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Abstract

An important experimental design question for high throughout time series studies is the number 

of replicates required for accurate reconstruction of the profiles. Due to budget and sample 

availability constraints, more replicates imply fewer time points and vice versa. We analyze the 

performance of dense and replicate sampling by developing a theoretical framework that focuses 

on a restricted yet expressive set of possible curves over a wide range of noise levels and by 

analyzing real expression data. For both the theoretical analysis and experimental data we observe 

that under reasonable noise levels, autocorrelations in the time series data allow dense sampling to 

better determine the correct levels of non-sampled points when compared to replicate sampling. A 

Java implementation of our framework can be used to determine the best replicate strategy given 

the expected noise. These results provide theoretical support to the large number of high 

throughput time series experiments that do not use replicates.

eTOC Blurb

Our study indicates that when facing budget or sample availability constraints researchers 

performing time series experiments should sample more time points rather than perform technical 

repeat experiments.
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Introduction

High-throughput time-series experiments have been used to study several biological systems 

and processes, to measure readouts such as mRNA levels using RNA-Seq (Trapnell et al., 

2012) and protein-DNA interactions using ChIP-Seq(Chang et al., 2013). Such studies are 

often designed with a defined start and end point and a selected number of time points to be 

sampled in between.

The more points that can be profiled between the start and end points, the more likely it is 

that the reconstructed trajectory for the data type being studied is accurate. However, in 

practice the number of time points that are used in a study is usually very small (Zinman et 

al., 2013). The main limiting factor for most experiments is budget. While technology has 

greatly improved over the last two decades, high-throughput sequencing studies still cost 

hundreds of dollars for a single experiment. This is a major issue for time series studies, 

especially those that need to profile multiple types of biological data (for example, mRNA, 

miRNAs and methylation levels) at each selected point. Another issue that can limit the 

number of experiments performed (and therefore the total number of time points that can be 

used) is biological sample availability. Thus, when designing such experiments, researchers 

often need to balance the overall goals of reconstructing the most accurate temporal 

representation of the data types being studied and the need to limit the number of 

experiments due to scarcity of resources.

Given these constraints, researchers designing high-throughput time-series studies must 

carefully consider the need for replicate experiments. On one hand, replicates are a hallmark 

of biological experiments (Cumming, Fidler, and Vaux, 2007), providing valuable 

information about measurement noise and reliability of the measured values. On the other 

hand, replicates further reduce the number of time points that can be profiled, leading to the 

possibility of missing key events between sampled points. When resource scarcity is an 

issue, even one replicate for each time point cuts the total number of points that can be 

profiled by half, and this can have a large impact on our ability to accurately reconstruct the 

trajectories of the biological data being profiled. Indeed, when examining the time-series 

datasets deposited in GEO, we observe that in many cases replicates have not been used in 

these studies (Zinman et al., 2013).

We aim to analyze the trade-offs between dense sampling (profiling more time points using 

one experiment per point) and replicate sampling (profiling fewer points, with more than one 

experiment for each point) in high throughput biological time series studies, and determine 

which strategy works best and under what circumstances.

The relative merit of replicates and their impact has been investigated previously for high 

throughput biological experiments, but this has been limited to static datasets (where no 

relationship is assumed between consecutive experiments that are not replicates), and not 

time series data. For example, (Mongan et al., 2008) analyzed the variation in a large 

number of replicate experiments of the same samples collected on different dates and 

determined that overall correlations between these experiments were high. Others have used 

replicate experiments for follow up analysis, for example, to identify differentially expressed 
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(DE) genes (Tu, Stolovitzky, and Klein, 2002), and to improve the performance of clustering 

methods (Tjaden, 2006). However, while most methods for identifying differentially 

expressed genes in static experiments rely on replicates, most methods for the identification 

of differentially expressed genes in time-series studies do not assume replicates and instead 

rely on the overall trajectory of the genes (Kim J., Ogden, and Kim H., 2013; Bar-Joseph et 

al., 2003b; Ma, Zhong, and Liu, 2009).

Outside the realm of high-throughput biological datasets, the issue of replicate experiments 

in time series studies has been the focus of several statistical papers. For example, for 

epidemiological studies, tradeoffs were established between frequent measurements of a 

small number of patients and more infrequent measurements of a larger number of patients 

(Schmidt et al., 2010). Other examples include the analysis of sampling vs. replicates in 

speech processing (Listgarten et al., 2004) and early, theoretical work on reconstructing 

curves using parametric methods (Astrom, 1969). However, the major difference between 

high-throughput biological datasets and most prior work that studied these tradeoffs is the 

fact that in the biological experiments all genes must be sampled at the same time at each 

experiment. In other words, rather than trying to infer a single curve or profile for each 

experiment, we are actually inferring tens of thousands of curves simultaneously. Thus, 

methods for the analysis of such data should consider a much larger set of possible outcomes 

and examine the impact of the two possible strategies (using either dense or replicate 

sampling) in the context of such large number of potential curves.

