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Abstract

An individual’s risk of developing a common disease typically depends on an interaction of 

genetic and environmental factors. Epigenetic research is uncovering novel ways through which 

environmental factors such as diet, air pollution, and chemical exposure can affect our genes. DNA 

methylation and histone modifications are the most commonly studied epigenetic mechanisms. 

The role of long non-coding RNAs (lncRNAs) in epigenetic processes has been more recently 

highlighted. LncRNAs are defined as transcribed RNA molecules greater than 200 nucleotides in 

length with little or no protein-coding capability. While few functional lncRNAs have been well 

characterized to date, they have been demonstrated to control gene regulation at every level, 

including transcriptional gene silencing via regulation of the chromatin structure, and DNA 

methylation. This review aims to provide a general overview of lncRNA function with a focus on 

their role as key regulators of health and disease, and as biomarkers of environmental exposure.
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Introduction

Several common diseases, such as cardiovascular disease, diabetes, and cancer, as well as 

neurodegenerative disorders, have genetic components, but are rarely caused by single genes 

or chromosomal abnormalities. Instead, a combination of genetic and environmental factors 

usually interact to influence an individual’s risk of disease [1–5]. Epigenetics represents a 

promising research approach to understand this interaction. Epigenetic alterations modify 

the activation of certain genes, without directly affecting the DNA sequence. These 

modifications change in response to environmental stimuli, and can cause our cells to alter 

their gene expression. Epigenetic research is uncovering novel paths through which 
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environmental factors such as diet, air pollution, and chemical exposure can affect our genes 

[6–8]. DNA methylation and histone modifications are the most commonly studied 

epigenetic mechanisms. The role of non-coding RNA (ncRNAs), and especially long non-

coding RNAs (lncRNAs), in epigenetic processes has been more recently highlighted.

LncRNAs are defined as transcribed RNA molecules greater than 200 nucleotides in length 

with little or no protein-coding capability [9]. As opposed to microRNAs (miRNAs) which 

are involved in transcriptional and post-transcriptional gene silencing via specific base 

pairing with their targets, lncRNAs regulate gene expression by diverse mechanisms that are 

not yet fully understood [9–12]. Although only a few functional lncRNAs have been well 

characterized they have been demonstrated to control gene regulation at every level 

including transcriptional gene silencing via DNA methylation and regulation of the 

chromatin structure [10, 13–16]. This review aims to provide a general overview of 

epigenetic control regulated by lncRNAs with a focus on their role as key regulators of 

health and disease, and as novel biomarkers of environmental exposure.

LncRNAs

The central dogma of molecular biology is centered on protein-coding genes, with DNA as 

carriers of the genetic information and RNA mediating information transfer from DNA to 

proteins that play important structural or functional roles essential for all aspects of life. This 

limited view of RNA function has been revised over the past decade with the discovery that 

animal genomes are subjected to pervasive transcription resulting in a variety of ncRNAs 

that play key roles in cellular functions beyond those previously attributed to RNA [17–20]. 

In fact, protein-coding genes represent only a small portion of the human genome (<2%), 

whereas the major part is transcribed into ncRNAs [18, 21]. NcRNA research has primarily 

focused on miRNAs, a small subclass of ncRNAs that regulate gene expression. More 

recently the attention has shifted to the larger, in both number and size, lncRNAs. More than 

80% of the mammalian genome transcription is estimated to result in lncRNA generation, 

but molecular mechanisms and functional importance have been described only for a few 

[20, 22, 23]. LncRNAs, in contrast to many miRNAs, do not show strong evolutionary 

conservation and were originally classified as non-functional, transcriptional noise [24]. 

However, accumulating evidence has shown that lncRNAs are important players in diverse 

biological processes including: gene regulation, genome packing, chromatin organization, 

dosage compensation, and genomic imprinting [25–29]. They perform crucial roles in the 

control of gene expression during development and differentiation processes, and the 

number of lncRNA transcripts increases with the complexity of organisms—indicating the 

importance of lncRNA-based regulatory mechanisms in the evolution of multicellular 

organisms [30, 31].

