutations
in the human acceptor framework might be required. The pre-
requisite for taking such decisions is the availability of the anti-
body-antigen complex structure, or a very accurate model

thereof. In silico tools such as Antibody i-Patch30 can also help
to identify residues that are likely to form a part of the
paratope.

Each of the 3 original antibodies shows a distinct profile in
terms of VH-VL orientation. A graphical representation of the
ABangle vectors used to calculate the orientation measures (cp.
Fig. 1A) is shown in Fig. 6. The absolute ABangle values for the
3 crystal structures can be found in Table SI1.

The cumulative distance in ABangle VH-VL orientation
space (distABangle) between CD81K04 and CD81K13 is 15.91,
and 7.94 between CD81K04 and Rb86. With a distABangle of
16.26, CD81K13 is also markedly different from Rb86. For
comparison, the average distABangle between the multiple
sequence-identical copies of CD81K04 and Rb86 within the
asymmetrical unit of the crystal structure is 1.58 and 2.28,
respectively, and the largest distABangle between any 2 antibody
crystal structures that we are currently aware of is 37.66 (found

Figure 3. Fv regions of the antibodies a) CD81K04 (PDB ID 5DFV), b) CD81K13 (PDB ID 5DFW), and c) Rb86 (5DMG) in complex with their respective antigen (colored
yellow), shown in frontal (top) and top view (bottom). Capital letters in panels a) and b) indicate the helix names of CD81 LEL. In panel c), the location of phosphoserine
in the peptide derived from tau/pS422 is highlighted with an asterisk. CDR color coding as described in Fig. 1.

Figure 4. Non-bonded interactions at the antibody-CD81 LEL interface of antibodies a) CD81K04 and b) CD81K13. Capital letters indicate the helix names of CD81 LEL.
Hydrogen bonds indicated as green dotted lines, hydrophobic interactions indicated as magenta dotted lines, and electrostatic interactions indicated as orange dotted
lines. CDR color coding as described in Fig. 1.
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for the crystal structures with PDB IDs 3MNV_BA and
4M1D_IM; trailing capital letters indicate the PDB chain iden-
tifiers associated with heavy and light chain). The rather unique
VH-VL orientation of antibody CD81K13 becomes more
apparent by comparing it against the background distribution
of the redundant set of known antibody crystal structures, as is
shown in Fig. 7.

The murine antibody CD81K04 exhibits an average VH-VL
orientation shared by the majority of known antibody crystal
structures. Rb86, by contrast, shows comparatively high values
for the torsion angle HL and the bend angle HC2, as well as a
slightly smaller than average bend angle HC1. CD81K13 is a
clearly exceptional antibody in terms of VH-VL orientation,
with extreme values for HL and HC2, and a rather atypical
value of LC2. The only other known antibody with a similar
VH-VL orientation as CD81K13 is the hapten-binder 19G2
(crystal structures with PDB IDs 1FL3, 1UB5, 1UB6, and
3CFB), but there is almost no similarity in the orientation fin-
gerprint of the 2 (data not shown).

The residues that are influential for the different ABangle
parameters have been discussed at length in Refs. 21 and 22.
While the orientation fingerprint of CD81K13 is largely unre-
markable, the positions 398/H101 and 733/L87, both listed
among the top determinants for the ABangle parameters HL
and HC2, are histidine residues, making this antibody unique
among the known repertoire of antibody structures and offer-
ing a possible explanation for the rather atypical VH-VL orien-
tation. While CD81K04 and CD81K13 bind to the CD81 LEL
with practically the same affinity (KD 0.5 nM at 25�C26),
CD81K13 has a shorter CDR-H3 loop and lacks the long CDR-
L1 that is critical for the interaction between CD81K04 and its
epitope (cp. Fig. 4A). One might speculate that, during matura-
tion, CD81K13 compensated a possible lack of plasticity given
by the rather short CDRs by adapting a very particular VH-VL
orientation. The VH-VL orientation of CD81K13 leads to the
formation of a comparatively deep binding groove between the
2 variable domains that offers a perfect fit for Helix C and the
loop turn between Helix A and B of the CD81 LEL (cp. Fig. 4B).

In addition to the measured ABangle values, Fig. 7 shows,
for each antibody, the predicted ABangle values derived from
the VH-VL orientation fingerprint, once for the predictor
learned without the crystal structures of CD81K04, CD81K13

and Rb86 (subsequently referred to as “leave-one-out predic-
tor," emulating the more common scenario where the crystal
structure of the antibody to be humanized is not available), and
once for a predictor that is aware of the VH-VL orientation
parameters associated with the respective orientation finger-
prints (subsequently referred to as “all-knowing” predictor).

For the leave-one-out predictor, the mean error of the pre-
dicted values is 6.53, mainly caused by a largely incorrect pre-
diction of the ABangle values of CD81K13, with a cumulative
error of 14.17, as opposed to 2.87 for CD81K04, and 2.55 for
Rb86. Not surprisingly, the prediction error can be reduced sig-
nificantly when the orientation fingerprint of the structures in
question is included in the training set: The all-knowing predic-
tor learned with the crystal structures of CD81K04, CD81K13

Figure 5. Non-bonded interactions at the interface of antibody Rb86 and the peptide derived from tau/pS422 from 2 different perspectives a) facing the VL interface, and
b) facing the VH interface. From the co-crystallized 15-mer 416–430 of tau, only the segment 419–430 (MVDpSPQLATLAD) was assignable. Hydrogen bonds indicated as
green dotted lines, hydrophobic interactions indicated as magenta dotted lines, and electrostatic interactions indicated as orange dotted lines. CDR color coding as
described in Fig. 1.

