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Maternal influenza vaccination prevents influenza iliness in both mothers and newborns. Results from some
recent studies have suggested that influenza vaccination might also prevent adverse pregnancy outcomes,
such as preterm birth. However, it is challenging to conduct epidemiologic studies to evaluate the benefits to
the fetus of maternal influenza vaccination because the causal benefit of vaccination is likely only experienced
by the small fraction of the cohort in whom influenza iliness is prevented by vaccination. The plausibility of de-
tecting true differences in risks between groups under such conditions is rarely discussed. We aimed to inform the
interpretation of studies in which the fetal benefits of maternal influenza vaccination are evaluated by estimating
detectable risk ratios and necessary sample sizes for different study scenarios. Estimates of rates of influenza
iliness, vaccine effectiveness, vaccine uptake, and preterm birth and of the association of influenza illness with
preterm birth were identified from the published literature. We calculated detectable risk ratios for preterm birth in
vaccinated versus unvaccinated women and the associated sample size requirements. Our results demonstrated
that under most scenarios, plausible differences between groups will be extremely challenging to detect (risk ra-
tios for preterm birth of 0.9 to 1.0) and will require sample sizes infeasible for prospective epidemiologic research.
This suggests that the large fetal benefits from influenza vaccination observed in epidemiologic studies are
unlikely to be causal.

immunization; influenza illness; influenza vaccine; pregnancy; pregnancy complication; preterm birth; sample size;

statistical power

Influenza vaccination during pregnancy is recommended
by numerous public health agencies because of its effective-
ness in preventing influenza illness in both mothers and new-
born infants (1-4). Maternal influenza vaccination causes no
apparent harm to the developing fetus (5), and results from
recent studies even suggest that it can improve birth outcomes
by reducing the rates of stillbirth, growth restriction, and
preterm birth (6—15). The idea of a reduction in adverse
fetal outcomes after maternal influenza vaccination is appeal-
ing because it would increase support for influenza vaccina-
tion during pregnancy, particularly in low-resource settings
in which uptake has traditionally been low (1).

However, special considerations are required when conduct-
ing studies to evaluate the fetal benefits of maternal influenza
vaccination by comparing pregnancy outcomes in vaccinated
and unvaccinated women. In studies to measure the harm
caused by vaccination, all vaccinated women could plausibly
experience an adverse outcome attributable to their vaccine
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exposure; that is, all women in the exposed (vaccinated)
group can be assumed to be at risk of the adverse effect of
vaccination (7). In contrast, fetal benefit from vaccination is
unlikely to result directly from vaccination per se; rather, it
will likely come from the vaccine’s ability to prevent mater-
nal influenza illness (7). As shown in Figure 1, the fraction of
a cohort whose influenza illness status will be prevented (or
reduced in severity) by vaccination is small. Most women do
not contract influenza in a given influenza season (the United
States Centers for Disease Control and Prevention estimates
annual attack rates between 5% and 20% in the general adult
population (16)), and not all cases of influenza illness are
averted by vaccination (vaccine effectiveness in adults is typ-
ically 50%—60% (16)). Investigators seeking to evaluate the
fetal benefit from maternal immunization must therefore as-
sume that fetal benefits can only occur among the small frac-
tion of the vaccinated cohort for whom maternal influenza
illness was averted because of the vaccination (2.5%—12%
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Figure 1. Schematic of influenza iliness in women who were and were not vaccinated against influenza. Because the baseline seasonal attack rate
forinfluenza iliness is typically 5%—20% (16), most women will not contract influenza iliness, irrespective of vaccination status. This fraction of the cohort
is denoted as the “never influenza iliness” group. Among those who receive the influenza vaccine, not all cases of influenza illness will be averted
because the effectiveness of the influenza vaccine is not 100%. This fraction of the cohort is denoted as the “always influenza illness” group. The causal
effect of vaccination will only be observed in the fraction of vaccinated women who did not contract influenza iliness as a result of the vaccine (but who
would have contracted influenza illness if they had not been vaccinated), denoted as the “causal effect of vaccine” group. The fraction of the vaccinated
cohort for whom maternal influenza illness was averted because of vaccination is 2.5%—12% of women, assuming the above parameters.

of pregnant women vaccinated before the influenza season,
based on the rates above (influenza attack rate x vaccine
effectiveness)).

The feasibility of detecting true reductions in risk under
this scenario is rarely discussed. Our goal is to inform the de-
sign and interpretation of studies in which the fetal benefits
of maternal influenza vaccination are evaluated by providing
estimates of detectable risks and associated sample size re-
quirements under a range of realistic disease incidence and
immunization scenarios.