To compare dense versus replicate sampling in the context of the complexity of high-

throughput biological data, we establish a framework for both theoretical analysis and 

analysis of experimental (i.e. real) gene expression data. Several methods have been 

suggested and used for functional representation of high-throughput time series data such as 

gene expression profiles. These representations include splines (Bar-Joseph et al., 2003a), 

sinusoidal functions (Whitfield et al., 2002) Gaussian processes (Kalaitzis and Lawrence, 

2011) and impulse models (Chechik et al, 2008) among others. Here we focus on piecewise 

linear curves (lines connecting the values at the measured points) which are by far the most 

popular for representing such profiles. While expression and other profiles are usually not 

piecewise linear, these curves canrepresent important types of biological responses (for 

example, gradual or single activation, cyclic behavior, increase and then return to baseline, 

etc.). Several popular analysis methods for time series expression data also assume such 

piecewise linear model(Ernst and Bar-Joseph, 2006; Ernst, Nau and Bar-Joseph, 2005). 

Thus, we believe that a theoretical analysis focused on piecewise linear functions provides a 

good balance between a realistic model for time series gene expression and our ability to 

rigorously compare different sampling strategies (which is easier to perform with these 

simple functions).

Overall, our results support the commonly used (though so far not justified) practice of 

reducing or eliminating replicate experiments in time-series high-throughput studies. For 

both the theoretical analysis when using reasonable noise levels and the biological data we 

analyzed, we see that profiles reconstructed using dense sampling are more accurate than 

those reconstructed based on dense sampling (i.e. they can better predict the levels of genes 

at intermediate time points that were not experimentally profiled). This indicates that 
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autocorrelation can indeed be a useful feature when trying to reduce the impact of noise on 

the reconstructed curves. Our results can be used to determine the best strategy for using 

replicate experiments given the noise expected in the data.

Results

We perform both theoretical analysis and analysis of real data to test the impact of replicates 

on the ability to accurately characterize high throughput time series biological data. The 

main goal of our theoretical analysis (Experimental Procedures) is to develop a framework 

for computing the expected difference in the resulting error (defined as the difference 

between the true underlying curves and the estimated curves) between the two possible 

strategies we are considering. Unlike the analysis of real data, which is obviously restricted 

to a few sample datasets, the theoretical analysis methods we develop allows us to compute 

such errors for a very large, and generally representative, set of possible curves. While we 

constrain our analysis to piecewise linear profiles, these often represent the outcomes that 

researchers care about as mentioned above. Indeed, clustering methods based on such 

piecewise linear representation for time series data have been used in the past (Ernst and 

Bar-Joseph, 2006) indicating that they can represent an important subset of the possible 

trajectories.

Our comparisons focus on two possible strategies for sampling in time series data: Dense 

sampling, which performs a single expression experiment at each time point, and replicate 

sampling, which performs 2 or more (depending on the setting) such experiments at each of 

its time points. Since we assume a fixed budget (which means that the number of 

experiments both methods perform is the same), dense sampling is able to query more time 

points (using uniform sampling), but would have to pay a price in terms of accuracy at each 

point since no replicates are available.

To analyze the impact of replicates on the ability to accurately reconstruct the gene 

expression signal, we use a probabilistic model that computes the likelihood of 

reconstructing a specific profile under each of the strategies given a specific error level 

(Experimental Procedures). We use this to compare and evaluate the performance of the two 

strategies. This is done by computing the expected reconstruction error - difference between 

the true profile, which is based on sampled and non-sampled points, and the reconstructed 

profile, which is only based on the sampled points for the two strategies. The lower the error, 

the better the sampled points represent the full profile, which is the goal of the experiment. 

We repeat this process for different noise levels and different numbers of overall 

experiments.

For the theoretical analysis, we assume that the time series is studied between [0, Tmax] and 

that there are k transition points in each expression profile (Figure 1). The value at each 

transition point can change (up or down) by 1, where 1 represents a unit change in our model 

(for example, log fold change of 2). Note that while this assumption restricts the set of 

potential expression profiles, the possible set of resulting curves is still rich enough to define 

an important subset of expression trajectories. The transition points themselves are not 

restricted in terms of their temporal occurrence and so do not need to coincide with the 
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measured time points. More importantly, by varying k, we can model (using a piecewise 

linear model) several realistic trajectories. Additionally, in many cases researchers are 

primarily interested in the transition points themselves (for example, the first time a gene 

becomes differentially expressed) and so such a model captures an important aspect of the 

goals of time series gene expression analysis.