Figure 6. ABangle VH-VL orientation vectors calculated from the crystal structures
of CD81K04 (cyan), CD81K13 (copper) and Rb86 (pink). The ribbon representation
shows the crystal structure of CD81K04. Residues included in the VH-VL orientation
fingerprint are shown in stick representation. Multiple vectors of the same color
refer to multiple copies of the same Fv in the asymmetric unit of the respective
crystal structure. CDR color coding as described in Fig. 1.
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and Rb86 predicts the ABangle values with a cumulative error
of 2.19, 10.82, and 1.24, respectively, leading to a mean error of
4.75. The prediction errors were determined in terms of distA-
Bangle between measured and predicted ABangle values. The
predicted values can also be found in Table S1.

Humanization candidate sequences

Figure 8 shows the humanized VH and VL sequence variants of
CD81K04 that were produced using the general CDR grafting
principle. The parental murine sequences are given for refer-
ence. At the time of humanization, none of the crystal

Figure 7. The antibody crystal structures of CD81K04 (cyan), CD81K13 (copper) and Rb86 (pink) in ABangle VH-VL orientation space. For each of the 6 ABangle parame-
ters, the background distribution of the redundant set of known antibody crystal structures is shown as a histogram. The predicted ABangle values are indicated by circles
(leave-one-out predictor) and squares (all-knowing predictor).

Figure 8. VH (top) and VL (bottom) sequences of CD81K04 and humanized sequence variants thereof. Framework and CDR classification follows WolfGuy nomenclature.
CDR color coding follows IMGT/Collier-de-Perles23 conventions: CDR-H1 is colored red, CDR-H2 orange, CDR-H3 purple, CDR-L1 blue, CDR-L2 light green, and CDR-L3 dark
green. Sequence positions that are part of the VH-VL orientation fingerprint are highlighted with a gray background. Sequence positions that are part of the VH-VL orien-
tation fingerprint but deviate from the parental sequence are highlighted with a green background.
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structures had been solved. Therefore, the decision to apply
backward or forward mutations was then based on a homology
model of the Fv region, without information on the exact loca-
tion, size and shape of the paratope. However, a precise homol-
ogy model of the Fv region in combination with knowledge of
the antigen type, or even location and shape of the epitope, can
be of help to narrow down positions where amino acid substi-
tutions might be critical. For the humanization of CD81K04,
12 variants of VH and 9 variants of VL were generated. While
each of the VH and VL variants is unique in sequence, some of
the variants share exactly the same orientation fingerprint (cp.
Fig. 1) and thus, putatively, will adopt the same VH-VL orien-
tation parameters. In Fig. 8, residues that are part of the orien-
tation fingerprint and have been changed with regard to the
murine reference sequence are highlighted.

The humanization variants of CD81K13 and Rb86 were
generated following the same principle and can be found in
Fig. S1 and Fig S2 of the Supplemental Information,
respectively.

Binding signal matrix and ABangle distance matrix

After the humanized sequence variants have been devised, they
are translated into coding DNA and cloned into an expression
vector that encodes the complete antibody heavy or light chain,
including the corresponding human constant regions. For ref-
erence, the variable regions of the original non-human anti-
body are also included. The antibodies are then expressed in a
matrix, combining all heavy chain with all light chain plasmids.

Table 1 shows the binding cell enzyme-linked immunosor-
bent assay (ELISA) results for the humanization matrix of anti-
body CD81K04. The top left cell corresponds to the chimerized
form of the murine antibody, i.e., the variable region is 100%
murine and thus should be unchanged in its antigen-binding

properties, while the constant part is 100% human. The
remainder of the top row and the leftmost column correspond
to half-humanized antibodies with either the heavy chain or
the light chain being a murine-human chimera, whereas all
other cells are linked to antibodies that have been fully
humanized.

As can be expected, the highest binding signal is detected for
the chimeric CD81K04 reference antibody listed in the top left
cell of Table 1. While some of the half-humanized and fully-
humanized antibodies achieve binding signals that are very
close to the murine reference (e.g., huVH09-huVL03), one can
also identify humanization variants that bind only poorly to
CD81 LEL, either in all of the possible combinations (huVL06,
huVL08, huVL09, and huVH06), or when combined with cer-
tain other humanization variants from the matrix (huVL04,
huVL05, huVL07, and huVH05). For some of the fully-human-
ized antibodies, hardly any binding signal is detectable.

Following the same approach of arranging the humanization
variants of VH and VL in a matrix, for each VH-VL pair it is
possible to: 1) generate the orientation fingerprint, 2) predict
the putative VH-VL orientation parameters, and 3) calculate
distABangle with regard to the reference antibody. The latter
value is then added to the corresponding cell of the matrix. The
methodology requires only the sequence of the reference anti-
body and its variants because all ABangle values involved are
predicted in silico (including the reference VH-VL orientation).
Table 2 shows the distABangle matrix for the humanization var-
iants of CD81K04.

Analogously to the binding cell ELISA matrix (Table 1), the
top left cell of Table 2 corresponds to the murine reference anti-
body. The remainder of the top row and the leftmost column
correspond to half-humanized antibodies where only one vari-
able domain has been humanized, whereas all other cells of
the distABangle matrix are associated with fully-humanized

Table 1. Matrix of binding cell ELISA results for antibody CD81K04 (denoted as Ref.) and its humanization variants (unitless absorbance).
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antibodies. Depending on the types of residues that form the
respective orientation fingerprint, certain combinations of VH
and VL humanization variants generate large distABangle values,
while others remain closer to the predicted reference values.
The predicted distABangle values are ranging from 0.28 to 1.32 for
the half-humanized VH-VL pairs, and from 0.62 to 1.59 for the
fully-humanized VH-VL pairs. None of the variants is predicted
to have exactly the same VH-VL orientation as the murine origin,
which is consistent with the observation that each variant has a
minimum of 2 amino acid substitutions at the domain interface
(cp. Fig. 8). With a maximum of only 1.59, the predicted absolute
distABangle values are low, and in the range of what is found for
sequence-identical copies of the same antibody within a given
crystal structure. We assume that: 1) the machine learning-based
predictor might understate the absolute ABangle values, as it
tends to lean toward the mean of the distribution of the structures
that it has been trained with, and 2) the factual change in VH-VL
orientation might indeed be relatively subtle, as many of the more
influential orientation fingerprint positions are part of the CDRs,
and thus remain unchanged in the course of humanization.

