
Resolution recovery for Compton camera using origin
ensemble algorithm

A. Andreyeva)

Philips Healthcare, Highland Heights, Ohio 44143

A. Celler
Medical Imaging Research Group, University of British Columbia and Vancouver Coastal Health Research
Institute, Vancouver, BC V5Z 1M9, Canada

I. Ozsahin and A. Sitekb),c),d)

Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts 02114
and Department of Radiology, Harvard Medical School, Boston, Massachusetts 02115

(Received 15 October 2015; revised 2 June 2016; accepted for publication 12 July 2016;
published 29 July 2016)

Purpose: Compton cameras (CCs) use electronic collimation to reconstruct the images of activity
distribution. Although this approach can greatly improve imaging efficiency, due to complex geom-
etry of the CC principle, image reconstruction with the standard iterative algorithms, such as ordered
subset expectation maximization (OSEM), can be very time-consuming, even more so if resolution
recovery (RR) is implemented. We have previously shown that the origin ensemble (OE) algorithm
can be used for the reconstruction of the CC data. Here we propose a method of extending our OE
algorithm to include RR.
Methods: To validate the proposed algorithm we used Monte Carlo simulations of a CC composed
of multiple layers of pixelated CZT detectors and designed for imaging small animals. A series of
CC acquisitions of small hot spheres and the Derenzo phantom placed in air were simulated. Images
obtained from (a) the exact data, (b) blurred data but reconstructed without resolution recovery, and
(c) blurred and reconstructed with resolution recovery were compared. Furthermore, the reconstructed
contrast-to-background ratios were investigated using the phantom with nine spheres placed in a hot
background.
Results: Our simulations demonstrate that the proposed method allows for the recovery of the
resolution loss that is due to imperfect accuracy of event detection. Additionally, tests of camera
sensitivity corresponding to different detector configurations demonstrate that the proposed CC
design has sensitivity comparable to PET. When the same number of events were considered, the
computation time per iteration increased only by a factor of 2 when OE reconstruction with the
resolution recovery correction was performed relative to the original OE algorithm. We estimate that
the addition of resolution recovery to the OSEM would increase reconstruction times by 2–3 orders
of magnitude per iteration.
Conclusions: The results of our tests demonstrate the improvement of image resolution pro-
vided by the OE reconstructions with resolution recovery. The quality of images and their
contrast are similar to those obtained from the OE reconstructions from scans simulated with
perfect energy and spatial resolutions. C 2016 American Association of Physicists in Medicine.
[http://dx.doi.org/10.1118/1.4959551]
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1. INTRODUCTION

Nuclear medicine (NM) imaging is well recognized for its
capacity to investigate different body functions in vivo and at
the molecular level. Unfortunately, current SPECT cameras
with lead collimators suffer from low sensitivity and poor
resolution. It is expected that NM imaging modalities that
are based on the principles alternative to the standard SPECT
will allow the users to overcome these limitations, potentially
contributing to a significant progress in this field. One such
modality is Compton camera (CC) which is able to image
radiotracers’ distributions without the use of mechanical lead

collimators.1 Instead, CC employs the kinematics of Compton
scattering and records time coincidences between the detected
photons that Compton scatter in the first detector and are
absorbed in the second. This type of detections of gamma
photons, called electronic collimation, allows us to restrict the
volume of possible source locations to half-conical surfaces.
The parameters of these half-cones (direction, cone angle, and
apex location) are defined by the locations and the deposited
energies of the two detected events and can be calculated using
the well-known Compton-scatter formula.2

Considering the physical principles of CC, it should exhibit
high sensitivity and be able to image radiotracers without
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the artifacts related to collimator septal penetration, as no
mechanical collimation is involved. However, one of the
reasons why currently CC is not widely used in medical
imaging is that the image resolution that can be achieved
by the real-world systems based on electronic collimation is
seriously limited by the finite energy and spatial resolutions
of the available detectors, as well as by Doppler broadening.2

Additional difficulty is related to the fact that CC imaging
resolution is best when the distance between the imaged object
and the first detector (scatterer) is small, while that between
the scatterer and the second detector (absorber) is large. Such
geometry, however, requires large detectors which may be very
expensive; otherwise camera covers only small solid angle,
which results in low sensitivity.

To summarize, the finite energy and spatial resolutions
of the detectors create an inherent limit to the reconstructed
image quality and resolution, which, in spite of a continuous
search for detectors with improved characteristics, will always
restrict the performance of the CC systems. At the same time,
optimizing camera geometry in order to improve resolution
may seriously deteriorate the CC sensitivity or dramati-
cally increase the cost. Therefore, the image reconstruction
algorithms, which could effectively compensate for these
resolution-limiting effects, will be essential for the future
clinical applications of CC.

