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Efficient 9α‑hydroxy‑4‑androstene‑3, 
17‑dione production by engineered Bacillus 
subtilis co‑expressing Mycobacterium neoaurum 
3‑ketosteroid 9α‑hydroxylase  
and B. subtilis glucose 1‑dehydrogenase 
with NADH regeneration
Xian Zhang1, Zhiming Rao1*, Lele Zhang2, Meijuan Xu1 and Taowei Yang1

Abstract 

3-Ketosteroid 9α-hydroxylase (KSH, consisting of KshA and KshB), a key enzyme in steroid metabolism, can catalyze 
the transformation of 4-androstene-3,17-dione (AD) to 9α-hydroxy-4-androstene-3,17-dione (9OHAD) with NADH as 
coenzyme. In this work, KSH from Mycobacterium neoaurum JC-12 was successfully cloned and overexpressed in Bacil-
lus subtilis 168. The expression and purification of KSH was analyzed by SDS-PAGE and KSH activity assay. Preliminary 
characterization of KSH was performed using purified KshA and KshB. The results showed that KSH was very unstable, 
and its activity was inhibited by most metal ions, especially Zn2+. The whole-cells of recombinant B. subtilis, co-expres-
sion of KSH and glucose 1-dehydrogenase (GDH), were used as biocatalyst to convert AD to 9OHAD. The biocatalyst, 
in which the intracellular NADH was regenerated, efficiently catalyzed the bioconversion of AD to 9OHAD with a 
conversion rate of 90.4 % and productivity of 0.45 g (L h)−1, respectively. This work proposed a strategy for efficiently 
producing 9OHAD by using B. subtilis as a promising whole-cell biocatalyst host and co-expressing KSH and GDH to 
construct a NADH regeneration system.
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Background
9α-Hydroxylated steroids are important precursors 
in the synthesis of steroidal hormone pharmaceuti-
cals, which have been attracted increasing attention 
(Donova and Egorova 2012; Donova 2007; Fernandes 
et  al. 2003). Highly specific reactions are required to 
produce functionalized compounds with therapeutic 
use and commercial value. Due to the high region- and  

stereo-selectivity of the reactions, together with the mild 
conditions required, the high yield biological production 
process, which are more environmentally friendly than 
their chemical synthesis counterparts, has been devel-
oped (Fernandes et al. 2003). Microbial fermentation has 
been wildly used to accumulate some important steroids 
intermediates, such as 4-androstene-3,17-dione (AD), 
androst-1,4-diene-3,17-dione (ADD) and 9α-hydroxy-
4-AD (9OHAD) (Zhang et  al. 2013; Shao et  al. 2015a; 
Yuan et  al. 2015). The 3-ketosteroid 9α-hydroxylase 
(KSH) and 3-ketosteroid-∆1-dehydrogenase (KSDD) are 
key enzymes in the process of microbial steroids degra-
dation. KSH catalyzes the 9α-hydroxylation reaction of 
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AD/ADD to 9OHAD/9α-hydroxy-4-ADD (9OHADD), 
whereas KSDD catalyzes the reaction of ∆1-dehydrogena-
tion of AD/9OHAD to ADD/9OHADD. In this process, 
however, 9OHADD could subsequently form 3-hydroxy-
9,10-secoandrost-1,3,5(10)-triene-9,17-dione (3HSA) by 
B-ring cleavage, spontaneously (Martin 1977; Kieslich 
1985) (Fig. 1). Therefore, KSH combined with KSDD lead 
to the opening of the B-ring of steroid degradation.