The distABangle values shown in Table 2 were computed using
the leave-one-out predictor. To evaluate how far the predictor
quality affects the results, we recalculated the matrix using the
all-knowing predictor that was demonstrated to predict ABan-
gle values that are closer to those of the CD81K04 crystal struc-
ture (cp. Fig. 7 and Table S1). The results are shown in Table 3.

The absolute distABangle values change quite visibly, and now
range from 0.49 to 2.20 for the half-humanized VH-VL pairs,
and from 0.82 to 2.84 for the fully-humanized VH-VL pairs.
This indicates that the all-knowing predictor is more capable of
stratifying the different variants in terms of the extent of change
in VH-VL orientation to be expected, although it is not possible
to verify this when the humanization variants’ crystal structures
are not available. Despite the change in the absolute range of

values, the general trend found for the different variants of VH
and VL seems to be in agreement with the distABangle matrix cal-
culated with the less accurate leave-one-out predictor.

Analogous pairs of binding signal and distABangle matrices for
the antibodies CD81K13 and Rb86 can be found in Tables S2-
S4 (CD81K04) and Tables S5-S8 (Rb86) of the Supplemental
Information. For Rb86, the binding signal data consists of 2
matrices of binding late (BL) and half-life (t1/2) values derived
from surface plasmon resonance (SPR) measurements. In the
case of CD81K13, the binding signal data is derived from bind-
ing cell ELISA experiments equivalent to those conducted for
antibody CD81K04.

Matrix relatedness and correlation assessment

To assess if it might be meaningful to preselect humanization
variants based on the putative difference in VH-VL orientation
with regard to the given reference antibody, we investigated if,
retrospectively, a relatedness between the distABangle matrices
and the available binding signal matrices for the 3 humaniza-
tion campaigns can be established.

There are several different measures to quantify the degree
of relatedness between 2 matrices. Often, this relatedness is
termed correlation, which, in this context, is technically incor-
rect. All of the existing measures make certain assumptions on
the shape and rank of the matrices, and the kind of data they
are trying to describe. One example is the Mantel correlation,31

which measures the relatedness between 2 distance matrices.
While the distABangle matrix qualifies as a proper distance
matrix, it is questionable if a matrix of binding signals from an
ELISA experiment could be interpreted as distance matrix in
the sense of the Mantel correlation.

Other measures for quantifying matrix relatedness try to cor-
relate multivariate data sets. Examples of these are the RV

Table 2. distABangle matrix for the humanization variants of antibody CD81K04 (denoted as Ref.), calculated using the leave-one-out predictor.
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coefficient,32 and the correlation coefficient from the PROTEST
method.33 These methods evaluate the correlation between 2
data sets where, for each sample, multiple measurements are
available, and therefore can be thought of as extensions of the
standard univariate correlation coefficient. Again, our data sets
do not necessarily fit into this description, and there is no com-
pelling reason why one should define either the VH or VL
humanization variants as samples. However, if one would aim at
rejecting complete VH or VL variants rather that rejecting only
certain VH-VL combinations (thereby advantageously reducing
the number of antibody chains that need to be cloned and
expressed), one might investigate exactly this, and consider each
humanization variant of either VH or VL as an inseparable
“sample," and the predicted distABangle values obtained for all of
the possible pairings as the “measurements." Consequently, one
would expect that a multivariate correlation between the distABangle
values and the observed binding signals can be established.

Table 4 states the RV coefficients and their associated p-val-
ues for the different pairs of matrices, where the RV coefficient

is either calculated from the perspective of the VH variant as
sample while perceiving the paired VL variants as multivariate
measurements, or vice versa. The p-values are calculated via a
permutation test, and indicate the probability of randomly reach-
ing an RV coefficient as high as or higher than the one that has
been calculated. For antibody Rb86, 2 separate data sets, one for
the BL matrix and one for the t1/2 matrix, are tested.

For the VH humanization variants, a low but significant cor-
relation can be found for CD81K13 and Rb86 (BL matrix). The
same holds for the VL humanization variants of CD81K04.
Using the all-knowing predictor, and thus more accurately pre-
dicted distABangle matrices, the correlation can be improved in 7
of the 8 cases (with the VL humanization variants of CD81K04
being the exception), albeit not to a very high level. In the case
of antibody Rb86, where 2 separate matrices of binding signals
are available, the t1/2 matrix correlation is slightly better for the
VL variants, and notably worse for the VH variants.

A less restricted view on the data set would be to view
each possible VH-VL combination as an individual. In that

Table 4. RV coefficients and associated p-values for the different binding signal
matrix-distABangle matrix pairs.