Unfortunately, image reconstruction from the CC data is,
in itself, a challenging problem. This is because, as already
mentioned, the possible origins of the detected photons lie
on the half-conical surfaces which are difficult to represent
mathematically in the reconstruction algorithms. Several
analytic and iterative algorithms have been proposed for the
CC reconstruction.3–6 However, to this date, little progress
has been achieved in implementing any of the corrections
that would be required for a successful high-resolution image
reconstruction.7,8 It was recently demonstrated9 that in the
standard modeling of image resolution for CC using the shift-
variant point spread functions (PSFs), the recalculation of the
PSF model required computing times of the order of months.
Investigators from Stanford implemented the ordered subset
expectation maximization (OSEM) based model of resolution
recovery (RR) for CC using the graphics processing unit
(GPU) and this approach enabled them to achieve high speed
of reconstructions (2.2 s/iteration for 50 000 Compton cones).
Their preliminary results show that the method still requires
improvements in terms of resulting image quality.10

Here we propose a different approach. In our previous
publication,11 we have already demonstrated that the origin
ensemble (OE) algorithm is able to reconstruct the Compton
camera images with the quality equivalent to the OSEM
method but in much shorter time. The same approach was
used by others12 for reconstruction of the CC images in the
beam range verification during proton therapy. The algorithm
is based on the Markov Chain Monte Carlo method derived
by Sitek13 (the theory behind the OE approach is discussed in
Refs. 14 and 15). In this work, we present a new, substantially
modified version of the OE algorithm which allows us to
reconstruct CC images with resolution recovery option with
little additional computational cost.

The performance of the new origin ensemble with resolu-
tion recovery (OE-RR) reconstruction algorithm was tested on
the Monte Carlo simulated data using the CC camera design
which could be used in small animal studies. Three different
distances between the detectors were modeled resulting in
substantial changes in both sensitivity and resolution of the
system. Phantoms containing different configurations of small
spheres filled with activity and placed in air and in the hot
background were investigated. Our results show that in all
modeled situations, the proposed OE-RR method effectively
corrects for the image resolution losses caused by the finite
energy and spatial resolutions of the detectors with only
slightly increased processing time as compared to OE.

2. METHODS

2.A. Monte Carlo simulation of the CZT
Compton camera

The performance of our new OE-RR reconstruction method
with incorporated resolution recovery correction was tested
using simulated Compton camera that can potentially be used
in small animal imaging. The proposed camera employs CZT
detectors and could be used for imaging the radioisotopes
emitting single and multiple gamma rays using the CC
mode, as well as the positron emitters using the PET mode.
Consequently, when these two imaging modes are combined,
our camera could perform simultaneous multitracer imaging
studies.

Three different distance settings between the scatterer
and the absorber were investigated, namely 30, 50, and

F. 1. A small animal Compton camera simulated in this study. The di-
mensions of the CZT scatter detectors were 5×5×1 cm and the absorption
detectors were 10×10×1 cm. The fifth pair of the CZT detectors was placed
at the back of the field-of-view (FOV), as marked with dashed lines. Each
detector panel consisted of four 2.5 mm thick layers (denoted by thick black
lines on the right pair of detectors). Three different distances d between the
scatter and absorption detectors (measured from the center to the center of the
detectors) were investigated: 30, 50, and 70 mm. The phantom is positioned
off-center inside the camera.
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70 mm (Fig. 1). Although the configuration with 30 mm
distance between the detectors increases the sensitivity of
the system, the image resolution is sacrificed.2 On the
other hand, increasing this distance (up to 70 mm) while
keeping unchanged the sizes of detectors, improves the spatial
resolution but decreases sensitivity. Our hypothesis is that
the new reconstruction method will be especially useful
in the Compton camera configurations that are aimed at
maximum sensitivities as it will allow us to compensate (at
least partially) for the resolution losses while maintaining high
sensitivity.

Taking into account the above considerations and using
GATE (Ref. 16) Monte Carlo simulation tool, we created
a Compton camera consisting of 1 cm thick-layered CZT
detector blocks. Four pairs of scatter and absorber detectors
were positioned as shown in Fig. 1, while the fifth detector
pair was placed at the back of the system (as marked by
a dashed line in Fig. 1). The dimensions of the scatter
detectors were 5×5×1 cm and the absorption detectors were
10×10×1 cm. Each detector panel consisted of four 2.5 mm
thick CZT layers (denoted in Fig. 1 by thick black lines
on the right pair of detectors). As already mentioned, three
camera geometries with distances between the scatter and
absorption detectors (measured between centers of detector
blocks) equal to 30, 50, and 70 mm were investigated. The
distance between the front surfaces of the opposite scatter
detectors (which defined the field-of-view of the system) was
equal to 5 cm.

Although in real-life situations each photon can interact
multiple times in each detector, for our tests of image recon-
struction we selected only those photons that underwent a
single Compton scatter in the scatterer and were fully absorbed
(no additional Compton scatter) in the absorption detector. All
other events were rejected. As events corresponding to photons
that Compton scatter at angles close to 0◦ and 180◦ result in
significantly degraded resolution,2 we limited the scattering
angles that were accepted in the analysis to those between
9◦ and 171◦. The selection of photon scattering angles was
done based on their deposited energies. In real-life situation,
such selection will be more challenging due to the uncertainty
in the experimentally measured energies.