The activity of KSH has been found in various bacterial 
genera, such as Mycobacterium (Wovcha et al. 1978; Brzos-
tek et al. 2005; Van der Geize et al. 2007), Nocardia (Strijew-
ski 1982), Rhodococcus (Van der Geize et al. 2002; Petrusma 
et  al. 2009; Datcheva et  al. 1989) and Arthrobacter (Dutta 
et  al. 1992). Heterologous expression of ksh and charac-
terization of KSH have been reported, and the conserved 
sequences analysis demonstrated that KSH is a Rieske 
monooxygenase. It belongs to class IA monooxygenase, 
including a terminal oxygenase (KshA) and a ferredoxin 
reductase (KshB) (Petrusma et al. 2009; Capyk et al. 2009; 
Arnell et al. 2007). It has been certified that KshA and KshB 
are essential for KSH activity by gene deletion studies of 
kshA and kshB (Andor et al. 2006). There were some reports 
about microbial fermentation from phytosterols to 9OHAD. 
However, due to low enzyme activities of steroids degrada-
tion pathway, they took long fermentation durations (about 
120–144  h). For example, it has been reported that the 
mutant Mycobacterium sp. 2–4 M can be used to produce 
9OHAD as a major product from sitosterol, with a 50  % 
molar yield (Donova et al. 2005). By using the resting Rho-
dococcus sp. cells to transform AD to 9OHAD, the substrate 
conversion ratio reached to about 85  % (Angelova et  al. 
1996). Generally, it is difficult to accumulate 9OHAD using 
fermentation method despite bacteria that can degrade 
steroids, because 9OHAD could be ∆1-dehydrogenated 

to 9OHADD and then spontaneously form 3HSA in these 
strains. Since the present of KSDD isoenzymes prevented 
the accumulation of intermediates (Van der Geize et  al. 
2000), deletion of all ksdd genes and overexpression of kshA 
resulted in accumulation of 9OHAD in Mycobacterium neo-
aurum (about 6.78–7.33 g L−1). However, the fermentation 
duration was more than 150 h (Yao et al. 2014). Thus, the 
strains which could accumulate 9OHAD, might be lack of 
KSDD or deficiency in KSDD (Seidel and Horhold 1992). 
Hence, double-stage fermentation method was developed 
to produce 9OHAD. The first step was the side-chain cleav-
age of sterols to form AD by one strain, and then the second 
step was 9α-hydroxylation of AD accomplished by another 
strain (Seidel and Horhold 1992).

Our laboratory has been devoted to using microor-
ganisms to produce steroids intermediates with non-
pollution and non-toxic biological technology (Shao 
et al. 2015a, 2016a). For example, we have co-expressed 
human 17β-hydroxysteroid dehydrogenase type 3 (17β-
HSD3) and Saccharomyces cerevisiae glucose 6-phos-
phate dehydrogenase (G6PDH) to construct the NADPH 
regeneration system for efficient testosterone (TS) pro-
duction form AD (Shao et al. 2016b). The M. neoaurum 
JC-12 (CCTCC No. M208135), capable of producing AD 
and ADD from phytosterol or cholesterol by fermenta-
tion method, was isolated with phytosterol as the sole 
carbon source from soil (Zhang et  al. 2013). Genes of 
steroids degradation pathway from M. neoaurum JC-12 
had been heterologous over-expressed to construct bio-
conversion system for steroids intermediates production. 
For example, cholesterol oxidase gene (choM) had been 
over-expressed in Bacillus subtilis for bioconversion of 
cholesterol to 4-cholesten-3-one (Shao et  al. 2015b). 
3-ketosteroid-∆1-dehydrogenase (ksdd) gene had been 
over-expressed in B. subtilis for bioconversion of AD to 
ADD (Zhang et  al. 2013). The previous work indicated 
that B. subtilis might be a preferred host for bioconver-
sion of steroids intermediates as compared with M. neo-
aurum strains. Hence, in this study, we cloned kshA and 
kshB gene from M. neoaurum JC-12 and first heterolo-
gously co-expressed them in B. subtilis 168. For efficiently 
bioconversion of AD to 9OHAD, glucose 1-dehydro-
genase (GDH, EC 1.1.1.47, encoded by gdh gene) was 
co-expressed with KSH to construct a NADH regenera-
tion system (Additional file  1: Fig. S1). The intracellular 
NADH concentration and the whole-cell bioconversion 
capability of recombinant B. subtilis were detected. This 
work provided a new reference for 9OHAD production.