RV coefficient VH p-value VH RV coefficient VL p-value VL

Leave-one-out ABangle predictor
CD81K04 – ELISA 0.126 3.88e-1 0.486 7.80e-3
CD81K13 – ELISA 0.486 3.56e-2 0.207 3.21e-1
Rb86 – BL 0.324 3.34e-2 0.129 1.87e-1
Rb86 - t1/2 0.131 2.87e-1 0.199 1.86e-1

All-knowing ABangle predictor
CD81K04 – ELISA 0.324 7.23e-2 0.249 5.71e-2
CD81K13 – ELISA 0.540 2.67e-2 0.266 2.23e-1
Rb86 – BL 0.625 6.24e-4 0.234 4.98e-2
Rb86 – t1/2 0.231 9.36e-2 0.320 4.51e-2

Table 5. Pearson correlation coefficients and associated p-values for the different
binding signal matrix-distABangle matrix pairs. The correlation is calculated on vec-
torised versions of the respective matrices.

Pearson correlation coefficient p-value

Leave-one-out ABangle predictor
CD81K04 – ELISA -0.440 1.66e-07
CD81K13 – ELISA -0.356 5.70e-04
Rb86 – BL -0.384 1.54e-11
Rb86 - t1/2 -0.124 3.50e-02

All-knowing ABangle predictor
CD81K04 – ELISA -0.417 7.95e-07
CD81K13 – ELISA -0.428 2.55e-05
Rb86 – BL -0.614 < 2.20e-16
Rb86 - t1/2 -0.292 4.66e-07

Table 3. distABangle matrix for the humanization variants of antibody CD81K04 (denoted as Ref.), calculated using the all-knowing predictor.
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case, it makes sense to vectorize both matrices and calculate
the Pearson correlation coefficient. Given that VH-VL ori-
entation is largely governed by the complex interplay of a
number of key residues at both sides of the VH-VL domain
interface, the pair-based approach might be more meaning-
ful than the sample-based approach that focuses on only
one of the 2 domains at a time.

Table 5 shows the Pearson correlation coefficient and the
according p-value for the different data sets. The p-value indi-
cates the probability to reach the calculated correlation under
the null hypothesis of having no correlation between distABangle
and binding signal.

All data sets show a low to moderate but significant correla-
tion, which, by using the more accurate all-knowing ABangle
predictor can be improved further. The exception is antibody
CD81K04, where the Pearson correlation coefficient of -0.417
remains in the same order as the one obtained with the leave-
one-out predictor (-0.440), possibly because there is only a very
minor improvement regarding the quality of the ABangle pre-
diction when the all-knowing predictor is being used (cp. Table
SI1). Given the evidence for correlation between the individual
entries of the vectorized matrices, it can be expected that meth-
ods which reject certain VH-VL combinations based on unfa-
vorable distABangle predictions should have a positive effect on
the quality of the remaining set of humanized antibodies.

Humanization candidate subset selection

In the following, we evaluate 3 intuitive methods for optimizing
a given set of humanized antibodies with regard to its antigen-

binding properties by identifying and discarding candidates
that are likely to be poor preservers of the non-human anti-
body’s original VH-VL orientation. These methods are: 1)
rejecting a fixed percentage of candidates that represent the
upper end of the distABangle spectrum, 2) rejecting VH and VL
variants that have a high average distABangle value over all possi-
ble pairings, and 3), as a variant of the former method, rejecting
combinations of VH and VL variants that have a high average
distABangle value over all possible pairings. For simplicity, we
denote the 3 approaches as “reject fixed percentage," “reject
worst chains," and “reject worst chain combinations." Of
course, many more approaches of subset rejection are
conceivable.

For the 2 methods “reject bad chains” and “reject bad chain
combinations” that use the average distABangle value over all
possible pairings to decide whether a VH or VL variant should
be kept or rejected, it is necessary to define a rejection threshold
value. Due to the fact that the absolute distABangle range and dis-
tribution is highly dependent on the individual set of candi-
dates, it is non-trivial to define a general rule for determining
an optimal threshold value. This is illustrated in. Fig. 9

In some cases, a distinct stratification of different average
distABangle levels is perceivable (e.g., Rb86 VH), so that a thresh-
old value for variant rejection can be defined in a straightfor-
ward manner, while in other cases, the distribution of average
distABangle values is almost continuous and subject to relatively
minor variations (e.g., CD81K13 VL). Furthermore, in the case
of antibody CD81K13, all humanization variants of VL are pre-
dicted to suffer from a notable change of VH-VL orientation,
so that in principle one would either have to accept all variants

Figure 9. VH (top row) and VL (bottom row) humanization variants of CD81K04, CD81K13 and Rb86, sorted by average distABangle value over all possible pairings (all-
knowing ABangle predictor). The letter R denotes the non-human reference VH or VL. The dashed line indicates 80% of the maximum distABangle value, the threshold used
for automatic rejection of a given variant.
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Figure 10. Overlay of the CD81K04 binding cell ELISA matrix (green indicates high binding signals, red low binding signals) with the selection matrix for each of the 3
rejection methods (darkened cells indicate rejected VH-VL pairs). The letter R denotes the murine reference VH or VL. Panel a) shows selections based on the leave-one-
out predictor, panel b) shows selections based on the all-knowing predictor.

Figure 11. CD81K04: Normalized histograms of the binding signal range of kept (dark gray) and rejected subset (light gray) for each of the 3 distABangle-based rejection
methods. Binding signal values are taken from the CD81K04 binding cell ELISA matrix. Results in panel a) are based on selections made using the distABangle matrix from
the leave-one-out predictor, while results in panel b) are based on selections made using the distABangle matrix from the all-knowing predictor.
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(and risk possible negative effects on binding), or accept none
(and define new ones that better conserve the VH-VL orienta-
tion fingerprint). Given the multitude of possible scenarios,
defining the rejection threshold manually and on a case-by-
case basis is recommended. Here, for the sake of comparability,
we proceed with a fixed variant rejection threshold of 80% of
the maximum average distABangle that is the same for our 3
example antibodies (cp. Fig. 9).