We estimated the sensitivity values for detection of 511 keV
single photons for the proposed Compton camera for the three
detector configurations considered in our study. The sensitivity
was defined as the ratio of the number of detected photons to
the total number of emitted photons. The 511 keV energy
was selected in order to allow for a direct comparison with
PET or high energy SPECT cameras and to minimize Doppler
effect. The point source positioned at the center of the camera
emitting 106 single 511 keV photons was used in the sensitivity
determination.

Similarly, for our tests of the OE-RR algorithm developed
in this work, objects emitting photons with the same 511 keV
energy were simulated. The effects of attenuation and scatter
in the objects themselves were ignored. During GATE Monte
Carlo simulation, the exact deposited energies and the exact
locations of photon interactions with the detectors were saved
in the list-mode files. These data constitute datasets that we

refer to as the “exact data” as they correspond to acquisitions
with perfect energy and spatial resolutions.

To simulate a realistic acquisition, we assumed that all
the CZT detectors were pixelated into detector elements of
size 1×1× 2.5 mm and with the relative energy resolution
equal to ∆511= 3% FWHM at E0= 511 keV. We also assumed
that the relative energy resolution at other energies was equal
to ∆E =

√
E0/E∆511. Using these assumptions, the second

“experimental” dataset was created. This second dataset
reflected the energy and spatial resolutions of the modeled
CZT detectors and was obtained by modifying the exact
dataset as follows. Measured deposited energies were obtained
as random samples from the normal distributions with the
means equal to the true deposited energies and standard
deviations equal to σE = ∆EE/2.3548 =

√
E0E∆511/2.3548.

To model the limited spatial resolution, the exact locations of
interactions were converted to the center of the corresponding
detector element based on the assumed detector pixelization
(1×1×2.5 mm detector elements). The effects of electronic
and optical cross talk have been ignored (they have been shown
to be negligible17).

2.B. The OE algorithm

According to the CC principle, in a system with detectors
having perfect energy and spatial resolutions, each detected
event (two coincident photon interactions detected in the
scatterer and in the absorber, respectively) creates a half-
conical surface which corresponds to all possible locations
of the radioactive nucleus which emitted this photon (event
origin).

In the first step, the OE algorithm assigns each event origin
to a location randomly selected on its conical surface. In the
subsequent Markov steps, the algorithm attempts to modify
this location to a randomly chosen new location (voxel),
again positioned on the conical surface corresponding to this
particular event. The new event origin location can be accepted
or rejected depending on the relative number of the other event
origins in the voxels containing the new and the old locations.
This is done one event at a time. Following this process, the
number of event origins per voxel reaches steady state at which
on average the number of events moving in and moving out of
the voxel become the same. We successfully implemented this
algorithm for the CC reconstructions in Ref. 11 and derived it
from basic statistical principles in Ref. 14.

In the ideal case, the position of the apex, direction, and
the opening angle (cone angle) of the half conical surface
corresponding to each CC event used in the OE reconstruction
are defined by the true deposited energies and the true locations
of interactions of the photon in the two CC detectors. These
energies and locations, however, are only known with the
accuracy that is determined by the finite energy and spatial
resolutions of the detectors. As a result, the conical surface
which is created using the measured detectors’ outputs may
not include the true event origin. This mismatch creates
deterioration of the spatial resolution in the reconstructed
image.
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The new OE-RR algorithm that aims to correct for these
effects is conceptually straightforward and follows the same
principle as the “standard” OE algorithm. In the standard
OE algorithm we position the event on the cone, this may
be considered as a guess of the true location of the event.
In the image space, this on-the-cone location is assigned
to a particular voxel. Therefore, in simple terms, the OE
algorithm12–14 creates a series (a chain) of “guesses” of the
numbers of emissions per voxel. In order to correct for the
finite energy and spatial resolutions, in addition to guessing
the position of the event origin on the half-cone, the true
energies deposited per interaction and the true locations of the
interactions within the detector elements (detector pixels) in
which they were detected must also be “guessed.” If the OE-
RR algorithm is properly designed (see Ref. 14 and Section E)
these guesses are samples from the joint posterior distribution
of the number of emissions per voxel, energies deposited
per interaction, and locations of the interactions within the
detector elements conditioned on the measured energies and
the indices of detectors in which the interactions were detected.
By averaging the sampled values of the number of emissions
per voxel, the minimum-mean-square-error (MMSE) estimate
of this number is obtained (effectively the true deposited
energies and true locations of interactions within the detector
elements are marginalized). Finally, the estimate of the voxel
activity can be obtained by dividing the MMSE estimate of
the number of emission per voxel by this voxel sensitivity. In
this work, we assumed that the voxel sensitivity is uniform
across the volume of interest.

Although in the present study, the effect of Doppler
broadening was not included in the model, the correction for
Doppler broadening can be implemented in a similar manner
as corrections for the energy and spatial resolutions described
in Secs. 2.C and 2.D.

