Skip to main content
. 2016 Jul 1;311(1):C67–C80. doi: 10.1152/ajpcell.00319.2015

Table 2.

Summary genetic manipulations of mtCUC components and their impacts on mitochondrial Ca2+-handing profiles and cellular functions

Gene Manipulation Basal [Ca2+]mt Mitochondrial Ca2+ Uptake IMCU In situ/In vivo Phenotype
MCU KO or KD → (16, 61, 71) ⇊ (1, 3, 5, 24, 25, 34, 42, 44, 51, 61, 64, 66, 69-72, 75, 85, 93, 102, 105, 106, 108, 115) ⇊ (5, 13, 46, 69, 109) In situ
→ΔΨmt (3, 24, 34, 52, 93)
→Basal mitochondrial OCR (3, 61, 69, 85)
⇊Ca2+-dependent activation of the TCA cycle, OCR, and ATP production (3, 61, 69, 85, 93, 106)
⇊ (115) ⇊Glucose-triggered ATP production (1)
→Mitochondrial morphology (3, 24, 42, 80, 92)
⇊Insulin secretion (93)
⇊Proinflammatory cytokine secretion (108)
⇊β-Hexosaminidase release in mast cells (34)
⇈Speed of synaptic vesicle endocytosis (75)
→Basal mitochondrial ROS level (42, 69)
⇊Mitochondrial ROS level generation by stimuli (51, 69)
⇊Store-operated Ca2+ entry (25, 101, 105)
→Proliferation or cell viability (19)
⇊Cell migration (105)
⇊Cell death rate by stimuli (19, 66)
⇈Cell death rate by stimuli (42)
⇊Replicative and oncogene-induced senescence (117)
In vivo
⇊Exercise capacity and skeletal muscle performance (85)
⇊Skeletal muscle size (72)
I/R-mediated I/R-mediated heart injury (85)
⇊I/R-mediated I/R-mediated heart injury (61, 69)
MCU-DN OX ? ⇊ (3, 24, 42, 81, 95, 118) ? In situ
→Basal mitochondrial OCR (95)
⇊Αpoptotic signaling activation by stimuli (81)
In vivo
→Resting heart rates (118)
⇊Fight-or-flight heart rate acceleration (118)
⇊Inotropic and lusitropic responses to stress (95)
→Protection from I/R-mediated heart injury (109)
MCU OX (24, 42, 81) (13) In situ
⇈Basal mitochondrial ROS level (81)
⇈Mitochondrial ROS generation by stimuli (81)
⇈Cell death rate by stimuli (24, 66, 81)
⇊ Speed of synaptic vesicle endocytosis (75)
MCUb KD ? ⇈ (94) ? ?
MCUb OX ? ⇊ (81, 94) ? In situ
⇊Basal mitochondrial superoxide levels (81)
⇊Mitochondrial superoxide generation by stimuli (81)
⇊Cell death rate by stimuli (81)
EMRE KD ⇊ (115) ⇊ (102, 109, 115) ⇊(102, 109) ?
EMRE OX ? ? ? ?
MICU1 KO or KD ⇈ (46, 71, 86, 109) ⇈ (42, 77, 86) ⇈ (46) In situ
⇊Basal ATP level (71)
→(16, 21) → (71) →Basal respiration (89)
⇊Glucose-triggered ATP production (1)
⇊(89) ⇊ (1, 34, 50, 50, 51, 89, 91, 116)
⇊Insulin secretion (1)
⇈at low [Ca2+]c elevation and ⇊at high [Ca2+]c elevation (2, 16, 21, 58) →β-Hexosaminidase release in mast cells (34)
⇈Basal mitochondrial ROS level (46, 71)
→Basal mitochondrial ROS level (16, 42)
⇈Mitochondrial ROS generation during mitochondrial Ca2+ uptake(16)
→Mitochondrial ROS generation by stimuli (42)
⇊Mitochondrial ROS generation by stimuli (50, 51)
→Proliferation or cell viability (71)
⇈Cell death rate by stimuli (16, 71)
⇊Cell migration (46, 71)
⇈Oncogene-induced senescence (117)
In vivo
⇊Liver regeneration and hepatocyte proliferation following partial hepatectomy (2)
⇈Proinflammatory response after partial hepatectomy (2)
MICU1 OX ? → (58) ? ?
⇊ (86)
MICU2 KO or KD ⇈ (77, 109) ⇊ (91) →(109) ?
⇈ (58, 77, 86)
MICU2 OX ? → (58) ? ?
⇊ (86)

Because of the small number of publications available, MICU3, MCUR1, and SLC25A23 are omitted. All references are limited to reports using mammalian cells and tissues.

mtCUC, MCU-protein complex; [Ca2+]mt, mitochondrial Ca2+ concentration; MCU, mitochondrial Ca2+ uniporter; IMCU, MCU current; ΔΨmt, mitochondrial membrane potential; TCA, tricarboxylic acid cycle; ROS, reactive oxygen species; EMRE, essential MCU regulator; MICU, mitochondrial Ca2+ uptake; I/R, ischemia-reperfusion; KD, knockdown; KO, knockout; OX, overexpression; OCR, oxygen consumption rate.