Fig. 10 illustrates the difference between the 3 subset rejec-
tion methods in the case of antibody CD81K04. Analogous rep-
resentations for the antibodies CD81K13 and Rb86 can be
found in Figs. S3, S4, and S5 of the Supplemental Information.

In this example, the method “reject worst percentage”
(Figure 10, left panel) rejects a fixed number of 26 VH-VL pairs
from CD81K04’s 13x10 candidate matrix, corresponding to the
top 20% in terms of distABangle with regard to the reference. Of
course, depending on the desired target number of candidates,
a different percentage for rejection can be chosen. The selection
varies slightly dependent on which version of the ABangle pre-
dictor is being used, but the rejected candidates mainly involve
VH variant huVH12 and VL variant huVL09. The method
“reject worst chains” discards one VL variant (huVL09) and a
relatively high number of 6 (or 7, respectively) VH variants, so
that only 63 (or 54, respectively) of the 130 possible VH-VL
combinations remain. The method “reject worst chain combi-
nations” is the least aggressive of the 3 approaches, and discards
only 6 (or 7, respectively) of the 130 candidates, all of which
involve VL variant huVL09.

To rate the performance of our different subset rejection
methods, we calculate the ratio of the median binding signal
between the kept and the rejected candidate subset, and, related

to this ratio, a p-value based on a random permutation test to
assess whether there would have been better possibilities to fil-
ter the set of humanization candidates. The results are shown
in Figs. 11, 12 and 13, respectively.

In the case of antibody CD81K04 (Fig. 11), all 3 selection
methods deliver a kept candidate subset that has a 2.5 to
4.6-fold higher median binding signal than the rejected subset
(see value “factor” in Fig. 11). This is also evident from the his-
tograms of the rejected candidate subsets, which tend to peak
in the lower (left) region of the binding signal spectrum. None
of the rejected subsets contains candidates from the highest
range of binding signals (i.e., the rightmost region of the histo-
gram). The results are highly significant for the “reject fixed
percentage” selection method, and of low to moderate signifi-
cance for the 2 methods that are dependent on averages over all
possible pairings. This is coherent with our correlation analysis
in the previous section, which showed better results for individ-
ual-based correlation than for sample-based correlation (i.e.,
considering whole rows and columns of the respective matrices
at a time). Irrespective of the subset selection method, the bind-
ing signal factors and the p-values improve when the more
accurate all-knowing ABangle predictor is being used.

For CD81K13 (Fig. 12), the general picture is similar, but
the improvement by candidate filtering is only very modest
(1.6 to 1.8-fold). In this case, all 3 selection methods produce
significant results, although the selection by “reject worst
chains” is practically meaningless, as all VL variants but the ref-
erence are discarded when the fixed threshold for automatic
rejection (80% of the maximum average distABangle value) is
applied (cp. Fig. 9). The set of rejected candidates then com-
prises up to 85 of the 90 VH-VL pairs, including some that are

Figure 12. CD81K13: Normalized histograms of the binding signal range of kept (dark gray) and rejected subset (light gray) for each of the 3 distABangle-based rejection
methods. Binding signal values are taken from the CD81K13 binding cell ELISA matrix. Panels a) and b) as described in Fig. 11.
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in the highest binding signal range. This underlines that it
seems advisable to decide on a rejection threshold on a case-
by-case basis and only after the individual distABangle distribu-
tion has been reviewed.

Figure 13 shows the results for antibody Rb86 using the BL
matrix of binding signals. The three selection methods produce
filtered sets of candidates with a 2.4 to 8.7-fold improvement in
median binding signal, and candidates from the highest range
of binding signals are never among the rejected VH-VL pairs.
While the p-values for the “reject fixed percentage” method are
flawless, the results for “reject worst chains” and “reject worst
chain combinations” are not in the significant range, unless the
all-knowing predictor is being used. As in the previous exam-
ples, the results (both binding signal ratio and p-value) improve

visibly when the ABangle values are predicted more accurately
(which we assume is the case for the all-knowing ABangle
predictor).

An analogous representation for the half-life (t1/2) matrix of
Rb86 can be found in Fig. S6 of the Supplemental Information.
Note that for the t1/2 matrix, most binding signal ratios could
not be determined, as the median binding signal of the rejected
subset can come out zero. The Rb86 t1/2 matrix contains 84
entries that equal zero, which does not agree well with our
method of analysis. As the subset selection is dependent only
on the distABangle matrix, it is the same for both Rb86 binding
signal matrices.

Table 6 summarizes the results for the 3 humanization can-
didate rejection methods.

Figure 13. Rb86: Normalized histograms of the binding signal range of kept (dark gray) and rejected subset (light gray) for each of the 3 distABangle-based rejection meth-
ods. Binding signal values are taken from the RB6 BL matrix. Panels a) and b) as described in Fig. 11.

Table 6. Binding signal median change factor, p-value and number of total and rejected VH-VL pairs (“tot./rej.”) for each of the 3 humanization candidate selection
methods.

Fixed percentage (20%) Worst chains (80%/max) Worst chain comb. (80%/max)

factor p-value tot./rej. factor p-value tot./rej. factor p-value tot./rej.