2.C. Correction for finite energy resolution

In order to be able to “guess” the true deposited energy
based on the energy that is actually measured, the posterior
distribution of the true deposited energy is used. The energies
of photons emitted by the radioisotopes used in medical
imaging studies are always known; therefore we consider only
the detection of photons with known initial energy E0. The
energies deposited in CC due to single Compton scattering
in the first detector and due to photoabsorption in the second
detector are E1 and E2, respectively, where E1+E2= E0. The
cone angle can be determined from

θ = acos
(
1− 511

E0

E1

E2

)
= acos

(
1− 511

E0

E1

(E0−E1)
)
. (1)

Exact true deposited energies E1 and E2 are not known
and only the measured E1 and E2 are available. Only one
energy, E1 or E2, is necessary to determine the cone angle as
shown by Eq. (1). Since in our design of CC both energies are
measured, we combine these two measurements to provide a
more precise estimation of E1 which is sufficient to compute
the cone angle θ [Eq. (1)]. The likelihoods p1(E1|E1) and
p2(E2|E2) have Gaussian shapes centered around E1 and

E2 and standard deviations σE1 and σE2, respectively. The
Gaussian shape of the likelihood function is a consequence
of the assumed Gaussian model of the energy resolution,
where the measurement E1 is assumed to be derived from the
Gaussian distribution with mean E1 and standard deviation
σE1. We further assume that we can approximate the standard
deviationsσE1 andσE2 byσE1

andσE2
. The values ofσE1

and
σE2

are known since the deposited energies are measured, and
because we assumed that the energy resolution is proportional
to the deposited energy. The coefficient of proportionality
between the sigma and the deposited energy is known (in our
case 3% FWHM). Now, considering that the measurements
of both energies are statistically independent, the combined
likelihood p(E1, E2|E1) is described by a normal distribution
(see Appendix for derivation) with the mean µ and variance
σ2 where

µ=
E1σ

2
E2
+ (E0−E2)σ2

E1

σ2
E1
+σ2

E2

, (2)

σ2=
σ2

E1
σ2

E2

σ2
E1
+σ2

E2

. (3)

The normal distribution defined by µ and σ2 presented
in Eqs. (2) and (3) is used in each Markov step of the
OE algorithm to generate a sample of energy E1 which
subsequently is used to determine the cone angle using Eq. (1).
The µ and σ2 define the normal probability of observing
E1,E2 when the true deposited energy in the first detector
is E1. By sampling E1 from the likelihood function, we
implicitly assume that the prior of E1 is uniform and therefore
the sampling is equivalent to sampling from the posterior
p(E1|E1,E2).

2.D. Correction for finite spatial resolution

When implementing the correction for finite spatial reso-
lution of the CC detectors, we considered our detectors to
be pixelated in the x, y , and z directions. The sizes of these
detector elements defined the detectors’ resolutions in each
direction creating a “detector resolution voxel” (Fig. 2) which
we also refer to as the detector element. The detector elements

F. 2. The schematic representation of the effects of finite intrinsic spatial
resolution. T1 and T2 indicate the exact locations of photon interactions
within each detector voxel. These are unknown therefore usually it is assumed
that the interactions happen at the centers of the detector elements in both
detectors (M1 and M2). The conical surface indicated by the solid line
corresponds to the true interaction locations. An incorrect assumption about
the interaction locations will lead to the loss of spatial resolution.
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(pixels) in which the interactions occurred are identified as
M1 and M2 for the scatterer and the absorber, respectively.
To be consistent with the notation used previously for the
energies, we use bar to indicate the measured values. We
also define T1 and T2 at the true x, y , z locations of the
interactions.

When an event is considered by the OE algorithm, a
new location of interaction within this 3D detector element
is selected according to the appropriate photon-detection
probability distribution.18 In our case, these distributions
p(T1|M1) and p(T2|M2) are assumed to be uniform over the
entire voxel volume, but other, more advanced, distributions
more closely reflecting the physics and geometry of photons
interactions within the detector material can be implemented.
Unlike the correction for finite energy resolution where only
one random number was generated to determine a sample from
the normal distribution, the implementation of the correction
for spatial resolution requires generation of six random
numbers. Three random numbers are needed to simulate the
detection uncertainty in the x, y , and z directions of the
detector elements for each of the detectors.

2.E. Combined corrections for finite spatial
and energy resolutions

The corrections described in Secs. 2.C and 2.D were
combined in the new OE-RR algorithm to allow for the full
modeling of the Compton camera resolution due to limited
energy and spatial resolutions of the detectors. Assuming that
for each detected event we measured the deposited energies
E1 and E2 and identified detector elements M1 and M2, in the
OE-RR reconstruction the following steps were executed:

1. For each detected event the initial cone direction and
cone apex were determined by assuming the locations
of interactions at the centers of detector elements
in which they were recorded. The initial value (first
guess) of the true energy deposited in the first detector
was determined by assuming that it was equal to the
measured value.20 The cone angle was subsequently
determined from this sampled values using Eq. (1). The
cone direction, apex, and cone angle define the half-cone
surfaces and in general are different for each event.