METHODS

Estimates of plausible rates of influenza illness, vaccine
effectiveness, vaccine uptake (i.e., receipt of vaccine), and
preterm birth, as well as of the association between maternal
influenza illness and fetal outcome, were taken from the
literature. The range of and justification for rates used in
our calculations are summarized in Web Table 1 (available
at http:/aje.oxfordjournals.org/); they are intended to cover
scenarios for both seasonal and pandemic (e.g., HIN1) influ-
enza. For simplicity, we focused our analyses on preterm
birth. However, because small-for-gestational-age birth oc-
curs at a comparable rate (10%, by definition), our results
can also be used to inform studies of that outcome. Stillbirth
occurs less frequently (<1% in high-income settings, 1.9%
globally (17)), which would result in considerably higher sam-
ple size requirements.

Detectable risks for the association between maternal in-
fluenza vaccine exposure and preterm birth were estimated
using the following steps. First, we estimated the fraction
of women whose influenza illness status would be altered
by receipt of vaccination (i.e., the size of the “causal effect”
group in Figure 1) by multiplying the influenza attack rate by
the vaccine effectiveness rate. For example, a baseline attack

rate of 20% and a vaccine effectiveness of 60% would result
in 12% of the vaccinated cohort having influenza illness
averted by vaccination (0.2 x 0.6 =0.12).

Second, we calculated the risks of preterm birth in the
vaccinated and unvaccinated cohorts based on women’s influ-
enza illness status and the extent to which influenza illness in-
creases the risk of preterm birth. For example, with a 20%
influenza attack rate, 60% vaccine effectiveness, 10% baseline
risk of preterm birth among women without influenza illness,
and risk ratio for preterm birth of 1.5 in women with influenza
illness in pregnancy compared with women without influenza
illness, the risks can be calculated as follows. In the unvacci-
nated cohort: 10% preterm births in the 80% of the cohort with-
out influenza illness + 15% preterm births in the 20% of the
cohort with influenza illness = 11.0% preterm births in the un-
vaccinated cohort (i.e., 0.1 x 0.8 +0.15 x 0.2). In the vacci-
nated cohort: 10% preterm births in the 80% of the cohort
who would not have contracted influenza illness (irrespective
of vaccination status) + 10% preterm births in the 12% of the co-
hort who did not contract influenza illness because they were
vaccinated + 15% preterm births in the 8% of the cohort with
influenza (despite vaccination) = 10.4% preterm births in the
vaccinated cohort (i.e., 0.1 x 0.8 +0.15x0.12+0.15 x 0.8).

Next, we calculated the expected risk ratio for preterm birth
associated with vaccination by dividing the risk of preterm birth
in the vaccinated group by the risk in the unvaccinated group.
For the scenario outlined above, the risks of 10.4/100 and 11.0/
100 in the vaccinated and unvaccinated cohorts, respectively,
corresponded to a risk ratio for preterm birth of 0.95.

Finally, we calculated the sample sizes needed to detect
differences between groups given the estimated risk ratios
using the Stata, version 13 command sampsi (StataCorp
LP, College Station, Texas) for a 2-sample comparison of
proportions (based on Pearson’s % test), with 80% power
and an o of 0.05, at various rates of vaccine uptake.
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Table 1. Expected Risks Ratios for Preterm Birth in Vaccinated Versus Unvaccinated Women in Studies of Fetal

Benefits of Maternal Influenza Vaccinations

Influenza Attack
Rate and Vaccine

Effectiveness, % Altered by Vaccination®

Percent of Vaccinated Women
With Influenza lliness Status

Risk Ratio for Preterm Birth Associated
With Influenza lliness®

1.2 1.5 2.0 4.0
Attack rate of 5%
30 1.5 1.00 0.99 0.99 0.96
40 2 1.00 0.99 0.98 0.95
50 2.5° 1.00 0.99 0.98 0.94
60 3 0.99 0.99 0.97 0.92
70 3.5 0.99 0.98 0.97 0.91
Attack rate of 10%
30 3 0.99 0.99 0.97 0.93
40 4 0.99 0.98 0.96 0.91
50 5 0.99 0.98 0.96 0.89
60 6 0.99 0.97 0.95 0.86
70 7° 0.99 0.97 0.94 0.84
Attack rate of 20%
30 6 0.99 0.97 0.95 0.89
40 8 0.99 0.96 0.93 0.85
50 10 0.98 0.96 0.92 0.81
60 12 0.98 0.95 0.90 0.78
70 14 0.97 0.94 0.88 0.74
Attack rate of 30%
30 9 0.98 0.96 0.93 0.86
40 12 0.98 0.95 0.91 0.81
50 15 0.97 0.94 0.89 0.76
60 18 0.97 0.92 0.86 0.72
70 21 0.96 0.91 0.84 0.67
Attack rate of 40%
30 12 0.98 0.95 0.91 0.84
40 16 0.97 0.93 0.89 0.78
50 20 0.96 0.92 0.86 0.73
60 24 0.96 0.90 0.83 0.67
70 28 0.95 0.88 0.80 0.62

@ Calculated as the product of influenza attack rate and vaccine effectiveness.

b Expected risks ratios for preterm birth in vaccinated versus unvaccinated women.