Classification

LncRNAs are a heterogeneous class of RNAs, varying in nucleotide length (200 nucleotides 

to over 100 kilobases), cellular location (nucleus, cytoplasm, or both), and functional role in 

various biological processes. LncRNAs are often expressed at low levels and are generally 

more cell type-specific than the expression of protein-coding genes [30, 32, 33]. Similar to 
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mRNA, many lncRNAs are transcribed by RNA polymerase II (RNA pol II), capped, 

spliced, and polyadenylated [28, 34]. In addition, they can be transcribed from both sense 

and antisense strands of the genome [35]. LncRNAs can be classified by their genomic 

position relative to protein-coding genes and include the long intergenic ncRNA (lincRNA), 

intronic lncRNA, antisense lncRNA, transcribed pseudogene lncRNAs, and enhancer RNA 

[36].

Cellular functions

The intrinsic nucleic acid nature of lncRNAs gives them the dual ability to function as 

ligands for proteins and to mediate base-pairing interactions that guide lncRNA-containing 

complexes to specific RNA or DNA target sites, explaining their involvement in many 

regulatory functions [37–39]. Figure 1 shows examples of lncRNA cellular functions. In 

contrast to small ncRNAs, lncRNAs can fold into complex secondary and higher order 

structures, increasing the potential for both protein and target recognition [37–40]. LncRNAs 

can inhibit or facilitate the recruitment of RNA pol II, transcription factors and/or cofactors 

to gene promoters, thereby controlling transcription of target genes. They can also regulate 

alternative splicing of pre-mRNAs [41]. Moreover, their flexible scaffold nature enables 

lncRNAs to join multiple protein factors that would not interact or functionally cooperate if 

they relied solely on protein–protein interactions [37, 39, 42]. The scaffold function is also 

important for protein activity and localization as well as subcellular structures [43, 44]. 

Additionally, lncRNAs can guide specific chromatin remodeling complexes (e.g. Polycomb 

Repressive Complex 2; PRC2) to the correct chromosomal locations in cis or in trans 

providing target specificity to these complexes. Through these interactions lncRNAs can 

control local or global chromatin packing and the balance between transcriptionally active 

euchromatin and silent heterochromatin [28, 45]. Furthermore, lncRNAs can base-pair with 

mRNA molecules and affect their stability or translation as well as compete for miRNA 

binding and thereby preventing their function [46, 47]. Many lncRNAs may be processed 

into short ncRNAs such as siRNAs that can downregulate gene expression by degrading the 

mRNA transcripts [48–52]. Some lncRNAs may actually code for peptides and small 

proteins [53, 54].

lncRNAs, cancer and other disease

There is accumulating evidence that lncRNAs are important regulators of physiological and 

pathological responses [55–57]. Table 1 shows examples of lncRNAs that have been 

associated with human disease. The function of lncRNAs has mostly been studied in relation 

to tumorigenesis where they play important roles in the regulatory mechanisms of oxidative 

stress, inflammation, apoptosis, cell growth, and viability [23, 58–61]. For example, the 

HOX transcript antisense RNA (HOTAIR) plays a key role in gene regulation and chromatin 

dynamics and is misregulated in a variety of cancers [60, 62]. HOTAIR functions as a 

molecular scaffold that links the two histone modification complexes PRC2 and Lysine-

specific histone demethylase 1 (LSD1) and modifies chromatin structure in trans to induce 

gene silencing and promote cancer cell proliferation, progression, and metastasis (Figure 

1A) [60, 62]. HULC (highly upregulated in liver cancer) is another lncRNA that is 

associated with cancer. It can sequester and inhibit the function of several miRNAs, 

Karlsson and Baccarelli Page 3

Curr Environ Health Rep. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



including the tumor suppressor miR-372 (Figure 1E)[47, 63] However, dysregulation of 

lncRNA is not only associated with several types of cancers but a variety of human diseases 

including: cardiovascular disease [64–66], diabetes [67], membranous nephropathy [68], 

neural pathogenesis such as autism spectrum disorder and Alzheimer’s disease [57, 69, 70], 

and alterations of both the innate and adaptive immune system [71, 72]. Moreover, recent 

studies have revealed that lncRNAs also are localized within extracellular vesicles (EVs) and 

may be important for long distant intercellular communication and function as biomarkers 

[73–76].