2. The initial locations (first guesses) of origins of
all events were determined by stochastic assignment
(random guess) of locations of each event origin on
half-cone surfaces. Only a fraction of half-cone surface
that was contained in the volume of interest (VOI). VOI
corresponds to the volume where the object is located
and which is considered for image reconstruction. In this
work, the VOI was defined as the spherical volume with
the diameter equal to the maximum image dimension.

3. Event n was randomly chosen and voxel i within VOI
that contained the origin of this event was recorded.

4. The parameters of the new half cone corresponding to
event n were stochastically determined by obtaining
samples from the distributions of the locations of

interactions in projection elements (Sec. 2.D) and
deposited energies (Sec. 2.C).

5. Event n was randomly moved to a new location j on the
half-cone surface determined in step 4 within VOI and
voxel j which contained this new location was recorded.

6. A random number was generated. The new location of
the event n was accepted if this random number (from
a range [0,1]) was smaller than

�
cj+1

�
ϵ i/ciϵ j where cj

and ci were the numbers of event origins contained in
voxels j and i before the move and ϵ i and ϵ j were these
voxel sensitivities.

7. Repeated steps 3 to 6.

We refer to the processes described in steps 3 through 7
as a Markov move. Repetition of the Markov move N times
corresponds to one iteration of the OE algorithm, where N is
the total number of detected events.

The above algorithm reaches equilibrium when on average
the number of events in each voxel remains constant i.e.,
events move in and out the voxels in Markov moves, but on
average the number of event origins in each voxel remains
the same. The initial number of iterations for which the
algorithm reaches equilibrium is referred to as a burn-in
period. Once the system reaches equilibrium, the numbers
of events in each voxel ci are recorded for this and for every
subsequent iteration. At the end of the run, an average value
ci is determined for each voxel. This average voxel value,
divided by this voxel sensitivity (in our case it was assumed
uniform), constitutes the result of the algorithm. In general, the
more events (coincident pairs of interactions in the scatterer
and the absorber) are recorded, the more precise estimate of
the expectation of the number of emitted events per voxel is
obtained.

2.F. OSEM

In order to investigate the differences in processing times
between the OE reconstruction with resolution modeling
and the reconstructions that use more “traditional” iterative
methods, we implemented the CC version of the OSEM
algorithm with 16 subsets.19 The modeling of finite energy
and spatial resolutions with the OSEM algorithm is computa-
tionally difficult as it requires integration over the thick conical
surfaces (taking into account both uncertainties in the opening
angle and cone orientation) at each forward projection and
back projection. This means that at each step many more
volume elements must be included in the system matrix than
in the case when resolution is not modeled. No correction for
the resolution recovery was included in our implementation
of the OSEM algorithm due to the anticipated complexity
of such task. However, based on the implemented forward
projector and back projector operations, we estimated the
time per iteration that would be required when the spatial
and energy resolutions are modeled. Two different scenarios
were considered in the estimation of the OSEM computing
time. In the first one, we assumed additional 4 and in the
second additional 8 sampling points per deposited energies and
detector pixels. The assumed sampling scheme was selected
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ad hoc and is only used for an approximate estimation of
the required computing times. Therefore, in order to create
one forward projection 4×4×4= 64 or 8×8×8= 512 cone
integrations would be used. This naïve algorithm provided a
simple estimate of the computing time of an iterative algorithm
with multiple sampling points.

2.G. Simulated phantom data

We simulated three three-dimensional (3D) phantoms
composed of series of small spherical objects filled with
radioisotope emitting 511 keV photons. No attenuation and
Compton scatter in the phantoms were included in these
simulations. For each phantom, three datasets were created for
the three different Compton camera configurations considered
in our study (30, 50, and 70 mm distance between the first and
the second detector).

The first phantom consisted of nine small spheres of 3 mm
diameter with a distance of 5 mm between their centers. The
spheres were placed in air so no background was simulated.
In the second phantom, the spheres were placed inside a thin
cylinder containing activity (cylinder diameter was 24 mm
and height 2 mm). The large cylinder thickness was selected
low (less than the sphere diameter) in order to speed up
the simulation. Only one of the central slices was used in
the analysis. The ratio of activity concentrations between the
spheres and the cylinder was 7:1.

In both simulated cases, the whole phantom with spheres
was placed off-center (in the transaxial direction) between the
detectors, with the left middle sphere positioned at the center
of the FOV (see Fig. 1). Using this setup 1.4×106 photons
were detected in the no-background case and 3.2×106 for the
experiment with warm background in the phantom. The same
numbers of detected photons were used in the simulations of
CCs with different separation distances between the detectors.
The exact values of the deposited energies and the locations
of interactions were recorded (exact dataset).