¢ Corresponds to the percent of women whose influenza illness status was altered by vaccination in the only
placebo-controlled, randomized clinical trial of maternal influenza immunization among women not infected with the

human immunodeficiency virus (28).

9 Estimated percent of women whose influenza illness status was altered by vaccination in the only other
randomized clinical trial of maternal influenza immunization (vs. pneumococcal polysaccharide vaccine control)
(27, 29), assuming all febrile respiratory illnesses reported among women who received the comparator vaccine
were due to influenza virus infection (7.5%) and assuming that the 63% vaccine efficacy against confirmed
influenza illness seen in infants was the same in pregnant women.

RESULTS

The expected risk ratios for preterm birth in vaccinated
versus unvaccinated women under a range of assumptions re-
garding vaccine effectiveness, influenza attack rate, and risk
of preterm birth due to influenza infection ranged from 0.62
to 1.00 (Table 1). For example, under the plausible scenario
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of the globally estimated 11.1% baseline risk of preterm birth
among women without influenza illness, 5% influenza attack
rate, 50% vaccine effectiveness and with a moderate associ-
ation between preterm birth and influenza illness (risk ratio=
1.5), the overall expected risk ratio in vaccinated versus
unvaccinated women is 0.99. In general, expected risk ratios
were below 0.9 only under the assumption that influenza
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illness increases the risk of preterm birth by 2-fold or more.
The majority of plausible combinations of influenza attack
rate, vaccine effectiveness, vaccine uptake, and risk of pre-
term birth due to influenza illness produced small effect
sizes (e.g., risk ratios for preterm birth associated with vacci-
nation between 0.8 and 1.0) that would be challenging to con-
vincingly distinguish from the contributions of residual
confounding, measurement error, or selection bias. In Web
Table 2, these measures of effect are presented in an alterna-
tive format, as the number needed to treat (vaccinate) to pre-
vent 1 preterm birth.

The sample sizes needed to detect the Table 1 risk ratios
are shown in Figure 2, under the scenarios of 20%, 35%,
and 50% vaccine uptake. For example, detecting a significant
difference between groups with a risk ratio of 0.99 (which is
the detectable risk of preterm birth assuming a 5% influenza
attack rate, 50% vaccine effectiveness, and a risk ratio for pre-
term birth of 1.5) would require a sample size of approx-
imately 2.5 million women (dashed gray line in Figure 2).
Alternatively, a fixed sample size of 10,000 pregnancies
would be powered to detect a risk ratio of 0.86, which would
require the unlikely scenario of a 30% or greater influenza ill-
ness attack rate plus a 2-fold higher risk of preterm birth caused
by influenza illness (dashed black line in Figure 2).

In a sensitivity analysis in which we assumed an extreme
20% baseline risk of preterm birth (based on the upper limit
of the 95% confidence interval for the highest observed re-
gional estimate for preterm birth rate; Web Table 1), the
expected risk ratios were similar to those shown in Table 1
(to the second decimal place), whereas the sample sizes
needed to detect statistically significant differences between
vaccinated and unvaccinated cohorts decreased (Web Figure 1,
Web Table 3). For example, a 5% influenza attack rate, 50%
vaccine effectiveness, and 1.5-fold higher risk of preterm
birth caused by influenza illness would require a sample size

25,000,000 | ——e —- 20% Vaccine Uptake
10,000,000+ 35% Vaccine Uptake
—e—— 50% Vaccine Uptake

2,500,000
1,000,000

250,000
100,000+

25,000
10,000+

Sample Size Required

2,500+

1,000

0.7 08 0.9 10
Observed Risk Ratio for Preterm Birth

Figure2. Sample sizes needed to detect various risk ratios for preterm
birth associated with influenza vaccination at 80% power and o of 0.05,
assuming an 11.1% baseline risk of preterm birth among women without
influenza illness in pregnancy. Vertical dashed lines illustrate examples of
a plausible scenario of a 5% influenza iliness attack rate, 50% vaccine
effectiveness, and a 1.5-fold increased risk of preterm birth associated
with influenza illness (expected risk ratio of 0.99; gray dashed line) and
the detectable risk ratio (0.86) under the scenario of a fixed sample size of
10,000 women with 50% vaccine uptake (or equal allocation to immuni-
zation and control in a randomized trial; black dashed line).

of approximately 1 million rather than 2.5 million women,
whereas a fixed sample size of 10,000 women could be used
to detect a risk ratio of approximately 0.9 rather than 0.86.