Methods
Bacterial strains, plasmids and culture conditions
Mycobacterium neoaurum JC-12 (AD and ADD pro-
ducing strain) was stored in our laboratory. B. subtilis 

Fig. 1  Bioconversion of AD to 9ODAD and their degradation path-
way. AD 4-androstene-3,17-dione, ADD androst-1,4-diene-3,17-dione, 
9OHAD 9α-hydroxy-4-AD, 9OHADD 9α-hydroxy-4-ADD, KSH 3-ketos-
teroid 9α-hydroxylase, KSDD 3-ketosteroid-∆1-dehydrogenase, 3HSA 
3-hydroxy-9,10-secoandrost-1,3,5(10)-triene-9,17-dione
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168 was purchased from Bacillus Genetic Stock Center 
(BGSC). The E. Coli and B. Subtilis shuttle vector pMA5 
(HpaII, ColE1, repB, AmpR, KmR) was preserved in our 
lab (Zhang et  al. 2013b). B. subtilis strains were culti-
vated at 37 °C and 160 rpm in LB medium (Luria–Bertani 
broth) with 0.5  % (w/v, weight/volume) glucose. Kana-
mycin (50  mg L−1) was added to the growth medium 
for selecting the recombinants. M. neorarum JC-12 was 
grown at 30  °C and 160 rpm in liquid medium contain-
ing 0.5 % (w/v) glucose, 0.5 % (w/v) tryptone, 0.3 % (w/v) 
beef extract, 1.5 % (w/v) glycerol and 1.5 % (w/v) NaCl. 
2  % (w/v) agar was added during cultivation on solid 
medium.

Gene cloning and sequencing
Restriction enzymes and T4 DNA ligase were purchased 
from TaKaRa Co. (Dalian, China). Extraction and puri-
fication of plasmids were carried out by Mini Plasmid 
Rapid Isolation Kit (Sangon Biotech Co., Ltd., Shang-
hai, China). Isolation of DNA restriction fragment from 
agarose gels was done using the Mini DNA Rapid Puri-
fication Kit (Sangon Biotech Co., Ltd., Shanghai, China). 
Nucleotide sequence of kshA and kshB were analyzed by 
Sangon Biotech Co., Ltd. Shanghai, China. Protein and 
nucleotide sequences alignment were performed using 
the function of the BLAST server at NCBI (http://blast.
ncbi.nlm.nih.gov/Blast.cgi).

Construction of recombinant B. subtilis 168/pMA5‑ksh 
and B. subtilis 168/pMA5‑ksh–gdh
Primers used in this work are listed in Table  2. The 
construction steps of these plasmids are shown in 
Additional file  1: Fig. S2. The kshA was cloned from 
chromosomal DNA of M. neoaurum JC-12 with the 
forward primer KshA-F and reverse primer KshA-
R. Primers were originally designed with NdeI and 
MluI restriction sites to clone kshA into the plasmid 
pMA5. Gene cloning of kshB was performed with for-
ward primer KshB-F and reverse primer KshB-R1. The 

PCR product was ligated onto pMA5 after digested 
by BamHI. The identification of pMA5-kshB was per-
formed by digestion of MluI. Then, we got HpaII-kshB 
from pMA5-kshB with the forward primer HpaII-F1 
and reverse primer KshB-R2 (containing His-Tag). The 
construction of pMA5-ksh was performed by ligation of 
HpaII-kshB, digested by EcoRI and SmaI, onto pMA5-
kshA. For co-expression of ksh and gdh to construct a 
NADH regeneration system, plasmid of pMA5-gdh 
(previously constructed by us, homologous over-expres-
sion of GDH from B. subtilis 168) was used as the tem-
plate and primer pair HpaII-F2/Gdh-R was used to 
amplify HpaII-gdh. The construction of B. subtilis/
pMA5-ksh–gdh was performed by ligation of HpaII-
gdh onto pMA5-ksh, which were digested by KpnI and 
HindIII. The primer sequences were listed in Table  1. 
Transformation of B. subtilis cells were carried out 
according to the procedure described by Anagnosto-
poulos and Spizizen (1961). The recombinant B. subtilis 
with pMA5-ksh was selected by resistance to kanamycin 
and confirmed by DNA sequencing.