To test the difference between using a dense sampling (more time points profiled) vs. 

replicate sampling (fewer points, but the same number of experiments), we first used the 

theoretical framework discussed above to evaluate the expected performance of the two 

strategies then compared them using real gene expression profiles. For the theoretical 

analysis, we assumed that gene expression was measured between 0 and 50h (similar to real 

experiments, for example (Whitfield et al., 2002)). We use the term “Repeatv” throughout 

the rest of the paper to represent a setting where we are using υ replicates for each time point 

and “Dense” to represent a setting where we are not using any replicates. In such settings, 

when we have a budget for x experiments, Dense performs x RNA-Seq (or microarray) 

experiments uniformly between 0 and 50h, whereas Repeat2 and Repeat3 perform 2 and 3 

experiments at  and  uniformly sampled points, respectively. As mentioned above, we 

assume that noise in each measurement for each gene is Gaussian (mean 0, and standard 

deviation σ ranging between 0.1 and 1.5).

Detecting transition time for step functions

We first evaluated the performance for step functions. These functions can represent genes 

that start as inactive (0) and become active after a certain time point (1), where the goal is to 

determine the transition time (Experimental Procedures). For each of the noise levels we 

consider, we randomly selected 100 transition points and evaluated the performance of the 

two strategies for the resulting curves. For such profiles, Dense performs better for noise 

levels lower than 0.9 for both 12 and 24 experiments (Figure 2A,B). Note that because we 

assume that the difference between an active and non-active gene is 1, a standard deviation 

close to 1 is unlikely and so values less than 0.9 are more likely in practice. Indeed, for most 

gene expression experiments σ is much lower than 1 when analyzing log scale values (for 

example, close to 0.3 for (Blake et al., 2003)). For such values, Dense leads to lower 

reconstruction errors and is clearly much better than Repeat2 and Repeat3. We have also 

tested a larger number of experiments fixing the noise standard deviation at 0.3. As can be 

seen in Figure 2c, when the number of experiments increases beyond 24, the improvement 

seen for the dense strategy decreases. However, even for a very large number of experiments 

(40 over 50 hours with a single transition) Dense still outperforms Repeat2 and Repeat3 

when using σ = 0.3.

Analysis of more complicated transition functions

Following the analysis of the step function scenario we analyzed more complex transition 

profiles including monotonically increasing and non-monotonic transitions (Figures 2d,2e) 

with 12 experiments. Specifically, we looked at a monotonically increasing function 0,1,2,3 

representing a gene that is continuously up-regulated during the course of the study 

(common in response experiments, for example immune response (Teschendorff et al., 

2007)) and at a 0, 1, 0, 1 representing a fluctuating gene (for example, for cases of cyclic 
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activity such as cell cycle and circadian rhythms (Rund et al., 2011)). For these functions, 

we use the theoretical analysis above to compute the expected area difference between the 

true profile and the estimated profile for each of the methods (since the direction of the 

transitions are known, the differences are a function of inaccurate estimation of the transition 

time points). Dense outperforms Repeat2 and Repeat3 when the noise is low to moderate 

(Figure 2d,2e). However, even for high noise values we see that Repeat2 and Repeat3 do not 

improve upon Dense indicating that even when the noise levels cannot be completely 

determined, using Dense is at least going to lead to comparable results to the Repeat2 and 

Repeat3, and in most cases would outperform them.

For the most general type of our theoretical framework Dense outperforms Repeat2 and 

Repeat3 (Figure 2F) in noise levels up to 0.6 (which as mentioned above is much higher than 

often observed in practice). For this analysis, we fixed the number of transitions (in this case 

to 3) but do not assume that the directions are known. Thus, the analysis considers all 

possible 23 transition profiles (Experimental Procedures). Results are more mixed for higher 

noise levels, though there does not seem be a noise level in which Repeat2 and Repeat3 

strongly dominates Dense.