Leave-one-out ABangle predictor
CD81K04 – ELISA 3.717 1.44e-3 130/26 2.534 8.21e-2 130/67 3.166 2.49e-1 130/6
CD81K13 – ELISA 1.572 1.12e-2 90/18 1.618 2.36e-2 90/76 1.665 5.75e-2 90/16
Rb86 – BL 3.110 0 288/57 2.384 1.85e-1 288/33 8.676 6.99e-2 288/1
Rb86 - t1/2 1.435 2.36e-2 288/57 0.864 6.69e-1 288/33 / / 288/1

All-knowing ABangle predictor
CD81K04 – ELISA 3.857 6.70e-4 130/26 3.279 4.04e-3 130/76 4.667 1.24e-1 130/7
CD81K13 – ELISA 1.699 4.48e-3 90/18 1.736 3.34e-2 90/85 1.805 2.31e-2 90/36
Rb86 – BL 6.173 0 288/57 5.614 3.41e-3 288/33 8.676 3.72e-2 288/3
Rb86 - t1/2 / / 288/57 / / 288/33 / / 288/3
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Discussion

In all 3 examples, the method “reject fixed percentage” (20%)
delivers a significant improvement in median binding signal of
the remaining set of VH-VL pairs, which supports our hypoth-
esis that selecting antibody humanization variants that are
likely to preserve the VH-VL orientation of the original non-
human antibody is meaningful. Even for antibody CD81K13,
where the accuracy of the ABangle predictions is questionable,
a moderate and significant improvement can be achieved. The
quality of the results can be improved further when the more
accurate predictor is used.

The method “reject worst chains” delivers similar improve-
ment factors as the prior method, but achieves significant
results only when combined with the all-knowing predictor.
Thus, it seems to be more susceptible to inaccurate ABangle
predictions. The main advantage of this method is that VH or
VL variants are rejected as a whole, which is the optimal sce-
nario in terms of potential for reducing wet lab workload. How-
ever, the absolute distABangle range and distribution is highly
dependent on the individual set of VH-VL pairs, so that choos-
ing the distABangle threshold value above which VH or VL var-
iants should be rejected is not always straightforward. For
example, using a rejection threshold corresponding to 80% of
the maximum average distABanglevalue led to an excessive rejec-
tion of candidates in the case of antibody CD81K13, while it
worked reasonably well for the other 2 examples.

The third method “reject worst chain combinations” is also
dependent on a definite distABangle threshold value, but tries to
minimize the risk of discarding good binders by rejecting only
candidates were both VH and VL variant are found to be
worse than the aforementioned threshold value. In practice,
this leads to a very small number of rejected VH-VL pairs
that, in 4 of the 6 evaluated cases, is not significantly better
than a randomly selected subset of the same size. Further-
more, the method does not work in situations where one
would wish to retain all variants of either VH or VL, and dis-
card only variants of the complementary type. Finally, it is
obvious that rejecting very small numbers of candidates is
only of limited benefit when one aims at accelerating wet lab
workflows in a noticeable manner.

Establishing a direct correlation between raw binding data and
the predicted change in the VH-VL orientation (i.e., distABanglewith
regard to the non-human antibody) is obviously a challenging task.
Firstly, there is a non-negligible intrinsic variation in the binding
assays that are performed on supernatants or on micro-purified
samples, and separating the effect of changes in VH-VL orientation
from other factors that might have an effect on the binding signal is
not altogether possible. Secondly, the predicted ABangle values
may be subject to a significant error, in particular when the anti-
body to be humanized exhibits a very atypical VH-VL orientation
(as is the case for the murine antibody CD81K13 presented here).
Even for sequence-identical antibodies of known structure, notable
deviations in the measured ABangle parameters have been found,
which suggests that VH-VL orientation has an intrinsic variability
and thus an unpredictable component (e.g., VH-VL orientation
changes induced by subtle induced fit-like antigen-dependent
effects) that cannot be tackled by a sequence-based machine learn-
ing approach.

Despite the fact that both binding signals as well as ABangle
predictions can be significantly perturbed, our results show
that a correlation between high distABangle values and low bind-
ing signals can be established. As our method is not dependent
on absolute ABangle values but rather on differences in VH-VL
orientation, we are confident that a part of the error cancels
out, so that at least a qualitative categorization of the human-
ized antibodies into VH-VL orientation conservers and non-
conservers is possible.

Nonetheless, and despite the fact that the humanized anti-
bodies are ranked based on ABangle differences and not on
absolute values, we found that using the more accurate ABangle
predictions also led to better candidate selections, which was
reflected by higher median binding signal factors and lower
p-values. Therefore, the ABangle prediction accuracy remains
an issue, and continuously retraining the ABangle predictor as
new antibody crystal structures become available is mandatory.
In the same line of thought, one might refrain from using the
method in cases where the orientation fingerprint of the anti-
body to be humanized suggests that the prediction, due to a
lack of known structures with a similar VH-VL interface, may
be very inaccurate.

We have applied our analysis to finalized sets of humanization
variants that were generated by the general CDR grafting proce-
dure. The method can also be used to screen engineered antibody
sequence variants in general for possible issues regarding the con-
servation of VH-VL orientation to avoid undesired effects on the
antigen-binding properties or VH-VL stability. Finally, one could
also envision beginning a humanization campaign for a given
antibody by using the VH-VL orientation prediction method to
find a favorable pair of human acceptor frameworks. An example
for how this might work is illustrated in Figs. S7 and S8 of the
Supplemental Information, where the CDRs of antibody
CD81K04 were grafted in silico on a number of known VH and
VL germline sequences, followed by a calculation of the resulting
distABangle values with regard to themurine origin.

In contrast to the general CDR grafting routine, where, in
principle, the sequences of VH and VL can be treated sepa-
rately, this methodology always considers both variable
domains simultaneously. In spirit, this idea is related to earlier
attempts to identify preferences in VH-VL germline pair-
ing;34,35 however, the ABangle predictor has the advantage of
being able to factor in the interplay between the residues of the
conserved acceptor framework and the CDRs residues of the
individual antibody to rate if VH-VL orientation will be pre-
served. This approach leads to humanized antibodies that,
despite possibly having a lower sequence identity with the non-
human origin, are more successful in preserving the original
antigen-binding properties. Due to the fact that the method
does not have to rely on backward mutations in the acceptor
framework to recover the correct VH-VL orientation, the over-
all degree of humanness is likely to be improved.