Immune function

LncRNAs are emerging as important regulators of immune cell differentiation and activation 

[36, 77]. Several studies have reported aberrant expression of lncRNAs in various 

inflammatory conditions, including autoimmune and allergic disease [78–84]. For instance, 

a recent study discovered the novel C5T1lncRNA, in the rheumatoid arthritis risk locus 

TRAF1-C5, which influences transcript levels of C5 that are important for the pathogenesis 

[85]. Psoriasis is another autoimmune disorder generally thought to be a genetic disease 

triggered by environmental factors. PRINS (psoriasis susceptibility-related RNA gene 

induced by stress) is a lncRNA that may contribute to the psoriasis susceptibility [86, 87].

Metabolic disease

The regulation of metabolism and glucose homeostasis is a complex interplay of tissues/

organs and includes several mechanistically important lncRNAs [88]. For example, the 

lncRNA growth-arrest specific transcript 5 (GAS5) regulates cell growth and is induced 

under conditions of nutrient deprivation and cellular stress [89–91]. Functionally, GAS5 is 

both a precursor for small RNA [51] and a glucocorticoid receptor (GR) decoy (Figure 1B) 

[89]. By competing with GR DNA-binding sequences, GAS5 suppresses transactivation of 

GR-dependent gene promoters [89]. GAS5 also appears to repress the effects of other steroid 

hormone receptors [89] and may have a role in saving energy resources as an adaptive 

response to starvation by restricting the expression of steroid-responsive genes and has been 

reported to have proapoptotic functions [89–91]. Significant efforts have been made to reach 

a better understanding of the causes of diabetes at the molecular level [92]. Interestingly, 

Carter and coworkers have demonstrated that decreased serum levels of GAS5 were 

associated with type 2 diabetes in a cohort of U.S. military veterans [67].

Cardiovascular disease

Recent studies also suggest critical roles of lncRNAs in modulating the initiation and 

progression of cardiovascular disease [64, 93, 94]. LncRNAs such as Bvrt, Fendrr, ANRIL, 

MIAT, and MyHeart (Mhrt) play important roles in cardiovascular development and heart 

disease, including myocardial infarction, cardiomyopathy, heart failure, and atherosclerosis 

[66, 95–99]. For instance, Mhrt prevents myopathy in mice by binding to the helicase 

domain of Brg1, inhibiting chromatin targeting and aberrant gene regulation otherwise 

induced by this stress triggered chromatin-remodeling factor [95].
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Brain disease

A significant part of all sequenced lncRNAs are expressed specifically in the brain, where 

they show strictly regulated temporal and spatial expression patterns [57, 100]. Genome-

wide association studies and comparative transcriptomic studies have associated lncRNA 

expression with neurological disorders including schizophrenia, bipolar disorder, depression, 

autism spectrum disorder, Asperger’s syndrome, attention deficit hyperactivity disorder, 

neuropathic pain, epilepsy, and neurodegenerative disorders such as amyotrophic lateral 

sclerosis, Alzheimer’s and Parkinson’s disease [57, 70, 101–103]. For example: the lncRNA 

BACE1-AS is transcribed antisense to the BACE1 gene and expressed at 2- to 6-fold higher 

levels in the brains of Alzheimer’s disease patients compared to controls [69]. The BACE1 

gene encodes a transmembrane beta-secretase protein that drives overproduction of 

pathogenic Aβ-42 peptides in Alzheimer’s disease [69]. Functionally, BACE1-AS positively 

regulates BACE1 by binding to and stabilizing the BACE1 mRNA (Figure 1D). 

Experimental data suggest a positive feedback loop, in which BACE1-AS drives 

overproduction of toxic Aβ-42 peptides, which then further induce BACE1-AS 

overexpression and accelerating amyloid accumulation [69].

lncRNAs and environmental exposures

The role of miRNA in environmental health has been previously reviewed [6, 104–106]. 

Numerous studies demonstrate that miRNAs functionally interact with a variety of 

environmental factors including environmental chemicals, drugs, alcohol, cigarette smoking, 

viruses, and bacterial pathogens. It is therefore likely that lncRNAs are also important for 

driving exposure-disease associations or function as novel biomarkers of environmental 

exposure. However, while lncRNAs have been found to be dysregulated in a variety of 

human disease that are known to include environmental factors in the etiology, little is 

currently known about lncRNA interactions with environmental exposures. Most of the 

available data is derived from cell studies and no population-based studies have yet been 

published.