Analysis of real biological data

The analysis above used our theoretical framework to compare the Dense and Repeat 

strategies for various profiles and noise levels. While such analysis is informative since it 

applies to any measurements resulting from the setting being considered, it is also important 

to analyze real biological expression data to compare the two strategies. For this, we used a 

gene expression dataset that profiled 22769 genes in Anopheles Gambiae for 48 hours. The 

study had two settings, both with 13 experiments over the duration being studied: 12 hours 

light/12 hours dark (LD) switching and constant dark (DD). Experiments were performed 

every 4 hours with 2 replicates for each time point used. As usual, we computed the values 

in each time point as log fold changes to the values at time point 0. For both strategies, we 

performed the following analysis: Given a specific number of experiments (upper bounded 

by 13, the total number of points sampled), we sample time points uniformly between 12 

and 60h for each strategy. We use the value of the closest time point if a time point is not 

measured in the original dataset. For Dense, we randomly select one of the replicates at each 

of the time points that are used, whereas both measurements are used for Repeat2 (though 

the total number of time points used by Repeat2 is half that of the ones used by Dense). 

Next, we fit interpolating splines for each gene and estimate the mean squared error (MSE) 

by comparing to median values obtained when using all sampled points. Note that in all 

experiments at least half the experiments are not used (even when sampling 13 points for 

Dense, it only uses 1 experiment for each time point) and so the test data is not fully used in 

the reconstruction even when using the largest number of points. We repeat this procedure 

10000 times for Dense and Repeat2 and report the mean error.

We find that Dense is better than Repeat2 improving our ability to determine the correct 

expression levels at non sampled points in 9 of the 10 comparisons in which both strategies 

use the same number of points. Moreover, in some cases, Repeat2 leads to errors that are 

50% higher, on average, when compared to dense, for example when the budget only allows 
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for 6–8 experiments in the LD setting (Figures 3a–3b). The performance difference between 

them decreases when the number of experiments increases. However, Dense is generally as 

good for all settings.

The measured expression levels and the reconstructed profiles using both Dense and 

Repeat2for three circadian genes are presented in Figure 3C–3E5. In this figure we allow 

both Dense and Repeat2 to use 8 experiments. This figure helps explain the differences 

between the performance of the two methods While Dense correctly reconstructs the 

circadian profile of these genes, Repeat2 is unable to correctly reconstruct these profiles 

since it only measures 4 of the time points. For example, for AGAP010658 and 

AGAP000987 which were identified in this study as cycling with LD (the key goal of this 

experiment), Dense indeed recovers the correct 2 cycles profile, while Repeat2 completely 

misses the correct profile.

Comparisons using a subset of the genes

The above analysis examined performance over all genes profiled in the experiment. 

However, in most case researchers tend to focus on a much smaller subset of genes (often 

the most varying) and any strategy for designing experiments should be able to recover an 

accurate representation for these genes. To study the difference between the Dense and 

Repeat strategies for these key genes, we used 536 rhythmic genes identified as rhythmic 

using a cosine wave-fitting algorithm for both LD and DD conditions (Rund et al., 2011). 

We use a spline fitting procedure as discussed above. Dense performs better than Repeat2 for 

this important subset, both quantitatively, leading to overall lower errors for non-sampled 

points, and qualitatively, enabling us to correctly identify cycling genes (Figure 4A,B).

Analysis of the gene specific performance differences for this smaller set of genes (as 

opposed to the average differences presented above) suggests that Dense performs better 

than Repeat2for 468 (87%) and 523 (98%) out of the 536 rhythmic genes in the LD and DD 

datasets, respectively (Figure 4C,D). Even when increasing the number of experiments to 

10, Dense still performs significantly better than Repeat2 (p < 0.01, Wilcoxon rank-sum 

test). See also Figure S1, where we show similar results when using a piecewise linear fit 

rather than a spline fit for this data.

Discussion

While replicate experiments have been widely used in high-throughput analysis studies, they 

have been utilized to a much lesser extent when using the same technology to study time 

series data (Zinman et al., 2013). While it is hard to determine the exact causes for this 

practice, it is very likely that budget and sample quantity constraints have played a role. 

However, no systematic study examined the tradeoffs between more time points and more 

replicates for such studies.

Here we have tried to address this issue using a combined theoretical and analysis 

framework. Our theoretical models consider the impact of various noise levels on the ability 

of each of these strategies to correctly infer the underlying profile As we show, by analyzing 

a restricted yet expressive set of piecewise linear curves, for reasonable noise levels, dense 
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sampling leads to better results than a strategy that profiles a smaller number of time points 

but a larger number of replicates per sample. We obtain similar results when analyzing real 

biological gene expression data for both the full set of genes being studied and a subset of 

the key genes identified in a specific study.

While we conclude that a dense sampling is beneficial when the number of experiments is 

limited by external constraints, we do not claim that replicates do not provide additional and 

valuable information.