DISCUSSION

It has been suggested in several recent studies that maternal
influenza vaccination may protect against adverse fetal out-
comes such as preterm birth, growth restriction, and stillbirth
(6, 8—15, 18). Risk ratios as extreme as 0.63 (95% confidence
interval: 0.47, 0.84) and 0.44 (95% confidence interval: 0.21,
0.94) have been reported for preterm birth (14) and stillbirth
(12), respectively. Yet, as outlined in the present study, the
fraction of women whose influenza illness status is altered
through vaccination is small, resulting in extremely small
overall differences in fetal risks between vaccinated and un-
vaccinated women. The small magnitude of detectable effect
sizes casts doubt on the plausibility of many previously ob-
served fetal benefits attributable to averted maternal influenza
illness.

Results from our analyses suggest that a strong association
(>2-fold) between influenza illness and adverse fetal out-
comes is needed to yield risk ratios that are meaningfully dif-
ferent from the null. In a recent systematic review to evaluate
the risk of preterm birth associated with influenza illness dur-
ing pregnancy, investigators found little support for an asso-
ciation of this magnitude (19, 20). Although a risk ratio as
high as 4 has been reported, that result reflected severe mater-
nal influenza disease, which would impact only a very small
proportion of pregnant women. Moreover, the magnitude of
the reported risk ratio was probably inflated by diagnostic as-
certainment bias—a concern in epidemiologic studies on this
topic (20). For perspective, even a 2-fold higher risk would
make influenza illness one of the strongest known exogenous
risk factors for preterm birth (21). For example, maternal
smoking increases the risk of preterm birth by 1.27-fold
(95% confidence interval: 1.21, 1.33) (22), whereas bacterial
vaginosis increases the risk by 2-fold (23). Strong links be-
tween maternal influenza illness and other fetal outcomes
have likewise not been convincingly established (19).

In the absence of a strong causal link between influenza ill-
ness and adverse fetal outcomes, findings of fetal benefit
from maternal influenza vaccination seem questionable. Con-
founding due to higher vaccine uptake among women with a
more favorable risk profile and/or immortal time bias are
more likely explanations for reported protective effects of
vaccination in observational studies (7, 24, 25). True benefit
can only operate on a small fraction of the population,
whereas confounding affects the whole population. It is there-
fore much easier to detect a spurious effect due to uncon-
trolled confounding than a true vaccine effect. Implausible
effects of influenza vaccination have previously been high-
lighted in elderly populations in which failure to adequately
control for differences in frailty status was shown to produce
spurious protective effects from influenza vaccination (26).

Our findings highlight the critical importance of well-
designed randomized trials to build the evidence base for in-
fluenza vaccination, particularly in low-resource settings in
which the burden of influenza illness is likely to be high
and in which access to health care may be limited. Although
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not adequately powered to detect fetal outcomes, 2 random-
ized trials of maternal influenza vaccination from Bangladesh
and South Africa found no significant overall differences in
risks of preterm birth in mothers with and without influenza
vaccine receipt (27-29). In a post hoc subgroup analysis of
births by influenza season in one of the trials, however, re-
searchers observed a large protective effect of vaccination
on small-for-gestational-age birth (adjusted odds ratio = 0.44,
95% confidence interval: 0.19, 0.99) (27). Our estimates sug-
gest that this difference is unlikely to result solely from pre-
vention of maternal influenza illness and should prompt
consideration of alternative causal mechanisms if the find-
ing is replicated.

Although we present results that cover a broad range of re-
alistic scenarios for disease and immunization rates, our con-
clusions may not hold outside these ranges. There is the
remote possibility that influenza vaccine exerts a protective
effect on fetal health through some unknown mechanism
that is entirely separate from protection against maternal in-
fluenza illness. In studies carried out during periods without
circulating influenza virus, investigators have not observed
reduced adverse birth outcomes in vaccinated women com-
pared with unvaccinated women, providing some evidence
against nonspecific vaccine effects. Nevertheless, the wider
confidence intervals observed in the preinfluenza activity pe-
riod precludes firm conclusions on effects (or lack thereof)
during this period (11).

Despite enthusiasm for establishing a protective effect of
influenza vaccination on birth outcomes (18), our results sug-
gest that any such effect will be extremely challenging to de-
tect in overall comparisons of vaccinated versus unvaccinated
pregnant women. Weak effects between maternal influenza
immunization and improved fetal outcomes may exist, but
they are likely beyond the resolving power of most epidemi-
ologic research designs. Conclusions on the causality of ob-
served vaccine effects in existing and future studies should be
interpreted in the context of our estimates. Finally, there is
good evidence that maternal and postnatal newborn immu-
nity benefits from maternal influenza vaccination (28, 29).
Thus, any lack of fetal benefit from vaccination should in
no way undermine the current recommendations that preg-
nant women be targeted for influenza vaccination.
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