Co‑expression of KshA and KshB in B. subtilis 168 
and protein purification
The recombinant plasmid pMA5-ksh was introduced 
into B. subtilis 168. Transformants were obtained after 
growing overnight on selective LB medium supplement 
with 50  mg  L−1 of kanamycin. The recombinant cells 
were grown in LB medium (50  mL) for 24  h at 37  °C. 
Cell pellets (8000 rpm; 10 min; 4  °C) were washed with 
100  mL of 50  mM Tris–HCl buffer (pH 7.0). Cell pel-
lets were then resuspended in Tris–HCl buffer added 
with 5  mg lysozyme for 30  min and then sonicated for 
10 min at 4 °C. Cell extracts were centrifuged for 30 min 
at 10,000 rpm in an SIGAMA 3K-15 centrifuge to remove 
cell debris. The purification of KSH-His was carried out 
by procedure described previously (Zhang et  al. 2014). 
The final samples were verified via SDS-PAGE (12  % 
acrylamide).

Table 1  Primers used in this work

The restriction enzyme sites were bold type

Primers Sequences (5′–3′) Restriction sites

KshA-F ATCCATATGACTACCGAGACAGCCG NdeI

KshA-R CGACGCGTTTAGTGGTGGTGGTGGTGGTGGCTCGGCTGCGCGGAC MluI

KshB-F CGCGGATCCATGACGGAGGAGCCGCTC BamHI

KshB-R1 CGCGGATCCCTATTCGTCGTAGGTGACTTC BamHI

HpaII-F1 ACCGGAATTCATGACGGAGGAGCCGCTC EcoRI

KshB-R2 CCCCCCGGGTTAGTGGTGGTGGTGGTGGTGTTCGTCGTAGGTGACTTC SmaI

HpaII-F2 ACCGGGTACCATGACGGAGGAGCCGCTC KpnI

Gdh-R ACCGAAGCTTTTAACCGCGGCCTGCCTGGAATGAAG HindIII

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Enzyme activity assay
The KSH activity was detected according to the proce-
dure described previously (Petrusma et  al. 2009). For 
KSH enzyme activity assay, the reaction mixture consists 
of 50 mmol L−1 Tris–HCl buffer (pH 7.0), 105 µmol L−1 
NADH, 250  µmol  L−1 AD dissolved in 2  % methanol, 
and 20–25  µg co-expressed KSH (KshA and KshB). For 
KshB enzyme activity assay, the reaction mixture consists 
of 50 mmol L−1 Tris–HCl buffer (pH 7.0), 0.1 mmol L−1 
2,6-dichlorophenolindophenol, 0.25  mmol  L−1 NADH, 
and 1–2  µg KshB was added to the assay. Assays were 
performed at room temperature. GDH activity was 
detected as the procedure described before (Hilt et  al. 
1991).

Determination of NADH and NAD+ concentrations
The intracellular NADH and NAD+ concentrations of 
recombinant B. subtilis strains were determined accord-
ing to the manufacturers’ instructions of Amplite Fluori-
metric NAD/NADH Ratio Assay Kit (15263) (Sunnyvale, 
USA). Sample preparation was followed by the procedure 
described previously (Bao et al. 2015).