Cell studies

To adapt to environmental changes and survive different damages, eukaryotic cells have 

evolved networks of different protection mechanisms, including the heat shock response, 

which detect and controls diverse forms of stress. Heat shock proteins (HSPs) are produced 

by cells in response to exposure to environmental stressors, such as heat shock or various 

chemicals [107]. HSPs, also referred to as stress proteins, perform a chaperone function by 

stabilizing new proteins to ensure correct folding or by helping to refold proteins that were 

damaged by the stress [108]. The upregulation of HSPs is induced primarily by the heat 

shock transcription factor 1 (HSF1) and requires the lncRNA HSR1 [109, 110]. HSR1 

undergoes a structural conformational change in response to heat shock, and forms a 

complex with the elongation factor eEF1A, stimulating the trimerization of HSF1, and 

thereby promoting activation of heat shock response genes [110]. More recently cell studies 

have shown that several lncRNAs respond to numerous environmental stressors such as 

genotoxic agents, ultraviolet (UV)-C irradiation, oxidative stress, cigarette smoke extracts, 

heavy metals, and endocrine disrupting chemicals [111–119]. For example, serum starvation 
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or exposure to translation inhibitors results in an increase in GAS5 that functions as a 

riborepressor for GR by binding to its DNA-binding domain leading to altered expression of 

several glucocorticoid-responsive genes. GAS5 has been reported to be proapoptotic and 

sensitize human cells to cell death by environmental stressors [111, 120]. Another example 

is PRINS, whose expression levels are increased by many stressors such as UV-B irradiation, 

viral infection, translational inhibition, and which may contribute to psoriasis susceptibility 

[86, 87].

Animal experiments

Increasing evidence suggests that lncRNAs take part in gene regulation, from the single gene 

to chromosome level, and cell studies have demonstrated that lncRNAs are involved in 

responses to external stimuli such as chemical exposure. However, to date, the in vivo effects 

of chemical toxicants on lncRNAs are not well studied. Martinez-Guitarte and coworkers 

analyzed lncRNAs levels after pollutant exposure of the aquatic reference organism 

Chironomus riparius [121]. Three lncRNA sequences were studied: telomeric repeats, Cla 

repetitive elements, and the SINE CTRT1, after 24-hour exposure to bisphenol A (BPA), 

benzyl butyl phthalate (BBP) and the heavy metal cadmium (Cd). BPA exposure upregulated 

both telomeric and Cla transcripts, whereas Cd and BBP did not significantly affect of any 

of the sequences [121]. More recently, Bhan and coworkers investigated if the lncRNA 

HOTAIR, which is transcriptionally regulated by estradiol and a key player in breast cancer, 

is misregulated by BPA and diethylstilbestrol (DES) exposure [118]. The results revealed 

that HOTAIR expression is induced after exposure to nanomolar concentrations of BPA and 

DES in breast cancer cells (MCF7) as well as in the mammary glands of ovariectomized 

rats. Exposure to these endocrine disrupting chemicals leads to recruitment of estrogen-

receptors (ERs) and ER-coregulators at the HOTAIR promoter, chromatin modification, 

resulting in an increased HOTAIR expression [118]. As HOTAIR is important for gene 

silencing and highly expressed in variety of cancers including breast tumors a chemically-

induced increase in HOTAIR expression could potentially lead to adverse health effects [29, 

42, 118].

Human exposure studies

Tobacco smoke is a complex chemical mixture containing thousands of compounds, several 

known to be carcinogens, cocarcinogens, and/or mutagens. Smoking is a common risk factor 

for the development of diseases such as cardiovascular disease, lung cancer, and chronic 

obstructive pulmonary disease (COPD). Genome-wide lncRNA expression in lung tissue 

resections from three non-smokers without COPD, five smokers without COPD and five 

smokers with COPD, showed that smoking alters the expression of lncRNAs [122]. 