The third phantom was comprised of 26 small spheres with
diameters equal to 2.0, 2.25, 2.5, 2.75, and 3.0 mm placed
in air. All spheres contained the same activity concentration
and were arranged in the Derenzo pattern with distances
between the spheres centers being equal to their diameters.
No background or attenuating medium was modeled in this
case and 8.7×106 events were acquired (Fig. 3).

2.H. Image reconstructions

The OE reconstructions were performed for: (1) the dataset
with no resolution recovery (standard OE algorithm using
measured energy and interaction locations corresponding to
the centers of detector elements) and (2) for the dataset with
resolution recovery (OE-RR). In order to provide a gold-
standard reference, the reconstruction of the exact dataset
was also performed using the standard OE algorithm. In all
cases, a total of 10 000 iterations were used which is a very
large number of iterations used to ensure the algorithm is in
the equilibrium. As mentioned above, we define one iteration

F. 3. Two 3D phantom configurations that were used in our Monte Carlo
simulations. (a) Nine spheres were imaged without (first phantom) and with
warm background (second phantom). (b) Derenzo phantom with spheres
ranging from 2 to 3 mm diameter (third phantom). In this case, the distances
between the spheres were equal to two times their radii. No attenuating
medium was simulated in any of these experiments.

of the OE algorithm as the process in which all events are
considered for the move (the number of guesses is equal to
the number of events). For each reconstruction, the obtained
numbers of event origins per voxel were averaged between
5100 and 10 000 iterations in steps of 100 iterations (total of
50 measurements) to obtain the estimate of the number of
event origins per voxel. The first 5000 iterations were used as
a burn-in period for the OE algorithm to reach the equilibrium.

Additionally, the third phantom was reconstructed using not
only OE and OE-RR but also the OSEM algorithm. The OSEM
algorithm was tested with a varying number of iterations.
The average mean squared error (MSE) and the bias were
calculated. As the average MSE and the bias reached the
minimum value at ten iterations, it was taken as the optimal
iteration number for the OSEM for both the exact dataset and
the simulated data without resolution recovery (denoted by
OSEM Exact and OSEM). All images were reconstructed into
the 80×80×80 matrix with the voxel size of 0.5 mm. The
images were post-filtered with the Gaussian filter with sigma
of 0.75 voxels.

2.I. Data analysis

The images reconstructed using OE and OSEM from the
exact datasets were compared to those obtained from the
datasets corresponding to the detectors with realistic spatial
and energy resolutions reconstructed using the OE and OE-RR
algorithms. All displayed images were scaled to the common
maximum. A Gaussian post reconstruction filter with sigma
of 0.75 voxel was applied to remove excess noise.

Profiles were drawn through the center of the reconstructed
images of the nine-sphere phantom to show the differences in
the resolution achieved in these three cases. Since the OE
algorithm operates directly on the counts, the images and
the profiles were quantitative and expressed in the number
of emissions detected per voxel.

Additionally, contrast-to-background ratios were estimated
for the nine-sphere phantom with background. See Fig. 5 for
the definition of the region of interest used for calculation of
the contrast. Although all simulations were performed in 3D
only a single 2D slice through the center of the spheres was
analyzed.
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T I. Sensitivities for three investigated Compton camera configurations
(Fig. 1) for detection of single photon emissions at 511 keV.

Distance between the scatter
and absorption detectors (mm) Sensitivity (%)

30 1.45
50 0.95
70 0.69

3. RESULTS

The sensitivities corresponding to the three camera config-
urations were determined using the data simulated with the
point source positioned in the center of the camera. The results
summarized in Table I show that when the distance between
the first and second detector increases from 30 to 70 mm, the
sensitivity of the system decreased by more than a factor of 2.

Considering the absolute values of the estimated sensitivities,
these results also demonstrate that the proposed design for
Compton camera will have good sensitivity, comparable to
PET.

Figure 4 displays the reconstructed images of the nine-
sphere phantom scanned in air (first phantom) using 30, 50,
and 70 mm gap between the scatter and absorption detectors.
Figure 5 shows similar images obtained from the second
phantom (spheres with hot background). Corresponding
profiles are displayed in the right column in both the figures.

The images created from the exact data, assuming per-
fect energy and spatial resolution of all detectors (first
column) show only small resolution degradation between
studies performed with the camera having 70 and 30 mm
distance between the detectors. However, the image resolution
substantially deteriorated when the finite energy and spatial
detector resolutions were included in the simulated model
(second column in Figs. 4 and 5). The reconstructed images