Bioconversion of AD by recombinant B. subtilis 168
The bioconversion of AD was performed in shake flasks 
with the recombinant B. subtilis 168. The growth con-
dition of B. subtilis strains was as previously described. 
After growing until late exponential phase (OD600 = 4–6), 
cells were collected by an SIGMA 3 K-15 centrifuge. Cell 
pellets were washed with 200 mL of 50 mmol L−1 Tris–
HCl buffer (pH 7.0) for twice and then resuspended in 
20  mL Tris–HCl buffer. AD and 0.2  % Tween-80 were 
then added into the bioconversion system. When using 
the NAD regeneration system as whole-cell biocatalyst, 
1.5 % glucose was added as the substrate of GDH. Ster-
oids extracted from the bioconversion solution (1  mL) 
by ethyl acetate were used for high-performance liquid 
chromatography (HPLC). For HPLC analysis, samples 
were diluted 5 times with ethyl acetate and filtered. Ster-
oids were analyzed by HPLC with a reversed phase Dia-
monsil C18 at 35  °C using methanol–water (80: 20, v/v) 
solvent as mobile phase with a flow rate of 1 mL min−1, 
and subsequent detected via determination of UV 
absorption at 254 nm.

Results and discussion
kshA and kshB clone and sequence analysis
The amplification and sequences alignment of kshA and 
kshB genes were conducted as described in Materials and 
methods. The kshA gene of M. neoaurum JC-12 encodes 
a protein of 395 amino acids. Protein sequence analysis 
showed that typical conserved sequences of class IA ter-
minal oxygenase (Van der Geize et  al. 2002; Petrusma 

et  al. 2009), the Rieske Fe2S2 binding domain (CXHX-
16CX2H, residues 65–87) and the non-heme Fe2+ motif 
(DX3DX2HX4H, residues 172–186) were found in this 
KshA protein. The kshB gene encodes 351 amino acids of 
KshB protein, which contains typical class IA monooxy-
genase reductase domains, a flavin-binding domain 
(RXYSL, residues 65–69), an NAD-binding domain 
(GSGITP, residues 129–134), and a [Fe2S2Cys4] domain 
(CX4CX2CX29C, residues 288–336). The sequences 
of kshA (GenBank: KR611532.1) and kshB (GenBank: 
KR611533.1) genes were then submitted to the GenBank 
database.

Co‑expression, purification and characterization of KshA 
and KshB
The over-expressed KSH from M. neoaurum JC-12 in 
E. coli with the vector pET28a had been executed in 
our previous study, the recombinant proteins mainly 
existed in the form of inclusion bodies and no KSH activ-
ity was detected. Thus, the recombinant plasmids of 
pMA5-kshA, pMA5-kshB and pMA5-ksh (i.e., pMA5-
kshA–kshB), which allowed the gene kshA and kshB to 
be expressed under the control of HpaII promoter, were 
constructed. After transformation of the recombinant 
plasmids into B. subtilis 168, they were then selected by 
using kanamycin as the selectable marker.

In this study, the possible expression of KSH by recom-
binant B. subtilis was investigated by SDS-PAGE (Fig. 2), 
and the analysis of proteins showed that KshA and KshB 
were successfully expressed. The enzyme activity of KshB, 
the reductase component of KSH, accepts electrons 
from NAD(P)H and transfers it to oxygenase compo-
nent KshA, had been successfully detected in B. subti-
lis 168/pMA5-kshB with B. subtilis 168 as control (data 
not shown). The previous study strongly suggested that 
the cooperation of KshA and KshB are critically impor-
tant for maintaining KSH activity (Petrusma et al. 2009). 
Hence, KSH activity could be only detected when KshA 
and KshB were co-expressed (Table 2). The KSH activity 
of B. subtilis 168/pMA5-ksh was 0.57  U  (mg  total  pro-
tein)−1. However, KSH activity of M. neoaurum JC-12 
were only about 0.02 U  (mg  total protein)−1, suggesting 
co-expression of KshA and KshB in engineered B. subtilis 
successfully improved KSH activity.