Material and methods

Crystal structures

Co-crystallization of CD81K04 Fab fragment and CD81K31
(scFv) in complex with CD81 LEL
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CD81LEL protein at 7.7 mg/ml concentration in 50 mM
TRIS-Cl (pH 8.0), 300 mM sodium chloride was incubated on
ice at 1:1 molar ratio with CD81K04 Fab fragment in 20 mM
His, 140 mM NaCl (pH 6.0). Crystals of the CD81LEL-
CD81K04 complex where obtained at 20 �C in sitting drops by
mixing 20 nl of protein complex solution with 20 nl of 20 %
PEG 10k, 100 mM sodium acetate (pH 4.0) using acoustic liq-
uid dispensing.36 For crystals containing CD81K13 (scFv), 20%
PEG3350, 200 mM sodium formate, 100 mM sodium citrate
(pH 5.9) was used as precipitant solution. Crystals were pre-
pared for flash cooling by adding glycerol to the crystallization
drop solution to a final concentration of 20%.

Co-crystallization of Rb86 Fab fragment in complex with a
pTau peptide (416-pS422–430)

Fab fragment at a concentration of 11.4 mg/ml in 10 mMTris pH
7.4, 50 mM NaCl was incubated with pTau peptide (416-pS422–
430) in a 5-fold molar excess for 3h at 21�C. Prior to crystalliza-
tion experiments sodium acetate buffer at pH 4.5 was added to a
final concentration of 0.2M followed by concentration of the pro-
tein to 20.7 mg/ml. Crystallization droplets were set up at 21 �C
by mixing 0.1 mL of protein solution with 0.1 mL reservoir solu-
tion (Wizard1/2 Screen, Emerald) in vapor diffusion sitting drop
experiments. Crystals were obtained out of 0.2 M lithium sulfate,
0.1 M sodium acetate and 30% PEG8000 as precipitant. Before
data collection, crystals were transferred to crystallization buffer
supplemented with 20% Glycerol and flash-frozen in liquid N2.
Diffraction data were collected at a wavelength of 0.7000 A

�
using

a PILATUS 6M detector at the beamline X10SA of the Swiss Light
Source (Villigen, Switzerland).

Structure determination and refinement

The data were processed and scaled with XDS.37 The structures
were determined by molecular replacement with PHASER.38

As search models, coordinates of in-house Fab and scFv struc-
tures were used. The coordinates were refined by rigid body
and positional refinement with programs from the CCP4
suite39 and BUSTER.40 Difference electron density was used to
change amino acids according to the sequence differences, and
to model the pTau peptide by real space refinement. Manual
rebuilding of the proteins was done with COOT.41 Data collec-
tion and refinement statistics can be found in Table S9 of the
Supplemental Information.

Binding measurements

For the binding cell ELISA assay, HuH7-Rluc-H3, positive cell
line expressing CD81, and HuH7-Rluc-L1, negative control cell
line, were propagated in F-12 DMEM medium with 10% FCS
at 37�C and 5% CO2. On day 1, the cells were trypsinized at
approximately 90% confluence and resuspended at 4 £ 105

cells/mL. Two x 104 cells/well HuH7-Rluc-H3 and HuH7-Rluc-
L1 were plated in 50mL DMEM medium and allowed to adhere
to the 96 well poly-D-Lysine plate for 24h at 37�C and 5% CO2.
On day 2, the antibodies samples to be tested were prepared in
a separate polypropylene round bottom plate with a twofold
desired concentration with a final volume of 120 ml. All of the

assay samples were diluted in cell culture medium. 50 mL of
each antibody sample (duplicate wells) were added to cells to
give final volume of 100 mL/well and incubated for 2 h at 4�C.
Following the primary incubation the samples were removed
by aspiration and the cells were fixed with 0.05% glutaralde-
hyde in PBS solution for 10 minutes at room temperature. After
fixation, each well was washed 3 times with 200 mL PBS/0.05%
Tween. The secondary incubation step for detection of bound
anti-CD81 antibodies was performed for 2 h at room tempera-
ture on a reciprocal shaker. For the humanized CD81K04
and CD81K13 antibodies, detection was performed using
peroxidase conjugate sheep anti-human-IgG-gamma chain
specific antibody (The Binding Site Cat. # AP004) and a goat
anti-mouse IgG, (HCL)-HRP conjugate BIORAD 170–6516
was used for the JS81 mouse positive control antibody (BD Bio-
sciences 555675) both diluted 1:1000 in PBS 10% blocking
buffer. Each well was washed 3 times with 200 mL PBS/0.05%
Tween to remove unbound antibodies. The HRP activity
was detected using 50 mL ready-to-use TMB solution and
reaction was stopped after approximately 7–10 minutes with
50 mL per well 1M H2SO4. The absorbance was read using the
ELISA Tecan reader at 450 nm with 620 nm reference
wavelength.