Hundreds of differentially expressed lncRNAs (≥2-fold change) were found when 

comparing smokers and non-smokers with RNA44121|UCSC-2000-3182 and RNA43510|

UCSC-1260-3754 being the most over- and under-expressed, respectively. Gene ontology 

and pathway analysis revealed that these lncRNAs are associated with changes in key 

pathogenic processes of COPD caused by smoking [122]. Although the number of subjects 

was low this study indicates that lncRNAs may play a role in the pathological changes 

generated by cigarette smoking. This is supported by cell studies reporting that cigarette 

smoke extracts increased levels of HOTAIR in human bronchial epithelial (HBE) cells. 
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HOTAIR then mediates epithelial-mesenchymal transition, a process involved in the 

malignant transformation of cells caused by cigarette smoke extracts [119]. Knockdown of 

HOTAIR by siRNA reversed the induced epithelial-mesenchymal transition, formation of 

cancer stem cells, and malignant transformation [119]. In addition, HOTAIR epigenetic 

silencing of p21 via enhancer of zeste homolog 2 (EZH2) mediated tri-methylation of Lys 

27 of histone H3 contributes to changes in the cell cycle induced by cigarette smoke extracts 

[123]. Similar studies indicate that the lncRNAs MALAT1 also is involved in cigarette 

smoke extract induced epithelial-mesenchymal transition and malignant transformation of 

HBE cells [124].

Future perspectives

The developments in genomics and bioinformatics have resulted in a rapidly growing 

number of identified lncRNAs. Although an increasing number of lncRNAs are emerging as 

important disease players, surprisingly little is known about lncRNA’s roles in 

environmental health. Studies are warranted to clarify whether and how lncRNAs may drive 

exposure-disease associations or function as novel biomarkers of environmental exposure. 

LncRNA interactions with a variety of environmental factors such as environmental 

chemicals, cigarette smoking and air pollution are likely. For instance, the health effects of 

ambient air pollution include allergic, respiratory, and cardiovascular diseases [125–127]. 

Numerous studies from the last several years have demonstrated that epigenetic 

modifications are susceptible to air pollution exposure and may be important for the 

biological mechanisms mediating these disease associations [128]. LncRNAs may be critical 

for the biological responses to air pollutants as they regulate numerous cellular processes 

suggested to drive these exposure-disease associations [129]. Furthermore, as lncRNAs have 

crucial roles in the control of developmental processes, they are also of particular interest in 

the context of the developmental origins of health and disease paradigm (DOHaD). Not only 

are population-based studies needed to establish lncRNA roles in environmental health, but 

experimental studies to clearly establish causality and detailed mechanisms are also 

warranted. However, as lncRNAs have a low evolutionary conservation integration of animal 

and human studies can be challenging.

Conclusion

Although only a small selection of all known lncRNAs have been functionally characterized 

to date, they have been demonstrated to control every layer of gene regulation including 

transcriptional gene silencing via regulation of the chromatin structure, and DNA 

methylation. Research shows that epigenetic and nonepigenetic mechanisms are involved in 

how the lncRNAs regulate various biological functions. Several lncRNAs have been reported 

to play an important role in the pathogenesis of human diseases, and their interactions with 

environmental exposure are exciting, but many questions remain unanswered. Further 

experimental and population-based epidemiological studies are warranted to clarify 

lncRNAs role in the interaction of genetic and environmental factors underpinning the 

development of many common diseases. Characterization of the specific roles of lncRNAs in 

epigenetic regulation and patterns of dysregulation in the lncRNAs-environmental factor 
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interactions can help to understand the mechanisms of diseases and provide insights into 

disease pathogenesis.
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Figure 1. 
Example of lncRNA cellular functions. LncRNAs can bind to DNA, RNA, and proteins and 

act in diverse ways within the cell. LncRNAs regulate gene expression by multiple 

mechanisms. They can guide chromatin remodeling complexes to the correct chromosomal 

locations controlling the balance between transcriptionally active euchromatin and silent 

heterochromatin both locally and globally (A). Furthermore, lncRNAs can inhibit or 

facilitate the recruitment of RNA pol II, transcription factors and/or cofactors to gene 

promoters, thereby controlling transcription of target genes (B). They can regulate 

alternative splicing of pre-mRNAs and thereby contribute to the transcriptome complexity 

