Skip to main content
. 2016 Jul 13;184(3):249–258. doi: 10.1093/aje/kww068

Table 2.

Resultsa From a 2-Time-Interval Simulation Study With 4 Scenarios (Rows) in Which the Magnitude of the Confounder L1) and the Standard Deviation of Measurement Error σδ are Varied in Marginal Structural Models Including an Error-Free L and an Uncorrected Error-Prone L*

α1 and Scenario Error Deviation (σδ) Model Using SIMEX-Corrected L1, L2
Direct Correction
Indirect Correction
Bias
Relative MSEb
MCSE
95% Bootstrap Coveragec Bias
Relative MSEb
MCSE
95% Bootstrap Coveragec
β1 β2 β1 β2 β1 β2 1, β2) β1 β2 β1 β2 β1 β2 1, β2)
0.50
 1 0.25 −0.003 0.009 1.000 1.000 0.097 0.107 0.923, 0.970 −0.006 0.007 1.000 1.000 0.097 0.107 0.927, 0.970
 2 1.25 0.187 0.154 0.263 0.552 0.112 0.114 0.600, 0.760 0.158 0.145 0.218 0.507 0.118 0.117 0.717, 0.793
0.75
 3 0.25 0.008 0.013 1.000 0.950 0.126 0.137 0.907, 0.933 −0.001 0.008 1.000 0.950 0.127 0.138 0.913, 0.933
 4 1.25 0.249 0.213 0.240 0.565 0.127 0.141 0.527, 0.650 0.162 0.189 0.151 0.522 0.150 0.158 0.783, 0.720

Abbreviations: MCSE, Monte Carlo standard error; MSE, mean squared error; SIMEX, simulation-extrapolation.

a A sample size of n = 1,000 was used for all simulations.

b MSEs are relative to those computed using a naive model including an error-prone L* with an identical parameter set.

c Bootstrap coverage was computed using the nonparametric bootstrap percentiles approach.