F. 4. Center slices of the reconstructed images and the corresponding profiles of the phantom containing nine spheres placed in air, reconstructed using
the OE and OE-RR algorithms. The first column presents images obtained from the exact data while the second column from the data affected by resolution
uncertainties; these images were reconstructed with OE without resolution recovery. The third column shows images obtained from the data affected by the
resolution uncertainties but reconstructed using the OE-RR algorithm. Three different Compton camera configurations were investigated with changing distance
between the scatterer (front detector) and the absorber (back detector): 30 mm (first row), 50 mm (second row), 70 mm (third row). The profiles presented in
the right part of the figure (top: 30 mm, middle: 50 mm, and bottom: 70 mm) were drawn horizontally through the three middle spheres. “Phantom” profile
corresponds to the true activity distribution, “Exact” profile was drawn through the images reconstructed from the exact data (i.e. simulated for detectors with
perfect energy and spatial resolutions), and the NoRR and RR profiles correspond to the data acquired with detectors with limited resolutions and reconstructed
without and with resolution recovery.
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F. 5. Center slice of the reconstructed images and the corresponding profiles of the nine-sphere phantom with warm background reconstructed using the
OE and OE-RR algorithms. The first column presents images obtained from the exact data while the second column—from the data affected by resolution
uncertainties and reconstructed with the OE without resolution recovery. The third column shows images obtained from the data affected by the resolution
uncertainties but reconstructed using the OE-RR algorithm. Three different Compton camera configurations were investigated: with the distance between the
scatterer (front detector) and the absorber (back detector) equal to 30 mm (first row), 50 mm (second row), 70 mm (third row). Profiles presented at the right part
of the figure (top: 30 mm, middle: 50 mm, and bottom: 70 mm) were drawn horizontally through the three middle spheres. “Phantom” profile line corresponds
to the true activity distribution, “Exact” profile was drawn through the images reconstructed from the exact data (i.e., simulated for detectors with perfect energy
and spatial resolutions), and NoRR and RR profiles correspond to the data acquired with detectors with limited resolutions and reconstructed without and with
resolution recovery option, respectively. The locations of ROI used for calculation of the contrast are shown in the picture displayed below the profiles.

are particularly blurry for the case with 30 mm distance
between the detectors for which the effects of the finite
spatial resolution are more severe. Profiles drawn through
the spheres show that both, the contrast and the quantitative
accuracy of the reconstructed images, are severely affected by
this blurring and that RR is able to improve the quality of
reconstruction.

Analysis of the images presented in the third column of
both figures confirms that by including the resolution recovery
corrections in the OE algorithm we succeeded to greatly
improve the quantitative accuracy of the reconstructions. In
all cases, the image contrast is almost completely recovered,
as compared with the images from the simulations in
which both the deposited energy and the location of photon
interactions were exactly known (first column in Figs. 4 and
5, respectively). It is important to point out, however, that the
shapes of spheres in the images reconstructed with resolution
recovery from the data affected by the resolution uncertainties
are all slightly deformed. We speculate that this effect may be

due to the square geometry of the simulated scanner. We plan
to further investigate this effect in the future.

The contrast-to-background ratios for the nine-sphere
phantom with background (Fig. 5) for the images obtained
from exact data, blurred data but reconstructed without reso-
lution recovery, and blurred and reconstructed with resolution
recovery are summarized in Table II. The obtained values are
consistent with the images presented in Figs. 4 and 5 and

T II. Contrast ratios for the nine-sphere phantom with background. The
true value of contrast in the phantom was equal to 7:1.

Contrast ratio in the
reconstructed imagesDistance between the scatter

and absorption detectors (mm) Exact No RR RR

30 6.73 3.63 5.68
50 6.74 4.00 5.44
70 6.68 4.17 5.36
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F. 6. Images reconstructed with OE and OSEM from the Derenzo phantom placed in air. The first column presents the images obtained from the exact data
using OSEM; second column—OSEM reconstruction without resolution recovery from the data affected by resolution uncertainties; third column—OE recon-
struction from the exact data; fourth column—OE reconstruction from the data affected by the resolution uncertainties; fifth column—OE-RR reconstruction
from the data affected by the resolution uncertainties. Three different Compton camera configurations were investigated based on the distance between the
scatterer (front detector) and absorber (back detector): 30 mm (first row), 50 mm (second row), and 70 mm (third row). Images in all columns are scaled to the
maximum value in OSEM Exact.

clearly demonstrate the improvement provided by the OE-RR
reconstructions.

Figure 6 displays the images of the Derenzo phantom.
Columns left to right show the images reconstructed by the
OSEM from the exact data (exactly known energies and
locations of interactions), OSEM without RR from blurred
data, OE from exact data, and from blurred OE and OE-
RR. While the quality of images reconstructed from the ideal
data are very similar for both OSEM and OE algorithms,
it is clear that when the data are created assuming realistic
detector uncertainties, OE-RR very efficiently improves the
image quality. Note, however, that in some cases the noise is
amplified in the smallest sphere sector, which is an expected
effect when RR is performed.

The reconstruction times are summarized in Table III. We
predict that when resolution recovery is included in the OSEM

algorithm, the reconstruction time would increase by a factor
of 500 or more. This estimation was done assuming that OSEM
was implemented using the naïve forward and back projection
model with sampling by the ray-tracing of the conical surfaces.

On the other hand, the increase of the reconstruction time
for the OE algorithm that is due to the use of the resolution
recovery correction is not significant (compared to OSEM) as
the reconstruction takes only about 80% longer to perform; in
absolute units this time amounts to about 17 s/iteration for 106

events.
Please note, however, that reconstructions using about

3–6 iterations of OSEM with 16 subsets per iteration and
2000–5000 iterations of the OE algorithm will produce
roughly equivalent images in terms of resolution/noise, and
we estimate that such images could be sufficient for many
practical applications.