(C). Moreover, they can affect the stability and translation of mRNA by base-pairing with 

mRNA molecules (D). LncRNAs can compete for miRNA binding and thereby preventing 

their function and influencing the expression of miRNA target gene expression (E). They 

can also be processed into small, single- or double-stranded RNAs that act as siRNAs and 

target other RNAs, which subsequently could result in target degradation (F). Their flexible 

scaffold nature enables lncRNAs to join multiple protein factors that would not interact or 

functionally cooperate if they only relied on protein–protein interactions (G). The scaffold 

function is also important for protein activity and localization as well as subcellular 

Karlsson and Baccarelli Page 15

Curr Environ Health Rep. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



structures (H, I). (Adapted from: Gutschner T, Diederichs S: The hallmarks of cancer: a long 

non-coding RNA point of view. RNA Biol. 2012 Jun;9(6):703–19) [59].
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Table 1

LncRNAS: Examples of biological functions and associations with human disease

Disease lncRNA Status1 Molecular mechanisms/role in disease Ref.

Colorectal cancer
(CRC)

PINT ↓ PINT acts as a tumor suppressor that reduces cell
proliferation by regulating the expression of genes
involved in p53 signaling via a PRC2-dependent
mechanism.

[130]

Liver tumor HULC ↑ HULC act as a molecular sponge that can bind
and inhibit the function a number of miRNA,
including the tumor suppressor miR-372.

[47, 63]

Breast, uterus,
ovary tumors

SRA ↑ SRA forms ribonucleoprotein complexes with a
number of nuclear receptors generally acting to
stimulate transcriptional activation. SRA is a
potential biomarker of steroid-dependent tumors

[131,
132]

Breast, colorectal
tumors, prostate
cancer etc

HOTAIR ↑ HOTAIR function as a molecular scaffold to link
and target PRC2 and LSD1, leading to chromatin
remodeling via H3K27 methylation and H3K4
demethylation and silencing genes implicated in
inhibiting cancer progression/metastasis.

[29, 62,
133]

Breast tumor, type
2 diabetes

GAS5 ↓ GAS5 act as a decoy and competes for binding to
the DNA binding domain of the glucocorticoid
receptor. GAS5 expression induces growth arrest
and apoptosis. Decreased serum levels of GAS5
has been associated with diabetes

[67, 89,
91]

Cancer, type 2
diabetes, coronary
artery disease,
myocardial
infarction

ANRIL - Several SNPs in the ANRIL locus on chromosome
9p are involved in coronary artery disease,
diabetes and cancer. ANRIL binds PRC1/PRC2
and regulate the tumor suppressors CDKN2A/B.
However, the clear role in the pathogenesis of
these conditions is yet to be understood

[97,
134–
138]

Myocardial
infarction, diabetic
retinopathy,
schizophrenia

MIAT or
GOMAFU

- MIAT is involved in pathological angiogenesis and
is suggested as a predictor of myocardial
infarction. MIAT forms ribonucleoprotein complex
with three splicing proteins, SRSF1, SF-1, and
QKI. Downregulation of MIAT leads to alternative
splicing, suggesting a lncRNA-driven mode of
splicing-defect pathogenesis.

[57, 66,
139–
141]

Alzheimer’s
disease

BACE1-AS ↑ BACE1-AS increases BACE1 mRNA stability
leading to accelerated amyloid β42 accumulation

[69]

Autism spectrum
disorder

MSNP1AS ↑ MSNP1AS regulates the moesin protein, regulator
of synapse development and function, by
stabilizing moesin mRNA. This mechanism may
causally connect SNP variants in the MSNP1AS
locus to autism spectrum disorder pathogenesis.

[70, 142]

1
↓ downregulated, ↑ upregulated

LncRNAs are important regulators of physiological and pathological responses. Their role and functions have been mostly studied in tumorigenesis 
but dysregulation of lncRNAs is not only associated with several types of cancers but a variety of human diseases.

Abbreviations: PINT (p53-induced non-coding transcript), HULC (highly upregulated in liver cancer), SRA (steroid receptor RNA activator), 
HOTAIR (HOX transcript antisense RNA), GAS5 (growth arrest-specific 5), ANRIL (antisense non-coding RNA in the INK4 locus), MIAT 
(myocardial infarction associated transcript), GOMAFU (spotted pattern” in Japanese), BACE1 (beta-site APP-cleaving enzyme 1) BACE1-AS 
(BACE1 antisense RNA), MSNP1AS (moesin pseudogene 1 antisense RNA).
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