KshA and KshB were purified with the C-terminal His-
tag and showed KSH activity of 2.41 U mg−1. The maxi-
mum KSH activity of co-purified KshA and KshB was 
observed at 33  °C and pH 7.0. Measurements showed 
that a rather narrow pH range was needed for KSH activ-
ity. However, the enzyme was not stable when stored at 
−20 and 0  °C, and the KSH activity was reduced by 28 
and 67  % after 24  h, respectively. No metal ions were 
found enhanced the KSH activity conspicuously. On the 
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contrary, however, most metal ions were inhibitors of 
KSH, such as Fe3+, Co2+, Zn2+, Cu2+, Zn2+ and Ni2+, in 
which Zn2+ could inhibit KSH activity completely.

Construction of NADH regeneration system for biocatalysis 
of AD to 9OHAD
GDH from B. subtilis 168 and KSH from M. neoaurum 
JC-12 were co-expressed to construct the NADH regen-
eration system (B. subtilis 168/pMA5-ksh–gdh). SDS-
PAGE analysis proved GDH and KSH were successfully 
co-expressed in B. subtilis (Fig. 3). Compared to B. subti-
lis 168, of which GDH activity was 0.03 U (mg total pro-
tein)−1, the KSH and GDH activities of B. subtilis 168/
pMA5-ksh–gdh were 0.53 and 0.35  U  (mg  total  pro-
tein)−1, respectively, indicating the functional over-
expression of GDH.

The significant role of cofactors in the biocatalysts was 
proved by comparing the intracellular concentrations of 

NAD+ and NADH in the recombinant B. subtilis strains 
(Fig. 4). The results showed that the intracellular NADH 
pool in recombinant B. subtilis 168/pMA5-ksh–gdh was 
improved (17 %) as compared with B. subtilis 168/pMA5-
ksh by over-expression of GDH, suggesting the NADH 
regeneration system was successfully constructed.

Steroid transformation analysis of the recombinant B. 
subtilis 168/pMA5‑ksh and B. subtilis 168/pMA5‑ksh–gdh
The biosynthesized 9OHAD in M. neoaurum strains 
could be subsequently transformed to 9OHADD, which 
then undergoes a nonenzymatic ring cleavage to form 
3HSA. However, the recombinant B. subtilis 168 could 
catalyze the transformation of 9OHAD from AD in one 
step without any degradation of 9OHAD. Moreover, B. 
subtilis has been wildly used and regarded as a safe strain 
in industries (Schallmey et al. 2004).

While using whole-cells as biocatalyst, 1 g L−1 AD was 
added as substrate to validate the bioconversion effi-
ciency of different strains. The results showed that B. 
subtilis 168/pMA5-ksh and B. subtilis 168/pMA5-ksh–
gdh successfully catalyzed the transformation of AD to 
9OHAD (Fig. 5). However, as controls, no 9OHAD was 
detected during AD bioconversion by whole-cells of M. 
neoaurum JC-12, B. subtilis 168, B. subtilis 168/pMA5-
kshA and B. subtilis 168/pMA5-kshB. Although both B. 
subtilis 168/pMA5-ksh and B. subtilis 168/pMA5-ksh–
gdh showed significant improved KSH activity, NAD+ 
was only continuously regenerated by GDH in B. subti-
lis 168/pMA5-ksh–gdh to keep a persistently 9OHAD 
productivity. The maximum conversion rate (g  g−1) of 
B. subtilis 168/pMA5-ksh was 70.1  % at 16  h, while B. 