If resource constraints do not exist, or if it is possible to increase the number of experiments 

performed, replicates are an important and useful strategy for identifying differentially 

expressed genes, for clustering and modeling their behavior, and for understanding 

measurement noise and reliability. However, while replicates can be very useful in dealing 

with measurement noise, if we assume that the data being studied can indeed be represented 

by a (smooth) continuous curve, which is often the case (Bar-Joseph et al., 2003b), then the 

autocorrelation between successive points can also provide information about the noise in 

the data (we do not expect large variations between these points). In such cases, more time 

points, even at the expense of fewer or no replicates, may prove to be a better strategy for 

reconstructing the dynamics of the type of data being studied.

While this study is mainly focused on developing a theoretical framework for considering 

the trade-offs between dense and replicate sampling of gene expression data, and on re-

analysis of existing experimental data, the methods we developed can also be used by 

experimentalists when designing other high throughput time course experiments. 

Specifically, the Java program (provided as Data S1 and on the supporting website http://

www.sb.cs.cmu.edu/repeats) allows researchers to input the total duration of their 

experiment, the total number of experiments that they can perform (given budget / sample 

constraints) and the expected noise (which, if unknown, can be determined by performing 

very few experiments for time point 0 (Bar-Joseph et al., 2003a)). Given these inputs we use 

the piecewise linear simulation framework to evaluate the expected curve reconstruction 

error when using dense and replicate sampling and the results are returned to the user.

Experimental Procedures

Likelihood-based Framework

We use a probabilistic model for our theoretical analysis. Such a model allows us to capture 

the uncertainty in the measurement replicates and the noise associated with high throughput 

biological data. We assume that the time series is studied between [0, Tmax] and that there 

are k transition points in each expression profile (Figure 1). The value at each transition 

point can change (up or down) by 1, where 1 represents a unit change in our model (for 

example, log fold change of 2). The transition points are not restricted in terms of their 

temporal occurrence and so do not need to coincide with the measured time points. By 

varying k, we can model several realistic trajectories.

More formally, we use “Dense” to denote a dense sampling strategy and “Repeatv” to denote 

a sampling strategy that uses υ replicates in each time point. Denote the observed data using 
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Dense for a gene g by  and for Repeat by . Let Td and Tr be the set of measured time 

points for each method respectively, and nr be the number of experiments used for each time 

point in Repeatnr. For a given budget B, we assume | Td |= B and . We assume that 

the true expression profile for a gene g is defined by transition times  and 

corresponding transition directions  where each . The goal of 

an experiment (using either of the sampling methods) is to detect, as accurately as possible, 

these transition times and directions. Let  and  denote the 

points and directions estimated by Repeatv. Similarly, let Sd and Cd denote the points and 

the directions estimated by Dense. We assume Sg, Sr, Sd to be sorted in increasing order, and 

define fmis (Sg,Cg, Sr, Cr) to be the difference between the area of the true gene profile curve 

defined by Sg and Cg, and area of the estimated curve defined by Sr, Cr. We compare both 

strategies by fmis.

General Likelihood Function

Given the experiment values and k (the required number of transitions), we next need to 

select the set of transition points and directions for each method Sd, Cd and Sr, Cr. For this, 

we use the maximum likelihood (ML) criterion. Let Ar be the set of all k -point subsets of Tr 

that are candidates for Sg, and Q = {1, −1}k be the set of all possible transition directions for 

these points that are candidates for Cg. Each k-point subset  and 

a transition function C = {ci,i∈1,…, k}∈Q partitions [0,Tmax] into k+1 intervals 

 with corresponding values {vi,i∈0, …, k} where 

, and vi+1 = vi+ci+1. Let  denote the probability of the 

observed values for Repeatv conditioned on transition times T′ and directions C. Assuming 

independent Gaussian measurement noise, this likelihood can be formulated by:

where  is the z’th replicate of j’th measured value,  is the set of time points 

for Repeatnr, and  is Gaussian probability of observing  given mean vi and 

standard deviation σ. To find the ML estimate for Sr and Cr, we set Sr, 

. A similar analysis can be carried out to determine the 

ML estimate for Sd and Cd where we condition on observed values for each point in Td and 

nr = 1.

Analyzing a restricted set of profiles

While our goal is to evaluate the general likelihood function presented above, because of the 

combinatorial nature of the computation (over all selections of points and directions), it is 

Sefer et al. Page 9

Cell Syst. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



impossible to compare the methods for completely unrestricted cases. We thus continue by 

discussing restriction on the general framework that on the one hand allow us to compute a 

closed form solution to the expected differences between the two methods in a reasonable 

(polynomial) time while at the same time capturing a relevant and biologically important 

subset of the potential expression profiles.