T III. Timea per 10 iterations for OSEM and 10 000 iterations for OE for the dataset with 8.7×106 counts
and image dimensions 80×80×80. Letters S+E4 indicate correction for the spatial and energy resolutions with
four sampling points, S+E8 with eight sampling points.

OSEM (16 subsets) OE

No RR RR(S+E4) RR(S+E8) No RR RR S+E

6920 s 176 400 0 sb (20 days) 282 960 00 sb (1 yr) 96 000 s 172 000 s

aEstimates based on a single thread at Xeon 5504@2.0 GHz.
bEstimates based on the number of assumed sampling points and the time needed for projection/backprojection opera-
tions, and the actual reconstructions were not performed.
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4. DISCUSSION AND CONCLUSIONS

A modification to the OE algorithm which allows us to
perform resolution recovery for CC to compensate for the
effects of finite spatial and energy resolutions of the detectors
has been proposed and the initial evaluation performed. Our
results are very encouraging and warrant further research.
By modeling the probability distributions of the measured
energy values and of the interaction locations in the scatter and
absorption detectors, we were able to substantially improve the
contrast recovery of the CC system. Further improvements
may be possible when the accurate model of the interaction
of photons with the detectors is incorporated into the
reconstructions. Although we have not analyzed quantitatively
the increase in noise levels related to OE-RR reconstructions,
visual inspection of images of the second phantom with
spheres placed in warm background (Fig. 5) suggests that this
increase will not be substantial. More research is needed to
thoroughly investigate the exact noise/resolution trade-off. We
plan to perform such study in the future using more realistic
phantoms and acquisitions that include the attenuation and
scatter. Attenuation correction for the OE in single photon
emitters (SPECT and CC) can be efficiently implemented by
computing attenuation factors between voxels and possible
detection locations of the first interaction on the scatterer.
Modification of voxel sensitivities so they to take into account
the attenuation is also needed. Once those factors are estimated
their ratio can be taken into account in step 6 of the OE
algorithm provided in Sec. 2.E. However, storing the matrix
of these coefficients presents a challenge. We think that the
solution would be to store the matrix corresponding to a coarse
representation of the object and the projections space. Because
attenuation is a smooth function, the coarse representation
will likely be sufficient to describe it. In addition to modeling
spatial and energy resolutions that were investigated in this
study, we plan to expand our model to include the corrections
for Doppler broadening and tail effect in the detected spectrum
from CZT.

One of the limitations of current work is that we only
provide single reconstructed images and this approach has a
limited value. Ideally, we would like to perform the analysis
of variances of reconstructed images and investigate these
variances as a function of CC parameters, compare these
variances to those obtained by iterative algorithms such as
OSEM. In fact, the use of OE algorithm presents a unique
opportunity to investigate the properties of reconstructed
images as it is possible to compute Bayesian variance of the
solution.14,15 We showed that the time per iteration increased
by a factor of 2 when the OE-RR was used, we have not,
however, investigated the convergence to equilibrium of this
algorithm which will likely be slower than the original OE.
We plan to investigate these issues in the future.

We are convinced that the development of the recon-
struction method which has an ability to perform resolution
recovery is absolutely necessary for the CC to be acceptable
for use in the medical applications. Such reconstructions can
improve spatial resolution and contrast in the reconstructed
images, even for systems in which resolution has been

sacrificed in order to optimize sensitivity. This may allow
CC to outperform current nuclear medicine imaging systems.
In summary, the use of our OE-RR reconstruction method
with resolution recovery in Compton camera may significantly
improve the quality of images and lead to a widespread use of
Compton imaging.
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APPENDIX: DERIVATION OF LIKELIHOOD OF E1

To derive Eqs. (2) and (3), we consider two measurements
E1 and E2 which are modeled as drawn from normal
distributions with means E1 and E2 and standard deviations
σ1 and σ2. Assuming they are statistically independent, the
joint probability of observing E1 and E2 is

p
(
E1,E2|E1,E2

)
∝ e
− (E1−E1)2

2σ2
1 e

− (E2−E2)2
2σ2

2 .

Because E2= E0−E1,

p
(
E1,E2|E1

)
∝ e
− (E1−E1)2

2σ2
1 e

− (E0−E1−E2)2
2σ2

2 .

After rearranging the terms and pulling out some constant
terms we obtain

p
(
E1,E2|E1

)
∝ exp−

(
E1−

E1σ
2
2+(E0−E2)σ2

1
σ2

1+ σ
2
2

)2

2σ2
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2
2

σ2
1+ σ

2
2

which defines the normal distribution with the mean and
variance as given by Eqs. (2) and (3). The above is the
likelihood function of true energy E1 upon detection of
energies E1 and E2. This likelihood is used to form the
posterior of E1 in the OE algorithm.
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