Fig. 2  SDS-PAGE analysis of cell-free extract and purified KshA and 
KshB. Lanes: M protein marker (Takara Biotechnology Co., Ltd., Dalian, 
China); 1 cell-free extract of B. subtilis 168; 2 cell-free extract of B. sub-
tilis 168/pMA5-kshA; 3 cell-free extract of B. subtilis 168/pMA5-kshB; 4 
cell-free extract of B. subtilis 168/pMA5-ksh; 5 purified KshA (45.1 kDa); 
6 purified KshB (37.8 kDa); 7 copurified KshA and KshB

Table 2  Enzyme activity assay for KSH and GDH

All assays were performed in triplicate

NT, enzyme activity was not detectable; –, not detect

Strains KSH activity
U (mg total  
protein)−1

GDH activity
U (mg total  
protein)−1

M. neoaurum JC-12 0.02 ± 0.01 –

B. subtilis 168 NT 0.03 ± 0.01

B. subtilis 168/pMA5-kshA NT 0.03 ± 0.01

B. subtilis 168/pMA5-ksh 0.57 ± 0.02 0.03 ± 0.01

B. subtilis 168/pMA5-ksh–gdh 0.53 ± 0.02 0.35 ± 0.02

Purified KshA NT –

Co-purified KshA and KshB 2.41 ± 0.05 –

Fig. 3  SDS-PAGE analysis of KSH and GDH co-expressed in B. subtilis. 
Lanes: M protein marker (Takara Biotechnology Co., Ltd., Dalian, 
China); 1 cell-free extract of B. subtilis 168; 2 cell-free extract of B. 
subtilis 168/pMA5-ksh–gdh
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subtilis 168/pMA5-ksh–gdh showed a conversion rate 
(g g−1) of 96.3 % at 2 h, indicating cofactor regeneration 
increased the conversion rate of the biocatalyst. After 
the batch conversion of B. subtilis 168/pMA5-ksh–gdh, 
the pH of the reaction mixture was decreased from 7.0 
to about 6.3. Thus, the pH variation had little effect on 
this system.

From above experiments, B. subtilis 168/pMA5-ksh–
gdh was expected a good candidate for transforming of 
AD to 9OHAD. However, due to the low solubility of 
the steroid substrates and products in aqueous conver-
sion system, the repeated batch strategy of bioconver-
sion from AD to 9OHAD was done in this work. While 

using 1 g L−1 AD as substrate for repeated batch biocon-
version, the whole-cells of B. subtilis 168/pMA5-ksh–
gdh could continuously transform total 8  g  L−1 AD to 
about 7.23 g L−1 9OHAD within 16 h with a conversion 
rate (g g−1) of 90.4 % and productivity of 0.45 g  (L h)−1 
(Fig. 6). However, the enzyme activity of whole-cell bio-
catalyst decreased greatly (left about 38.9 % KSH activity 
and 30.6 % GDH activity) after 16 h. Thus the conversion 
duration was controlled within 16  h. In summary, the 
successful expression of M. neoaurum KSH in B. subti-
lis and the construction of NADH regeneration system 
made it possible to achieve one-step efficient transforma-
tion of AD to 9OHAD.
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Conclusions
9OHAD, an important precursor in the synthesis of ster-
oid pharmaceuticals, can be produced by microorgan-
isms using fermentation method. However, due to the 
long fermentation duration and low substrate conversion 
rate, the productivity of biosynthesis of 9OHAD cannot 
meet the need of industrial production. This work cloned 
and over-expressed M. neoaurum KSH and B. subtilis 
GDH to construct a NADH regeneration system (B. sub-
tilis pMA5-ksh–gdh), which could efficiently transform 
AD to 9OHAD. By using the NADH regeneration system 
as a biocatalyst integrated the repeated batch conversion 
strategy, 9OHAD production was improved to 7.23 g L−1 
with a conversion rate of 90.4  % and productivity of 
0.45 g  (L h)−1. The results demonstrated that the NADH 
regeneration system of recombinant B. subtilis strain can 
be used in 9OHAD production. However, the low solubil-
ity of the steroid substrates in aqueous conversion system 
limits extremely the bioconversion rate. Thus, aqueous-
organic two-phase systems and cloud point systems will be 
considered to be applied in the future research to improve 
the conversion rate of AD to 9OHAD (Wang et al. 2005).
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