We start by considering step functions. Such functions allow only a single transition (for 

example, a gene that is only up or down regulated at some point during the experiment and 

stays in that level until the end). While step functions are clearly highly restricted, there are 

many cases where genes with a step function like behavior are of interest, for example when 

looking for differentially expressed genes in a response experiment. For such genes, the key 

question is to determine the timing of the step event (time of activation). We next discuss 

analysis that allows functions with a larger number of possible transitions assuming that we 

know the direction of each of these transitions. Finally we consider the most general case 

where both the location and direction of transitions are unknown.

For a step function, we only need to determine a single time point which leads to 

. The likelihood function (1) becomes:

(2)

where cr is the direction change (here an activation so cr = 1). For a step function that 

transitions from 0 to 1 at time sg, expected error is:

(3)

where  is the probability of selecting the i’th time point that transitions 

into the value cr = 1 conditioned on the actual step time, actual transition direction, and the 

noise in the measured data.

In order to select ti as the step point, we need the likelihood defined by it and cr = 1 to be 

higher than any other point and cr. From here on, we drop the superscript r when referring to 

the sampled time points and values, and use the shorthand notation L(ti,1) to denote 

. Since transition direction is known:

(4)

where L(ti,1) is defined in Eq. 2. Computing p(L(ti,1) > L(tj,1), ∀j≠i) involves nested 

integrals over pairwise probabilities. Let Si = {t1,…, ti−1} and Mi = {ti+1, …,tT} be the set of 

sorted time points that are smaller or larger than ti respectively, and p(L(ti, cx) > L(tj, cy)) be 
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the probability of likelihood defined by ti and direction cx being larger than the likelihood 

defined by tj and cy. For tj ∈ Si, both predicted curves have the same value up to tj (0) as 

well as at and after ti (1) since cx = cy = 1. Then, this pairwise probability p(L(ti,1) > L(tj,1)) 

can be expressed as in Eq. 5 in terms of the log-likelihood comparison:

(5)

where h is the number of measurements between tj and ti−1 including both time points and 

 is the cdf of a Gaussian with mean  and a standard deviation . Since we 

know sg and cg (the computation is conditioned on them) and we are dealing with a 

Gaussian, the sum of the observations is also a Gaussian with mean 

and standard deviation . Note that such analysis takes into account the 

number of replicates when computing the noise for each time point.

Repeating the pairwise comparison in Eq. 5 for all points in Si and Mi returns set of 

distributions that need to be satisfied. For a step function, distributions returned by Si and Mi 

are independent of each other, so the nested integral for Eq. 4 can be separated into two 

integrals each of which can be efficiently estimated by Gaussian quadrature or by MCMC 

(Press, 2007) (See Appendix for details).

Analyzing profiles with multiple transitions

Following the analysis of step functions, where we focused on identifying a single change 

point, we now consider the more general (though still not the most general) case where we 

know the number of transition points and the direction (for example, 0,1,2,1) but do not 

know the specific time points in which they occur. In this case, we estimate p(Sr = Ti | Cr, 

Sg,Cg, σ2) for Ti ∈ Ad in Eq. 3 which is defined as the probability of the likelihood defined 

by Ti to be higher than the likelihood defined by any other k-subset.

In order to estimate this probability, we follow the approach used for the step function, and 

define the pairwise probability p(L(Ti,Cr) > L(Tj,Cr)) as in:
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(6)

where Ii and Ij are intervals defined by Ti and Tj, and  is the corresponding 

value of the m+2 ’th interval defined by transition directions Cr. For every k-subset Ti, there 

are  comparisons intersection of which define the integral boundaries for 

estimating Eq. 4. In contrast to the step functions in Section 0, we cannot separate the 

estimation of the nested integral in Eq. 4 into two parts since there is no total ordering and 

independence between variables. In this case, we estimate the integral by sampling over the 

domain. As with step functions, we evaluate the success of the Dense and Repeat strategies 

by determining the area between the true and estimated curves for each gene.

General Transition Functions

Finally, we arrive at the most general case where both the location and direction of 

transitions are unknown. Note that the number of transition k is an input for this 

computation, but since the goal of the modeling here is to determine how well Dense and 

Repeat strategies do, we can easily perform the computation on all relevant values of k to 

reach the conclusions we are interested in for a specific noise model (it is unlike that genes 

would have more than 5–6 transitions in most time series studies, in fact in most cases they 

have much fewer). For the case of k possible transitions, expected error becomes:

(7)

where p(Sr = Ti,Cr = Cx | Sg,Cg, σ2) is the probability of selecting k -point subset Ti and set 

of transition directions  conditioned on the actual step time, actual 

transition direction, and the noise in the measured data. In Eq. 7, expectation is taken over 

all possible k -point subsets of Tr and all possible transition directions Cx of length k since 

we also do not know the transition directions. When estimating p(Sr = Ti,Cr = Cx | Sg,Cg, 

σ2), we want the likelihood defined by Ti and Cx to be higher than the likelihood defined by 

any other k -point subset Tj and k -length transition directions Cy pair. We follow the 

approach used for the step function, and define the pairwise probability p(L(Ti,Cx) > 

L(Tj,Cy)) as in:
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(8)

where Ii and Ij are intervals defined by Ti and Tj, and  are the 

corresponding values of the m + 2 ’th interval defined by transition directions Cx and Cy 

respectively. For every k -subset Ti and Cx, there are  comparisons defining the 

integral boundaries in estimating Eq. 4. Similar to the discussion of known transition 

directions above, full ordering is not guaranteed between the variables, so the nested integral 

in Eq. 4 can again be estimated via sampling.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The work was supported in part by National Institute of Health [grant number U01 HL122626 to Z.B.J.], by the 
National Science Foundation [grant number DBI-1356505 to Z.B.J.] and by the James S. McDonnell Foundation 
Scholars Award in Studying Complex Systems. An early version of this paper was submitted to and peer reviewed 
at the 2016 Annual International Conference on Research in Computational Molecular Biology (RECOMB). The 
manuscript was revised and then independently further reviewed at Cell Systems.

References

Åström KJ. On the choice of sampling rates in parametric identification of time series. Information 
Sciences. 1969; 1(3):273–278.

Bar-Joseph Z, Gerber G, Simon I, Gifford DK, Jaakkola TS. Comparing the continuous representation 
of time-series expression profiles to identify differentially expressed genes. Proceedings of the 
National Academy of Sciences. 2003; 100(18):10146–10151.

Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, Simon I. Continuous representations of time-
series gene expression data. Journal of Computational Biology. 2003; 10(3–4):341–356. [PubMed: 
12935332] 

Blake WJ, Kærn M, Cantor CR, Collins JJ. Noise in eukaryotic gene expression. Nature. 2003; 
422(6932):633–637. [PubMed: 12687005] 

Chang KN, Zhong S, Weirauch MT, Hon G, Pelizzola M, Li H, Huang SSC, Schmitz RJ, Urich MA, 
Kuo D, Nery JR. Temporal transcriptional response to ethylene gas drives growth hormone cross-
regulation in Arabidopsis. Elife. 2013; 2:e00675. [PubMed: 23795294] 

Chechik G, Oh E, Rando O, Weissman J, Regev A, Koller D. Activity motifs reveal principles of 
timing in transcriptional control of the yeast metabolic network. Nature biotechnology. 2008; 
26(11):1251–1259.

Cumming G, Fidler F, Vaux DL. Error bars in experimental biology. The Journal of cell biology. 2007; 
177(1):7–11. [PubMed: 17420288] 

Sefer et al. Page 13

Cell Syst. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ernst J, Bar-Joseph Z. STEM: a tool for the analysis of short time series gene expression data. BMC 
bioinformatics. 2006; 7(1):1. [PubMed: 16393334] 

Ernst J, Nau GJ, Bar-Joseph Z. Clustering short time series gene expression data. Bioinformatics. 
2005; 21(suppl 1):i159–i168. [PubMed: 15961453] 

Kalaitzis AA, Lawrence ND. A simple approach to ranking differentially expressed gene expression 
time courses through Gaussian process regression. BMC bioinformatics. 2011; 12(1):1. [PubMed: 
21199577] 

Kim J, Ogden RT, Kim H. A method to identify differential expression profiles of time-course gene 
data with Fourier transformation. BMC bioinformatics. 2013; 14(1):1. [PubMed: 23323762] 

Listgarten J, Neal RM, Roweis ST, Emili A. Multiple alignment of continuous time series. In. 
Advances in neural information processing systems. 2004:817–824.

Ma P, Zhong W, Liu JS. Identifying differentially expressed genes in time course microarray data. 
Statistics in Biosciences. 2009; 1(2):144–159.

Mongan MA, Higgins M, Pine PS, Afshari C, Hamadeh H. Assessment of repeated microarray 
experiments using mixed tissue RNA reference samples. BioTechniques. 2008; 45(3):283–292. 
[PubMed: 18778252] 

Press, WH. Numerical recipes 3rd edition: The art of scientific computing. Cambridge university press; 
2007. 

Rund SS, Hou TY, Ward SM, Collins FH, Duffield GE. Genome-wide profiling of diel and circadian 
gene expression in the malaria vector Anopheles gambiae. Proceedings of the National Academy 
of Sciences. 2011; 108(32):E421–E430.