For the rabbit antibody Rb86, we measured the superna-
tants at the first screening level for their ability to have associ-
ation and dissociation parameters that do not deviate too
much from the ones of the original antibody. The kinetic
screening was performed on a BIAcore 4000 instrument,
mounted with a BIAcore CM5 sensor.42 A BIAcore CM5
series S chip was mounted into the instrument and was
hydrodynamically addressed and preconditioned according to
the manufacturer’s instructions. The instrument buffer was
HBS-EP buffer (10 mM HEPES (pH 7.4), 150 mM NaCl,
1 mM EDTA, 0.05 % (w/v) P20). An antibody capture system
was prepared on the sensor surface. A polyclonal goat anti-
human antibody with human IgG-Fc specificity (Jackson Lab.)
was immobilized at 30 mg/ml in 10 mM sodium acetate
buffer (pH 5) to spots 1, 2, 4 and 5 in the instrument’s flow
cells 1, 2, 3 and 4 at 10,000 RU using NHS/EDC chemistry. In
each flow cell the antibodies were captured on spot 1 and spot
5. Spot 2 and spot 4 were used as reference spots. The sensor
was deactivated with a 1 M ethanolamine solution. Human-
ized antibody derivatives were applied at concentrations
between 44 nM and 70 nM in instrument buffer supple-
mented with 1mg/ml CMD (carboxymethyldextrane). The
antibodies were injected at a flow rate of 30 ml/min for 2 min.
The capture level (CL) of the surface-presented antibodies was
measured in rel. response units (RU). The analytes in solution,
phosphorylated human tau protein, non-phosphorylated
human tau protein and the phosphorylated human tau mutant
protein T422S, were injected at 300 nM for 3 min. at a flow
rate of 30 ml/min. The dissociation was monitored for 5 min.
The capture system was regenerated by a 1 min. injection of
10 mM glycine buffer pH 1.7 at 30 mL/min. over all flow cells.
Two report points, the recorded signal shortly before the end
of the analyte injection, denoted as binding late (BL) and the
recorded signal shortly before the end of the dissociation time,
stability late (SL), were used to characterize the kinetic screen-
ing performance. Furthermore, the dissociation rate constant
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kd (1/s) was calculated according to a Langmuir model and the
antibody/antigen complex half-life was calculated in minutes
according to the formula ln(2)/(60�kd). The binding late RU are
compiled for each variant and for the reference rabbit antibody,
as well as the dissociation rate constant kd [1/s]. For some var-
iants that associated very poorly (RU in association phase close
to zero or negative), it was not possible to determine a kd value.
In these cases, the half-life value was set to zero.

Calculation of ABangle parameters and ABangle distances

The six ABangle orientation parameters (cp. Fig. 1A) of the
crystal structures were calculated with the program code pub-
lished by Dunbar et al.21 available at http://www.stats.ox.ac.uk/
»dunbar/abangle. The program code was modified slightly so
as to work with WolfGuy-numbered structures.

In order to compare similarity in ABangle space, we define a
set of ABangle parameters as the tuple u :D (HL, HC1, LC1,
HC2, LC2, dc) :D (#1, #2, #3, #4, #5, #6).

The Euclidean distance between 2 sets of ABangle parame-
ters is then

distABangleðua; ubÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX6

i¼1
ð#ia � #ibÞ2

r
:

As distABangle mingles angular (HL, HC1, LC1, HC2, LC2) with
linear (dc) distance measures, it cannot be interpreted in terms
of a factual unit of measure such as degrees.

ABangle predictor

The different ABangle parameters as described above were pre-
dicted by forest (multi-tree) recursive partitioning regression
models implemented in Accelrys Pipeline Pilot 9.1.43 The num-
ber of trees per forest was set to 200, and the maximum tree
depth was set to 50.

The dataset for learning the predictor consisted of a
redundant (with regard to Fv sequence) set of 1439 anti-
body Fv crystal structures that were crystallized as anti-
body-antigen complex at a resolution of a at least 3.0 A

�
.

The data set of crystal structures was collected from the
PDB (www.rcsb.org) in May 2015 and complemented by a
small number of proprietary crystal structures owned by Roche.
Fv structures crystallized in the absence of the antigen were not
included as they were shown to have a higher perturbation in
their VH-VL orientation parameters than Fv structures crystal-
lized as a complex,21 and thus do not contribute favorably to
the predictor.22

For each Fv structure involved, the ABangle parameters
were measured and the orientation fingerprint consisting of 54
residues was generated.44 To ensure to include the maximum
diversity of different orientation fingerprints in the training set,
we used CD-HIT45,46 to cluster the orientation fingerprints at
100% identity, and, for each cluster, added at least one repre-
sentative to the training set, until ⅔ of the available structures
had been assigned to the training set. The remaining ⅓ were
used for testing. Due to the fact that the test set then consists of
orientation fingerprints that are also included in the training

set, the resulting Q2 values, ranging from 0.71 to 0.88 depend-
ing on the respective ABangle parameter, clearly overstate the
actual capabilities of the predictor when confronted with an
unknown orientation fingerprint. In that case, Q2 values were
found to range 0.54 to 0.73, approximately.22 To implement the
leave-one-out predictions, the crystal structures of CD81K04,
CD81K13 and Rb86, as well as any structures with the same
orientation fingerprint (if any) were removed from the dataset
for learning.

Statistical methods

Pearson correlation coefficient
The Pearson correlation coefficient measures the linear correla-
tion between 2 variables X and Y. It is calculated as

r ¼ covðX;YÞ
sXsY

;

with cov(X,Y) being the covariance between X and Y and s the
standard deviation. We use the standard cor.test method in R47

to calculate the correlation coefficient, and the p-value to evalu-
ate if it differs significantly from zero.

RV coefficient
The RV coefficient was introduced by Escoufier to measure the
similarity between square symmetric matrices.32 The definition
can be easily extended to rectangular matrices.48 For 2 matrices
X and Y, the RV coefficient can be calculated as

RV ¼ tracefSTTgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðtracefSTSgÞ£ðtracefTTTgp ;

with S = XXT and T = YYT. In order to calculate an associated
p-value for the RV coefficient, we use the coeffRV-method
from the FactoMineR package49 in R, which implements a per-
mutation test as described in Josse et al.50
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