Schmidt WP, Genser B, Barreto ML, Clasen T, Luby SP, Cairncross S, Chalabi Z. Sampling strategies 
to measure the prevalence of common recurrent infections in longitudinal studies. Emerging 
themes in epidemiology. 2010; 7(1):1. [PubMed: 20459823] 

Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A, Surani MA, Cai L, Elowitz MB. Dynamic 
heterogeneity and DNA methylation in embryonic stem cells. Molecular cell. 2014; 55(2):319–
331. [PubMed: 25038413] 

Teschendorff AE, Miremadi A, Pinder SE, Ellis IO, Caldas C. An immune response gene expression 
module identifies a good prognosis subtype in estrogen receptor negative breast cancer. Genome 
Biol. 2007; 8(8):R157. [PubMed: 17683518] 

Tjaden B. An approach for clustering gene expression data with error information. Bmc 
Bioinformatics. 2006; 7(1):17. [PubMed: 16409635] 

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, 
Pachter L. Differential gene and transcript expression analysis of RNA-seq experiments with 
TopHat and Cufflinks. Nature protocols. 2012; 7(3):562–578. [PubMed: 22383036] 

Tu Y, Stolovitzky G, Klein U. Quantitative noise analysis for gene expression microarray experiments. 
Proceedings of the National Academy of Sciences. 2002; 99(22):14031–14036.

Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE, Matese JC, Perou CM, 
Hurt MM, Brown PO, Botstein D. Identification of genes periodically expressed in the human cell 
cycle and their expression in tumors. Molecular biology of the cell. 2002; 13(6):1977–2000. 
[PubMed: 12058064] 

Zinman GE, Naiman S, Kanfi Y, Cohen H, Bar-Joseph Z. ExpressionBlast: mining large, unstructured 
expression databases. Nature methods. 2013; 10(10):925–926. [PubMed: 24076985] 

Sefer et al. Page 14

Cell Syst. Author manuscript; available in PMC 2017 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlight

• Most High throughput time series studies do not contain technical 

repeats.

• Given limited budget, should we profile more repeat experiments or 

more time points?

• We develop a theoretical framework to address this question.

• Under reasonable assumptions more time points are the correct choice.
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Figure 1. 
Examples of piecewise linear functions analyzed in this work. A step function (red) and a 

more complex transition function (black). Transition times are denoted by . Blue, yellow, 

and green lines at the bottom represent the sampled points by Dense, Repeat2 and Repeat3 

strategies respectively.
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Figure 2. 
Comparison of expected error for both Dense and Repeat strategies. Fig. 2a–c: Comparison 

of the strategies for different number of experiments and noise levels. a) 12 experiments, b) 

24 experiments, c) Different number of experiments for a fixed noise σ = 0.3. Fig. 2d–f: 

Comparison of sampling strategies for different noise levels over 12 experiments in terms of 

expected area difference. d) Fluctuating profile with 3 transitions, e) Monotonically 

increasing profile. f) Comparison of Dense and Repeat2 and Repeat3 strategies for 

recovering a profile for which the directions are unknown. The real data is generated from a 

fluctuating profile with 3 transitions, though these are not known in advance and so the 

likelihood function used to select the transition points and directions for both Dense and 

Repeat does not use this information. Results presented for different noise levels when 

performing 12 experiments.
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Figure 3. 
Comparison of Dense and Repeat strategies for genes in Anopheles Gambiae. Fig. 3a–b: 

Comparison of strategies over all genes of Anopheles Gambiae by increasing number of 

experiments over a) LD data b) DD data. Fig. 3c–e: Comparison of the two strategies on 

individual genes by 8 experiments c) AGAP010658, d) AGAP000987, e) AGAP001856. The 

values used for the dense interpolation came from a single data point at times of 

12,20,28,32,40,48,56, and 60 hours. The values used for the interpolation of Repeat3 came 

from both data points at time of 12,28,44, and 60 hours.
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Fig. 4. 
Comparison of Dense and Repeat strategies for circadian genes. Fig. 4a–b: Comparison of 

strategies over all genes exhibiting circadian and diel rhythms by increasing number of 

microarrays over a) LD data, b) DD data. Std. dev. of the error is estimated over the 

considered genes. Fig. c–d: Comparison of strategies over all genes exhibiting circadian and 

diel rhythms where individual genes sorted by decreasing MSE difference between Dense 

and Repeat2 when using 8 experiments over LD and DD data respectively. MSE is computed 

between spline interpolations for each strategy and left out data points.
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